1 /* 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #include "opt_vm.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/mutex.h> 46 #include <sys/vmmeter.h> 47 #include <sys/proc.h> 48 #include <sys/sysctl.h> 49 #include <sys/time.h> 50 51 #include <vm/vm.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_param.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_page.h> 58 #include <vm/uma.h> 59 #include <vm/uma_int.h> 60 #include <vm/uma_dbg.h> 61 62 #if defined(INVARIANTS) && defined(__i386__) 63 #include <machine/cpu.h> 64 #endif 65 66 /* 67 * When realloc() is called, if the new size is sufficiently smaller than 68 * the old size, realloc() will allocate a new, smaller block to avoid 69 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 70 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 71 */ 72 #ifndef REALLOC_FRACTION 73 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 74 #endif 75 76 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 77 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 78 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 79 80 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 81 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 82 83 static void kmeminit(void *); 84 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 85 86 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 87 88 static struct malloc_type *kmemstatistics; 89 static char *kmembase; 90 static char *kmemlimit; 91 92 #define KMEM_ZSHIFT 4 93 #define KMEM_ZBASE 16 94 #define KMEM_ZMASK (KMEM_ZBASE - 1) 95 96 #define KMEM_ZMAX 65536 97 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 98 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 99 100 /* These won't be powers of two for long */ 101 struct { 102 int kz_size; 103 char *kz_name; 104 uma_zone_t kz_zone; 105 } kmemzones[] = { 106 {16, "16", NULL}, 107 {32, "32", NULL}, 108 {64, "64", NULL}, 109 {128, "128", NULL}, 110 {256, "256", NULL}, 111 {512, "512", NULL}, 112 {1024, "1024", NULL}, 113 {2048, "2048", NULL}, 114 {4096, "4096", NULL}, 115 {8192, "8192", NULL}, 116 {16384, "16384", NULL}, 117 {32768, "32768", NULL}, 118 {65536, "65536", NULL}, 119 {0, NULL}, 120 }; 121 122 u_int vm_kmem_size; 123 124 /* 125 * The malloc_mtx protects the kmemstatistics linked list. 126 */ 127 128 struct mtx malloc_mtx; 129 130 #ifdef MALLOC_PROFILE 131 uint64_t krequests[KMEM_ZSIZE + 1]; 132 133 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 134 #endif 135 136 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS); 137 138 /* time_uptime of last malloc(9) failure */ 139 static time_t t_malloc_fail; 140 141 int 142 malloc_last_fail(void) 143 { 144 145 return (time_uptime - t_malloc_fail); 146 } 147 148 /* 149 * malloc: 150 * 151 * Allocate a block of memory. 152 * 153 * If M_NOWAIT is set, this routine will not block and return NULL if 154 * the allocation fails. 155 */ 156 void * 157 malloc(size, type, flags) 158 unsigned long size; 159 struct malloc_type *type; 160 int flags; 161 { 162 int indx; 163 caddr_t va; 164 uma_zone_t zone; 165 register struct malloc_type *ksp = type; 166 167 #if 0 168 if (size == 0) 169 Debugger("zero size malloc"); 170 #endif 171 if (!