1 /*- 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 36 * based on memory types. Back end is implemented using the UMA(9) zone 37 * allocator. A set of fixed-size buckets are used for smaller allocations, 38 * and a special UMA allocation interface is used for larger allocations. 39 * Callers declare memory types, and statistics are maintained independently 40 * for each memory type. Statistics are maintained per-CPU for performance 41 * reasons. See malloc(9) and comments in malloc.h for a detailed 42 * description. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_ddb.h" 49 #include "opt_kdtrace.h" 50 #include "opt_vm.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/kdb.h> 55 #include <sys/kernel.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/mutex.h> 60 #include <sys/vmmeter.h> 61 #include <sys/proc.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysctl.h> 64 #include <sys/time.h> 65 66 #include <vm/vm.h> 67 #include <vm/pmap.h> 68 #include <vm/vm_param.h> 69 #include <vm/vm_kern.h> 70 #include <vm/vm_extern.h> 71 #include <vm/vm_map.h> 72 #include <vm/vm_page.h> 73 #include <vm/uma.h> 74 #include <vm/uma_int.h> 75 #include <vm/uma_dbg.h> 76 77 #ifdef DEBUG_MEMGUARD 78 #include <vm/memguard.h> 79 #endif 80 #ifdef DEBUG_REDZONE 81 #include <vm/redzone.h> 82 #endif 83 84 #if defined(INVARIANTS) && defined(__i386__) 85 #include <machine/cpu.h> 86 #endif 87 88 #include <ddb/ddb.h> 89 90 #ifdef KDTRACE_HOOKS 91 #include <sys/dtrace_bsd.h> 92 93 dtrace_malloc_probe_func_t dtrace_malloc_probe; 94 #endif 95 96 /* 97 * When realloc() is called, if the new size is sufficiently smaller than 98 * the old size, realloc() will allocate a new, smaller block to avoid 99 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 100 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 101 */ 102 #ifndef REALLOC_FRACTION 103 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 104 #endif 105 106 /* 107 * Centrally define some common malloc types. 108 */ 109 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 110 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 111 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 112 113 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 114 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 115 116 static void kmeminit(void *); 117 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL); 118 119 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 120 121 static struct malloc_type *kmemstatistics; 122 static vm_offset_t kmembase; 123 static vm_offset_t kmemlimit; 124 static int kmemcount; 125 126 #define KMEM_ZSHIFT 4 127 #define KMEM_ZBASE 16 128 #define KMEM_ZMASK (KMEM_ZBASE - 1) 129 130 #define KMEM_ZMAX PAGE_SIZE 131 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 132 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 133 134 /* 135 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 136 * of various sizes. 137 * 138 * XXX: The comment here used to read "These won't be powers of two for 139 * long." It's possible that a significant amount of wasted memory could be 140 * recovered by tuning the sizes of these buckets. 141 */ 142 struct { 143 int kz_size; 144 char *kz_name; 145 uma_zone_t kz_zone; 146 } kmemzones[] = { 147 {16, "16", NULL}, 148 {32, "32", NULL}, 149 {64, "64", NULL}, 150 {128, "128", NULL}, 151 {256, "256", NULL}, 152 {512, "512", NULL}, 153 {1024, "1024", NULL}, 154 {2048, "2048", NULL}, 155 {4096, "4096", NULL}, 156 #if PAGE_SIZE > 4096 157 {8192, "8192", NULL}, 158 #if PAGE_SIZE > 8192 159 {16384, "16384", NULL}, 160 #if PAGE_SIZE > 16384 161 {32768, "32768", NULL}, 162 #if PAGE_SIZE > 32768 163 {65536, "65536", NULL}, 164 #if PAGE_SIZE > 65536 165 #error "Unsupported PAGE_SIZE" 166 #endif /* 65536 */ 167 #endif /* 32768 */ 168 #endif /* 16384 */ 169 #endif /* 8192 */ 170 #endif /* 4096 */ 171 {0, NULL}, 172 }; 173 174 /* 175 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 176 * types are described by a data structure passed by the declaring code, but 177 * the malloc(9) implementation has its own data structure describing the 178 * type and statistics. This permits the malloc(9)-internal data structures 179 * to be modified without breaking binary-compiled kernel modules that 180 * declare malloc types. 