1 /* 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #include "opt_vm.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/vmmeter.h> 45 #include <sys/lock.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_param.h> 49 #include <vm/vm_kern.h> 50 #include <vm/vm_extern.h> 51 #include <vm/pmap.h> 52 #include <vm/vm_map.h> 53 54 #if defined(INVARIANTS) && defined(__i386__) 55 #include <machine/cpu.h> 56 #endif 57 58 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 59 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 60 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 61 62 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 63 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 64 65 static void kmeminit __P((void *)); 66 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 67 68 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 69 70 static struct malloc_type *kmemstatistics; 71 static struct kmembuckets bucket[MINBUCKET + 16]; 72 static struct kmemusage *kmemusage; 73 static char *kmembase; 74 static char *kmemlimit; 75 static int vm_kmem_size; 76 77 #ifdef INVARIANTS 78 /* 79 * This structure provides a set of masks to catch unaligned frees. 80 */ 81 static long addrmask[] = { 0, 82 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 83 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 84 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 85 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 86 }; 87 88 /* 89 * The WEIRD_ADDR is used as known text to copy into free objects so 90 * that modifications after frees can be detected. 91 */ 92 #define WEIRD_ADDR 0xdeadc0de 93 #define MAX_COPY 64 94 95 /* 96 * Normally the first word of the structure is used to hold the list 97 * pointer for free objects. However, when running with diagnostics, 98 * we use the third and fourth fields, so as to catch modifications 99 * in the most commonly trashed first two words. 100 */ 101 struct freelist { 102 long spare0; 103 struct malloc_type *type; 104 long spare1; 105 caddr_t next; 106 }; 107 #else /* !INVARIANTS */ 108 struct freelist { 109 caddr_t next; 110 }; 111 #endif /* INVARIANTS */ 112 113 /* 114 * malloc: 115 * 116 * Allocate a block of memory. 117 * 118 * If M_NOWAIT is set, this routine will not block and return NULL if 119 * the allocation fails. 120 * 121 * If M_ASLEEP is set (M_NOWAIT must also be set), this routine 122 * will have the side effect of calling asleep() if it returns NULL, 123 * allowing the parent to await() at some future time. 124 */ 125 void * 126 malloc(size, type, flags) 127 unsigned long size; 128 struct malloc_type *type; 129 int flags; 130 { 131 register struct kmembuckets *kbp; 132 register struct kmemusage *kup; 133 register struct freelist *freep; 134 long indx, npg, allocsize; 135 int s; 136 caddr_t va, cp, savedlist; 137 #ifdef INVARIANTS 138 long *end, *lp; 139 int copysize; 140 const char *savedtype; 141 #endif 142 register struct malloc_type *ksp = type; 143 144 #if defined(INVARIANTS) && defined(__i386__) 145 if (flags == M_WAITOK) 146 KASSERT(intr_nesting_level == 0, 147 ("malloc(M_WAITOK) in interrupt context")); 148 #endif 149 /* 150 * Must be at splmem() prior to initializing segment to handle 151 * potential initialization race. 152 */ 153 154 s = splmem(); 155 156 if (type->ks_limit == 0) 157 malloc_init(type); 158 159 indx = BUCKETINDX(size); 160 kbp = &bucket[indx]; 161 162 while (ksp->ks_memuse >= ksp->ks_limit) { 163 if (flags & M_ASLEEP) { 164 if (ksp->ks_limblocks < 65535) 165 ksp->ks_limblocks++; 166 asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0); 167 } 168 if (flags & M_NOWAIT) { 169 splx(s); 170 return ((void *) NULL); 171 } 172 if (ksp->ks_limblocks < 65535) 173 ksp->ks_limblocks++; 174 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0); 175 } 176 ksp->ks_size |= 1 << indx; 177 #ifdef INVARIANTS 178 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; 179 #endif 180 if (kbp->kb_next == NULL) { 181 kbp->kb_last = NULL; 182 if (size > MAXALLOCSAVE) 183 allocsize = roundup(size, PAGE_SIZE); 184 else 185 allocsize = 1 << indx; 186 npg = btoc(allocsize); 187 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags); 188 if (va == NULL) { 189 splx(s); 190 return ((void *) NULL); 191 } 192 kbp->kb_total += kbp->kb_elmpercl; 193 kup = btokup(va); 194 kup->ku_indx = indx; 195 if (allocsize > MAXALLOCSAVE) { 196 if (npg > 65535) 197 panic("malloc: allocation too large"); 198 kup->ku_pagecnt = npg; 199 ksp->ks_memuse += allocsize; 200 goto out; 201 } 202 kup->ku_freecnt = kbp->kb_elmpercl; 203 kbp->kb_totalfree += kbp->kb_elmpercl; 204 /* 205 * Just in case we blocked while allocating memory, 206 * and someone else also allocated memory for this 207 * bucket, don't assume the list is still empty. 208 */ 209 savedlist = kbp->kb_next; 210 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize; 211 for (;;) { 212 freep = (struct freelist *)cp; 213 #ifdef INVARIANTS 214 /* 215 * Copy in known text to detect modification 216 * after freeing. 217 */ 218 end = (long *)&cp[copysize]; 219 for (lp = (long *)cp; lp < end; lp++) 220 *lp = WEIRD_ADDR; 221 freep->type = M_FREE; 222 #endif /* INVARIANTS */ 223 if (cp <= va) 224 break; 225 cp -= allocsize; 226 freep->next = cp; 227 } 228 freep->next = savedlist; 229 if (kbp->kb_last == NULL) 230 kbp->kb_last = (caddr_t)freep; 231 } 232 va = kbp->kb_next; 233 kbp->kb_next = ((struct freelist *)va)->next; 234 #ifdef INVARIANTS 235 freep = (struct freelist *)va; 236 savedtype = (const char *) type->ks_shortdesc; 237 #if BYTE_ORDER == BIG_ENDIAN 238 freep->type = (struct malloc_type *)WEIRD_ADDR >> 16; 239 #endif 240 #if BYTE_ORDER == LITTLE_ENDIAN 241 freep->type = (struct malloc_type *)WEIRD_ADDR; 242 #endif 243 if ((intptr_t)(void *)&freep->next & 0x2) 244 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16)); 245 else 246 freep->next = (caddr_t)WEIRD_ADDR; 247 end = (long *)&va[copysize]; 248 for (lp = (long *)va; lp < end; lp++) { 249 if (*lp == WEIRD_ADDR) 250 continue; 251 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n", 252 "Data modified on freelist: word", 253 (long)(lp - (long *)va), (void *)va, size, 254 "previous type", savedtype, *lp, (u_long)WEIRD_ADDR); 255 break; 256 } 257 freep->spare0 = 0; 258 #endif /* INVARIANTS */ 259 kup = btokup(va); 260 if (kup->ku_indx != indx) 261 panic("malloc: wrong bucket"); 262 if (kup->ku_freecnt == 0) 263 panic("malloc: lost data"); 264 kup->ku_freecnt--; 265 kbp->kb_totalfree--; 266 ksp->ks_memuse += 1 << indx; 267 out: 268 kbp->kb_calls++; 269 ksp->ks_inuse++; 270 ksp->ks_calls++; 271 if (ksp->ks_memuse > ksp->ks_maxused) 272 ksp->ks_maxused = ksp->ks_memuse; 273 splx(s); 274 return ((void *) va); 275 } 276 277 /* 278 * free: 279 * 280 * Free a block of memory allocated by malloc. 281 * 282 * This routine may not block. 