(flags & M_NOWAIT)) 172 KASSERT(curthread->td_intr_nesting_level == 0, 173 ("malloc() without M_NOWAIT in interrupt context")); 174 if (size <= KMEM_ZMAX) { 175 if (size & KMEM_ZMASK) 176 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 177 indx = kmemsize[size >> KMEM_ZSHIFT]; 178 zone = kmemzones[indx].kz_zone; 179 #ifdef MALLOC_PROFILE 180 krequests[size >> KMEM_ZSHIFT]++; 181 #endif 182 va = uma_zalloc(zone, flags); 183 mtx_lock(&ksp->ks_mtx); 184 if (va == NULL) 185 goto out; 186 187 ksp->ks_size |= 1 << indx; 188 size = zone->uz_size; 189 } else { 190 size = roundup(size, PAGE_SIZE); 191 zone = NULL; 192 va = uma_large_malloc(size, flags); 193 mtx_lock(&ksp->ks_mtx); 194 if (va == NULL) 195 goto out; 196 } 197 ksp->ks_memuse += size; 198 ksp->ks_inuse++; 199 out: 200 ksp->ks_calls++; 201 if (ksp->ks_memuse > ksp->ks_maxused) 202 ksp->ks_maxused = ksp->ks_memuse; 203 204 mtx_unlock(&ksp->ks_mtx); 205 if (!(flags & M_NOWAIT)) 206 KASSERT(va != NULL, ("malloc() without M_NOWAIT returned NULL")); 207 if (va == NULL) { 208 t_malloc_fail = time_uptime; 209 } 210 return ((void *) va); 211 } 212 213 /* 214 * free: 215 * 216 * Free a block of memory allocated by malloc. 217 * 218 * This routine may not block. 219 */ 220 void 221 free(addr, type) 222 void *addr; 223 struct malloc_type *type; 224 { 225 register struct malloc_type *ksp = type; 226 uma_slab_t slab; 227 u_long size; 228 229 /* free(NULL, ...) does nothing */ 230 if (addr == NULL) 231 return; 232 233 size = 0; 234 235 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 236 237 if (slab == NULL) 238 panic("free: address %p(%p) has not been allocated.\n", 239 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 240 241 242 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 243 #ifdef INVARIANTS 244 struct malloc_type **mtp = addr; 245 #endif 246 size = slab->us_zone->uz_size; 247 #ifdef INVARIANTS 248 /* 249 * Cache a pointer to the malloc_type that most recently freed 250 * this memory here. This way we know who is most likely to 251 * have stepped on it later. 252 * 253 * This code assumes that size is a multiple of 8 bytes for 254 * 64 bit machines 255 */ 256 mtp = (struct malloc_type **) 257 ((unsigned long)mtp & ~UMA_ALIGN_PTR); 258 mtp += (size - sizeof(struct malloc_type *)) / 259 sizeof(struct malloc_type *); 260 *mtp = type; 261 #endif 262 uma_zfree_arg(slab->us_zone, addr, slab); 263 } else { 264 size = slab->us_size; 265 uma_large_free(slab); 266 } 267 mtx_lock(&ksp->ks_mtx); 268 ksp->ks_memuse -= size; 269 ksp->ks_inuse--; 270 mtx_unlock(&ksp->ks_mtx); 271 } 272 273 /* 274 * realloc: change the size of a memory block 275 */ 276 void * 277 realloc(addr, size, type, flags) 278 void *addr; 279 unsigned long size; 280 struct malloc_type *type; 281 int flags; 282 { 283 uma_slab_t slab; 284 unsigned long alloc; 285 void *newaddr; 286 287 /* realloc(NULL, ...) is equivalent to malloc(...) */ 288 if (addr == NULL) 289 return (malloc(size, type, flags)); 290 291 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 292 293 /* Sanity check */ 294 KASSERT(slab != NULL, 295 ("realloc: address %p out of range", (void *)addr)); 296 297 /* Get the size of the original block */ 298 if (slab->us_zone) 299 alloc = slab->us_zone->uz_size; 300 else 301 alloc = slab->us_size; 302 303 /* Reuse the original block if appropriate */ 304 if (size <= alloc 305 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 306 return (addr); 307 308 /* Allocate a new, bigger (or smaller) block */ 309 if ((newaddr = malloc(size, type, flags)) == NULL) 310 return (NULL); 311 312 /* Copy over original contents */ 313 bcopy(addr, newaddr, min(size, alloc)); 314 free(addr, type); 315 return (newaddr); 316 } 317 318 /* 319 * reallocf: same as realloc() but free memory on failure. 