181 */ 182 static uma_zone_t mt_zone; 183 184 u_long vm_kmem_size; 185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0, 186 "Size of kernel memory"); 187 188 static u_long vm_kmem_size_min; 189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RD, &vm_kmem_size_min, 0, 190 "Minimum size of kernel memory"); 191 192 static u_long vm_kmem_size_max; 193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0, 194 "Maximum size of kernel memory"); 195 196 static u_int vm_kmem_size_scale; 197 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0, 198 "Scale factor for kernel memory size"); 199 200 /* 201 * The malloc_mtx protects the kmemstatistics linked list. 202 */ 203 struct mtx malloc_mtx; 204 205 #ifdef MALLOC_PROFILE 206 uint64_t krequests[KMEM_ZSIZE + 1]; 207 208 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 209 #endif 210 211 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 212 213 /* 214 * time_uptime of the last malloc(9) failure (induced or real). 215 */ 216 static time_t t_malloc_fail; 217 218 /* 219 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 220 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 221 */ 222 #ifdef MALLOC_MAKE_FAILURES 223 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 224 "Kernel malloc debugging options"); 225 226 static int malloc_failure_rate; 227 static int malloc_nowait_count; 228 static int malloc_failure_count; 229 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 230 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 231 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 232 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 233 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 234 #endif 235 236 int 237 malloc_last_fail(void) 238 { 239 240 return (time_uptime - t_malloc_fail); 241 } 242 243 /* 244 * An allocation has succeeded -- update malloc type statistics for the 245 * amount of bucket size. Occurs within a critical section so that the 246 * thread isn't preempted and doesn't migrate while updating per-PCU 247 * statistics. 248 */ 249 static void 250 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 251 int zindx) 252 { 253 struct malloc_type_internal *mtip; 254 struct malloc_type_stats *mtsp; 255 256 critical_enter(); 257 mtip = mtp->ks_handle; 258 mtsp = &mtip->mti_stats[curcpu]; 259 if (size > 0) { 260 mtsp->mts_memalloced += size; 261 mtsp->mts_numallocs++; 262 } 263 if (zindx != -1) 264 mtsp->mts_size |= 1 << zindx; 265 266 #ifdef KDTRACE_HOOKS 267 if (dtrace_malloc_probe != NULL) { 268 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 269 if (probe_id != 0) 270 (dtrace_malloc_probe)(probe_id, 271 (uintptr_t) mtp, (uintptr_t) mtip, 272 (uintptr_t) mtsp, size, zindx); 273 } 274 #endif 275 276 critical_exit(); 277 } 278 279 void 280 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 281 { 282 283 if (size > 0) 284 malloc_type_zone_allocated(mtp, size, -1); 285 } 286 287 /* 288 * A free operation has occurred -- update malloc type statistics for the 289 * amount of the bucket size. Occurs within a critical section so that the 290 * thread isn't preempted and doesn't migrate while updating per-CPU 291 * statistics. 292 */ 293 void 294 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 295 { 296 struct malloc_type_internal *mtip; 297 struct malloc_type_stats *mtsp; 298 299 critical_enter(); 300 mtip = mtp->ks_handle; 301 mtsp = &mtip->mti_stats[curcpu]; 302 mtsp->mts_memfreed += size; 303 mtsp->mts_numfrees++; 304 305 #ifdef KDTRACE_HOOKS 306 if (dtrace_malloc_probe != NULL) { 307 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 308 if (probe_id != 0) 309 (dtrace_malloc_probe)(probe_id, 310 (uintptr_t) mtp, (uintptr_t) mtip, 311 (uintptr_t) mtsp, size, 0); 312 } 313 #endif 314 315 critical_exit(); 316 } 317 318 /* 319 * malloc: 320 * 321 * Allocate a block of memory. 322 * 323 * If M_NOWAIT is set, this routine will not block and return NULL if 324 * the allocation fails. 