283 */ 284 void 285 free(addr, type) 286 void *addr; 287 struct malloc_type *type; 288 { 289 register struct kmembuckets *kbp; 290 register struct kmemusage *kup; 291 register struct freelist *freep; 292 long size; 293 int s; 294 #ifdef INVARIANTS 295 struct freelist *fp; 296 long *end, *lp, alloc, copysize; 297 #endif 298 register struct malloc_type *ksp = type; 299 300 if (type->ks_limit == 0) 301 panic("freeing with unknown type (%s)", type->ks_shortdesc); 302 303 KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit, 304 ("free: address %p out of range", (void *)addr)); 305 kup = btokup(addr); 306 size = 1 << kup->ku_indx; 307 kbp = &bucket[kup->ku_indx]; 308 s = splmem(); 309 #ifdef INVARIANTS 310 /* 311 * Check for returns of data that do not point to the 312 * beginning of the allocation. 313 */ 314 if (size > PAGE_SIZE) 315 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 316 else 317 alloc = addrmask[kup->ku_indx]; 318 if (((uintptr_t)(void *)addr & alloc) != 0) 319 panic("free: unaligned addr %p, size %ld, type %s, mask %ld", 320 (void *)addr, size, type->ks_shortdesc, alloc); 321 #endif /* INVARIANTS */ 322 if (size > MAXALLOCSAVE) { 323 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt)); 324 size = kup->ku_pagecnt << PAGE_SHIFT; 325 ksp->ks_memuse -= size; 326 kup->ku_indx = 0; 327 kup->ku_pagecnt = 0; 328 if (ksp->ks_memuse + size >= ksp->ks_limit && 329 ksp->ks_memuse < ksp->ks_limit) 330 wakeup((caddr_t)ksp); 331 ksp->ks_inuse--; 332 kbp->kb_total -= 1; 333 splx(s); 334 return; 335 } 336 freep = (struct freelist *)addr; 337 #ifdef INVARIANTS 338 /* 339 * Check for multiple frees. Use a quick check to see if 340 * it looks free before laboriously searching the freelist. 341 */ 342 if (freep->spare0 == WEIRD_ADDR) { 343 fp = (struct freelist *)kbp->kb_next; 344 while (fp) { 345 if (fp->spare0 != WEIRD_ADDR) 346 panic("free: free item %p modified", fp); 347 else if (addr == (caddr_t)fp) 348 panic("free: multiple freed item %p", addr); 349 fp = (struct freelist *)fp->next; 350 } 351 } 352 /* 353 * Copy in known text to detect modification after freeing 354 * and to make it look free. Also, save the type being freed 355 * so we can list likely culprit if modification is detected 356 * when the object is reallocated. 357 */ 358 copysize = size < MAX_COPY ? size : MAX_COPY; 359 end = (long *)&((caddr_t)addr)[copysize]; 360 for (lp = (long *)addr; lp < end; lp++) 361 *lp = WEIRD_ADDR; 362 freep->type = type; 363 #endif /* INVARIANTS */ 364 kup->ku_freecnt++; 365 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 366 if (kup->ku_freecnt > kbp->kb_elmpercl) 367 panic("free: multiple frees"); 368 else if (kbp->kb_totalfree > kbp->kb_highwat) 369 kbp->kb_couldfree++; 370 } 371 kbp->kb_totalfree++; 372 ksp->ks_memuse -= size; 373 if (ksp->ks_memuse + size >= ksp->ks_limit && 374 ksp->ks_memuse < ksp->ks_limit) 375 wakeup((caddr_t)ksp); 376 ksp->ks_inuse--; 377 #ifdef OLD_MALLOC_MEMORY_POLICY 378 if (kbp->kb_next == NULL) 379 kbp->kb_next = addr; 380 else 381 ((struct freelist *)kbp->kb_last)->next = addr; 382 freep->next = NULL; 383 kbp->kb_last = addr; 384 #else 385 /* 386 * Return memory to the head of the queue for quick reuse. This 387 * can improve performance by improving the probability of the 388 * item being in the cache when it is reused. 