325 */ 326 void * 327 malloc(unsigned long size, struct malloc_type *mtp, int flags) 328 { 329 int indx; 330 caddr_t va; 331 uma_zone_t zone; 332 uma_keg_t keg; 333 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE) 334 unsigned long osize = size; 335 #endif 336 337 #ifdef INVARIANTS 338 /* 339 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 340 */ 341 indx = flags & (M_WAITOK | M_NOWAIT); 342 if (indx != M_NOWAIT && indx != M_WAITOK) { 343 static struct timeval lasterr; 344 static int curerr, once; 345 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 346 printf("Bad malloc flags: %x\n", indx); 347 kdb_backtrace(); 348 flags |= M_WAITOK; 349 once++; 350 } 351 } 352 #endif 353 #ifdef MALLOC_MAKE_FAILURES 354 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 355 atomic_add_int(&malloc_nowait_count, 1); 356 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 357 atomic_add_int(&malloc_failure_count, 1); 358 t_malloc_fail = time_uptime; 359 return (NULL); 360 } 361 } 362 #endif 363 if (flags & M_WAITOK) 364 KASSERT(curthread->td_intr_nesting_level == 0, 365 ("malloc(M_WAITOK) in interrupt context")); 366 367 #ifdef DEBUG_MEMGUARD 368 if (memguard_cmp(mtp)) 369 return memguard_alloc(size, flags); 370 #endif 371 372 #ifdef DEBUG_REDZONE 373 size = redzone_size_ntor(size); 374 #endif 375 376 if (size <= KMEM_ZMAX) { 377 if (size & KMEM_ZMASK) 378 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 379 indx = kmemsize[size >> KMEM_ZSHIFT]; 380 zone = kmemzones[indx].kz_zone; 381 keg = zone->uz_keg; 382 #ifdef MALLOC_PROFILE 383 krequests[size >> KMEM_ZSHIFT]++; 384 #endif 385 va = uma_zalloc(zone, flags); 386 if (va != NULL) 387 size = keg->uk_size; 388 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 389 } else { 390 size = roundup(size, PAGE_SIZE); 391 zone = NULL; 392 keg = NULL; 393 va = uma_large_malloc(size, flags); 394 malloc_type_allocated(mtp, va == NULL ? 0 : size); 395 } 396 if (flags & M_WAITOK) 397 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 398 else if (va == NULL) 399 t_malloc_fail = time_uptime; 400 #ifdef DIAGNOSTIC 401 if (va != NULL && !(flags & M_ZERO)) { 402 memset(va, 0x70, osize); 403 } 404 #endif 405 #ifdef DEBUG_REDZONE 406 if (va != NULL) 407 va = redzone_setup(va, osize); 408 #endif 409 return ((void *) va); 410 } 411 412 /* 413 * free: 414 * 415 * Free a block of memory allocated by malloc. 416 * 417 * This routine may not block. 418 */ 419 void 420 free(void *addr, struct malloc_type *mtp) 421 { 422 uma_slab_t slab; 423 u_long size; 424 425 /* free(NULL, ...) does nothing */ 426 if (addr == NULL) 427 return; 428 429 #ifdef DEBUG_MEMGUARD 430 if (memguard_cmp(mtp)) { 431 memguard_free(addr); 432 return; 433 } 434 #endif 435 436 #ifdef DEBUG_REDZONE 437 redzone_check(addr); 438 addr = redzone_addr_ntor(addr); 439 #endif 440 441 size = 0; 442 443 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 444 445 if (slab == NULL) 446 panic("free: address %p(%p) has not been allocated.\n", 447 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 448 449 450 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 451 #ifdef INVARIANTS 452 struct malloc_type **mtpp = addr; 453 #endif 454 size = slab->us_keg->uk_size; 455 #ifdef INVARIANTS 456 /* 457 * Cache a pointer to the malloc_type that most recently freed 458 * this memory here. This way we know who is most likely to 459 * have stepped on it later. 460 * 461 * This code assumes that size is a multiple of 8 bytes for 462 * 64 bit machines 463 */ 464 mtpp = (struct malloc_type **) 465 ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 466 mtpp += (size - sizeof(struct malloc_type *)) / 467 sizeof(struct malloc_type *); 468 *mtpp = mtp; 469 #endif 470 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 471 } else { 472 size = slab->us_size; 473 uma_large_free(slab); 474 } 475 malloc_type_freed(mtp, size); 476 } 477 478 /* 479 * realloc: change the size of a memory block 480 */ 481 void * 482 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 483 { 484 uma_slab_t slab; 485 unsigned long alloc; 486 void *newaddr; 487 488 /* realloc(NULL, ...) is equivalent to malloc(...) */ 489 if (addr == NULL) 490 return (malloc(size, mtp, flags)); 491 492 /* 493 * XXX: Should report free of old memory and alloc of new memory to 494 * per-CPU stats. 495 */ 496 497 #ifdef DEBUG_MEMGUARD 498 if (memguard_cmp(mtp)) { 499 slab = NULL; 500 alloc = size; 501 } else { 502 #endif 503 504 #ifdef DEBUG_REDZONE 505 slab = NULL; 506 alloc = redzone_get_size(addr); 507 #else 508 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 509 510 /* Sanity check */ 511 KASSERT(slab != NULL, 512 ("realloc: address %p out of range", (void *)addr)); 513 514 /* Get the size of the original block */ 515 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 516 alloc = slab->us_keg->uk_size; 517 else 518 alloc = slab->us_size; 519 520 /* Reuse the original block if appropriate */ 521 if (size <= alloc 522 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 523 return (addr); 524 #endif /* !DEBUG_REDZONE */ 525 526 #ifdef DEBUG_MEMGUARD 527 } 528 #endif 529 530 /* Allocate a new, bigger (or smaller) block */ 531 if ((newaddr = malloc(size, mtp, flags)) == NULL) 532 return (NULL); 533 534 /* Copy over original contents */ 535 bcopy(addr, newaddr, min(size, alloc)); 536 free(addr, mtp); 537 return (newaddr); 538 } 539 540 /* 541 * reallocf: same as realloc() but free memory on failure. 542 */ 543 void * 544 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 545 { 546 void *mem; 547 548 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 549 free(addr, mtp); 550 return (mem); 551 } 552 553 /* 554 * Initialize the kernel memory allocator 555 */ 556 /* ARGSUSED*/ 557 static void 558 kmeminit(void *dummy) 559 { 560 u_int8_t indx; 561 u_long mem_size; 562 int i; 563 564 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 565 566 /* 567 * Try to auto-tune the kernel memory size, so that it is 568 * more applicable for a wider range of machine sizes. 569 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 570 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 571 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 572 * available, and on an X86 with a total KVA space of 256MB, 573 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 574 * 575 * Note that the kmem_map is also used by the zone allocator, 576 * so make sure that there is enough space. 577 */ 578 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; 579 mem_size = cnt.v_page_count; 580 581 #if defined(VM_KMEM_SIZE_SCALE) 582 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 583 #endif 584 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); 585 if (vm_kmem_size_scale > 0 && 586 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) 587 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 588 589 #if defined(VM_KMEM_SIZE_MIN) 590 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 591 #endif 592 TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min); 593 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) { 594 vm_kmem_size = vm_kmem_size_min; 595 } 596 597 #if defined(VM_KMEM_SIZE_MAX) 598 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 599 #endif 600 TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max); 601 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 602 vm_kmem_size = vm_kmem_size_max; 603 604 /* Allow final override from the kernel environment */ 605 #ifndef BURN_BRIDGES 606 if (TUNABLE_ULONG_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0) 607 printf("kern.vm.kmem.size is now called vm.kmem_size!\n"); 608 #endif 609 TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size); 610 611 /* 612 * Limit kmem virtual size to twice the physical memory. 613 * This allows for kmem map sparseness, but limits the size 614 * to something sane. Be careful to not overflow the 32bit 615 * ints while doing the check. 616 */ 617 if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count) 618 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 619 620 /* 621 * Tune settings based on the kmem map's size at this time. 622 */ 623 init_param3(vm_kmem_size / PAGE_SIZE); 624 625 kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit, 626 vm_kmem_size, TRUE); 627 kmem_map->system_map = 1; 628 629 #ifdef DEBUG_MEMGUARD 630 /* 631 * Initialize MemGuard if support compiled in. MemGuard is a 632 * replacement allocator used for detecting tamper-after-free 633 * scenarios as they occur. It is only used for debugging. 