389 */ 390 if (kbp->kb_next == NULL) { 391 kbp->kb_next = addr; 392 kbp->kb_last = addr; 393 freep->next = NULL; 394 } else { 395 freep->next = kbp->kb_next; 396 kbp->kb_next = addr; 397 } 398 #endif 399 splx(s); 400 } 401 402 /* 403 * Initialize the kernel memory allocator 404 */ 405 /* ARGSUSED*/ 406 static void 407 kmeminit(dummy) 408 void *dummy; 409 { 410 register long indx; 411 int npg; 412 int mem_size; 413 int xvm_kmem_size; 414 415 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 416 #error "kmeminit: MAXALLOCSAVE not power of 2" 417 #endif 418 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 419 #error "kmeminit: MAXALLOCSAVE too big" 420 #endif 421 #if (MAXALLOCSAVE < PAGE_SIZE) 422 #error "kmeminit: MAXALLOCSAVE too small" 423 #endif 424 425 /* 426 * Try to auto-tune the kernel memory size, so that it is 427 * more applicable for a wider range of machine sizes. 428 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 429 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 430 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 431 * available, and on an X86 with a total KVA space of 256MB, 432 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 433 * 434 * Note that the kmem_map is also used by the zone allocator, 435 * so make sure that there is enough space. 436 */ 437 xvm_kmem_size = VM_KMEM_SIZE; 438 mem_size = cnt.v_page_count * PAGE_SIZE; 439 440 #if defined(VM_KMEM_SIZE_SCALE) 441 if ((mem_size / VM_KMEM_SIZE_SCALE) > xvm_kmem_size) 442 xvm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; 443 #endif 444 445 #if defined(VM_KMEM_SIZE_MAX) 446 if (xvm_kmem_size >= VM_KMEM_SIZE_MAX) 447 xvm_kmem_size = VM_KMEM_SIZE_MAX; 448 #endif 449 450 /* Allow final override from the kernel environment */ 451 TUNABLE_INT_FETCH("kern.vm.kmem.size", xvm_kmem_size, vm_kmem_size); 452 453 if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE)) 454 vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE); 455 456 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size) 457 / PAGE_SIZE; 458 459 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map, 460 (vm_size_t)(npg * sizeof(struct kmemusage))); 461 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 462 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); 463 kmem_map->system_map = 1; 464 for (indx = 0; indx < MINBUCKET + 16; indx++) { 465 if (1 << indx >= PAGE_SIZE) 466 bucket[indx].kb_elmpercl = 1; 467 else 468 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 469 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 470 } 471 } 472 473 void 474 malloc_init(data) 475 void *data; 476 { 477 struct malloc_type *type = (struct malloc_type *)data; 478 479 if (type->ks_magic != M_MAGIC) 480 panic("malloc type lacks magic"); 481 482 if (type->ks_limit != 0) 483 return; 484 485 if (cnt.v_page_count == 0) 486 panic("malloc_init not allowed before vm init"); 487 488 /* 489 * The default limits for each malloc region is 1/2 of the 490 * malloc portion of the kmem map size. 491 */ 492 type->ks_limit = vm_kmem_size / 2; 493 type->ks_next = kmemstatistics; 494 kmemstatistics = type; 495 } 496 497 void 498 malloc_uninit(data) 499 void *data; 500 { 501 struct malloc_type *type = (struct malloc_type *)data; 502 struct malloc_type *t; 503 504 if (type->ks_magic != M_MAGIC) 505 panic("malloc type lacks magic"); 506 507 if (cnt.v_page_count == 0) 508 panic("malloc_uninit not allowed before vm init"); 509 510 if (type->ks_limit == 0) 511 panic("malloc_uninit on uninitialized type"); 512 513 if (type == kmemstatistics) 514 kmemstatistics = type->ks_next; 515 else { 516 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 517 if (t->ks_next == type) { 518 t->ks_next = type->ks_next; 519 break; 520 } 521 } 522 } 523 type->ks_next = NULL; 524 type->ks_limit = 0; 525 } 526