634 */ 635 vm_memguard_divisor = 10; 636 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor); 637 638 /* Pick a conservative value if provided value sucks. */ 639 if ((vm_memguard_divisor <= 0) || 640 ((vm_kmem_size / vm_memguard_divisor) == 0)) 641 vm_memguard_divisor = 10; 642 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor); 643 #endif 644 645 uma_startup2(); 646 647 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 648 #ifdef INVARIANTS 649 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 650 #else 651 NULL, NULL, NULL, NULL, 652 #endif 653 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 654 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 655 int size = kmemzones[indx].kz_size; 656 char *name = kmemzones[indx].kz_name; 657 658 kmemzones[indx].kz_zone = uma_zcreate(name, size, 659 #ifdef INVARIANTS 660 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 661 #else 662 NULL, NULL, NULL, NULL, 663 #endif 664 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 665 666 for (;i <= size; i+= KMEM_ZBASE) 667 kmemsize[i >> KMEM_ZSHIFT] = indx; 668 669 } 670 } 671 672 void 673 malloc_init(void *data) 674 { 675 struct malloc_type_internal *mtip; 676 struct malloc_type *mtp; 677 678 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init")); 679 680 mtp = data; 681 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 682 mtp->ks_handle = mtip; 683 684 mtx_lock(&malloc_mtx); 685 mtp->ks_next = kmemstatistics; 686 kmemstatistics = mtp; 687 kmemcount++; 688 mtx_unlock(&malloc_mtx); 689 } 690 691 void 692 malloc_uninit(void *data) 693 { 694 struct malloc_type_internal *mtip; 695 struct malloc_type_stats *mtsp; 696 struct malloc_type *mtp, *temp; 697 uma_slab_t slab; 698 long temp_allocs, temp_bytes; 699 int i; 700 701 mtp = data; 702 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 703 mtx_lock(&malloc_mtx); 704 mtip = mtp->ks_handle; 705 mtp->ks_handle = NULL; 706 if (mtp != kmemstatistics) { 707 for (temp = kmemstatistics; temp != NULL; 708 temp = temp->ks_next) { 709 if (temp->ks_next == mtp) 710 temp->ks_next = mtp->ks_next; 711 } 712 } else 713 kmemstatistics = mtp->ks_next; 714 kmemcount--; 715 mtx_unlock(&malloc_mtx); 716 717 /* 718 * Look for memory leaks. 719 */ 720 temp_allocs = temp_bytes = 0; 721 for (i = 0; i < MAXCPU; i++) { 722 mtsp = &mtip->mti_stats[i]; 723 temp_allocs += mtsp->mts_numallocs; 724 temp_allocs -= mtsp->mts_numfrees; 725 temp_bytes += mtsp->mts_memalloced; 726 temp_bytes -= mtsp->mts_memfreed; 727 } 728 if (temp_allocs > 0 || temp_bytes > 0) { 729 printf("Warning: memory type %s leaked memory on destroy " 730 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 731 temp_allocs, temp_bytes); 732 } 733 734 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 735 uma_zfree_arg(mt_zone, mtip, slab); 736 } 737 738 struct malloc_type * 739 malloc_desc2type(const char *desc) 740 { 741 struct malloc_type *mtp; 742 743 mtx_assert(&malloc_mtx, MA_OWNED); 744 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 745 if (strcmp(mtp->ks_shortdesc, desc) == 0) 746 return (mtp); 747 } 748 return (NULL); 749 } 750 751 static int 752 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 753 { 754 struct malloc_type_stream_header mtsh; 755 struct malloc_type_internal *mtip; 756 struct malloc_type_header mth; 757 struct malloc_type *mtp; 758 int buflen, count, error, i; 759 struct sbuf sbuf; 760 char *buffer; 761 762 mtx_lock(&malloc_mtx); 763 restart: 764 mtx_assert(&malloc_mtx, MA_OWNED); 765 count = kmemcount; 766 mtx_unlock(&malloc_mtx); 767 buflen = sizeof(mtsh) + count * (sizeof(mth) + 768 sizeof(struct malloc_type_stats) * MAXCPU) + 1; 769 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 770 mtx_lock(&malloc_mtx); 771 if (count < kmemcount) { 772 free(buffer, M_TEMP); 773 goto restart; 774 } 775 776 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 777 778 /* 779 * Insert stream header. 780 */ 781 bzero(&mtsh, sizeof(mtsh)); 782 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 783 mtsh.mtsh_maxcpus = MAXCPU; 784 mtsh.mtsh_count = kmemcount; 785 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) { 786 mtx_unlock(&malloc_mtx); 787 error = ENOMEM; 788 goto out; 789 } 790 791 /* 792 * Insert alternating sequence of type headers and type statistics. 793 */ 794 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 795 mtip = (struct malloc_type_internal *)mtp->ks_handle; 796 797 /* 798 * Insert type header. 799 */ 800 bzero(&mth, sizeof(mth)); 801 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 802 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) { 803 mtx_unlock(&malloc_mtx); 804 error = ENOMEM; 805 goto out; 806 } 807 808 /* 809 * Insert type statistics for each CPU. 810 */ 811 for (i = 0; i < MAXCPU; i++) { 812 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i], 813 sizeof(mtip->mti_stats[i])) < 0) { 814 mtx_unlock(&malloc_mtx); 815 error = ENOMEM; 816 goto out; 817 } 818 } 819 } 820 mtx_unlock(&malloc_mtx); 821 sbuf_finish(&sbuf); 822 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 823 out: 824 sbuf_delete(&sbuf); 825 free(buffer, M_TEMP); 826 return (error); 827 } 828 829 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 830 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 831 "Return malloc types"); 832 833 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 834 "Count of kernel malloc types"); 835 836 void 837 malloc_type_list(malloc_type_list_func_t *func, void *arg) 838 { 839 struct malloc_type *mtp, **bufmtp; 840 int count, i; 841 size_t buflen; 842 843 mtx_lock(&malloc_mtx); 844 restart: 845 mtx_assert(&malloc_mtx, MA_OWNED); 846 count = kmemcount; 847 mtx_unlock(&malloc_mtx); 848 849 buflen = sizeof(struct malloc_type *) * count; 850 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 851 852 mtx_lock(&malloc_mtx); 853 854 if (count < kmemcount) { 855 free(bufmtp, M_TEMP); 856 goto restart; 857 } 858 859 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 860 bufmtp[i] = mtp; 861 862 mtx_unlock(&malloc_mtx); 863 864 for (i = 0; i < count; i++) 865 (func)(bufmtp[i], arg); 866 867 free(bufmtp, M_TEMP); 868 } 869 870 #ifdef DDB 871 DB_SHOW_COMMAND(malloc, db_show_malloc) 872 { 873 struct malloc_type_internal *mtip; 874 struct malloc_type *mtp; 875 u_int64_t allocs, frees; 876 u_int64_t alloced, freed; 877 int i; 878 879 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse", 880 "Requests"); 881 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 882 mtip = (struct malloc_type_internal *)mtp->ks_handle; 883 allocs = 0; 884 frees = 0; 885 alloced = 0; 886 freed = 0; 887 for (i = 0; i < MAXCPU; i++) { 888 allocs += mtip->mti_stats[i].mts_numallocs; 889 frees += mtip->mti_stats[i].mts_numfrees; 890 alloced += mtip->mti_stats[i].mts_memalloced; 891 freed += mtip->mti_stats[i].mts_memfreed; 892 } 893 db_printf("%18s %12ju %12juK %12ju\n", 894 mtp->ks_shortdesc, allocs - frees, 895 (alloced - freed + 1023) / 1024, allocs); 896 } 897 } 898 #endif 899 900 #ifdef MALLOC_PROFILE 901 902 static int 903 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 904 { 905 int linesize = 64; 906 struct sbuf sbuf; 907 uint64_t count; 908 uint64_t waste; 909 uint64_t mem; 910 int bufsize; 911 int error; 912 char *buf; 913 int rsize; 914 int size; 915 int i; 916 917 bufsize = linesize * (KMEM_ZSIZE + 1); 918 bufsize += 128; /* For the stats line */ 919 bufsize += 128; /* For the banner line */ 920 waste = 0; 921 mem = 0; 922 923 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 924 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 925 sbuf_printf(&sbuf, 926 "\n Size Requests Real Size\n"); 927 for (i = 0; i < KMEM_ZSIZE; i++) { 928 size = i << KMEM_ZSHIFT; 929 rsize = kmemzones[kmemsize[i]].kz_size; 930 count = (long long unsigned)krequests[i]; 931 932 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 933 (unsigned long long)count, rsize); 934 935 if ((rsize * count) > (size * count)) 936 waste += (rsize * count) - (size * count); 937 mem += (rsize * count); 938 } 939 sbuf_printf(&sbuf, 940 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 941 (unsigned long long)mem, (unsigned long long)waste); 942 sbuf_finish(&sbuf); 943 944 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 945 946 sbuf_delete(&sbuf); 947 free(buf, M_TEMP); 948 return (error); 949 } 950 951 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 952 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 953 #endif /* MALLOC_PROFILE */ 954