320 */ 321 void * 322 reallocf(addr, size, type, flags) 323 void *addr; 324 unsigned long size; 325 struct malloc_type *type; 326 int flags; 327 { 328 void *mem; 329 330 if ((mem = realloc(addr, size, type, flags)) == NULL) 331 free(addr, type); 332 return (mem); 333 } 334 335 /* 336 * Initialize the kernel memory allocator 337 */ 338 /* ARGSUSED*/ 339 static void 340 kmeminit(dummy) 341 void *dummy; 342 { 343 u_int8_t indx; 344 u_long npg; 345 u_long mem_size; 346 int i; 347 348 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 349 350 /* 351 * Try to auto-tune the kernel memory size, so that it is 352 * more applicable for a wider range of machine sizes. 353 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 354 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 355 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 356 * available, and on an X86 with a total KVA space of 256MB, 357 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 358 * 359 * Note that the kmem_map is also used by the zone allocator, 360 * so make sure that there is enough space. 361 */ 362 vm_kmem_size = VM_KMEM_SIZE; 363 mem_size = cnt.v_page_count * PAGE_SIZE; 364 365 #if defined(VM_KMEM_SIZE_SCALE) 366 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size) 367 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; 368 #endif 369 370 #if defined(VM_KMEM_SIZE_MAX) 371 if (vm_kmem_size >= VM_KMEM_SIZE_MAX) 372 vm_kmem_size = VM_KMEM_SIZE_MAX; 373 #endif 374 375 /* Allow final override from the kernel environment */ 376 TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size); 377 378 /* 379 * Limit kmem virtual size to twice the physical memory. 380 * This allows for kmem map sparseness, but limits the size 381 * to something sane. Be careful to not overflow the 32bit 382 * ints while doing the check. 383 */ 384 if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE)) 385 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 386 387 /* 388 * In mbuf_init(), we set up submaps for mbufs and clusters, in which 389 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES), 390 * respectively. Mathematically, this means that what we do here may 391 * amount to slightly more address space than we need for the submaps, 392 * but it never hurts to have an extra page in kmem_map. 393 */ 394 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt * 395 sizeof(u_int) + vm_kmem_size) / PAGE_SIZE; 396 397 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 398 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); 399 kmem_map->system_map = 1; 400 401 uma_startup2(); 402 403 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 404 int size = kmemzones[indx].kz_size; 405 char *name = kmemzones[indx].kz_name; 406 407 kmemzones[indx].kz_zone = uma_zcreate(name, size, 408 #ifdef INVARIANTS 409 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 410 #else 411 NULL, NULL, NULL, NULL, 412 #endif 413 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 414 415 for (;i <= size; i+= KMEM_ZBASE) 416 kmemsize[i >> KMEM_ZSHIFT] = indx; 417 418 } 419 } 420 421 void 422 malloc_init(data) 423 void *data; 424 { 425 struct malloc_type *type = (struct malloc_type *)data; 426 427 mtx_lock(&malloc_mtx); 428 if (type->ks_magic != M_MAGIC) 429 panic("malloc type lacks magic"); 430 431 if (cnt.v_page_count == 0) 432 panic("malloc_init not allowed before vm init"); 433 434 if (type->ks_next != NULL) 435 return; 436 437 type->ks_next = kmemstatistics; 438 kmemstatistics = type; 439 mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF); 440 mtx_unlock(&malloc_mtx); 441 } 442 443 void 444 malloc_uninit(data) 445 void *data; 446 { 447 struct malloc_type *type = (struct malloc_type *)data; 448 struct malloc_type *t; 449 450 mtx_lock(&malloc_mtx); 451 mtx_lock(&type->ks_mtx); 452 if (type->ks_magic != M_MAGIC) 453 panic("malloc type lacks magic"); 454 455 if (cnt.v_page_count == 0) 456 panic("malloc_uninit not allowed before vm init"); 457 458 if (type == kmemstatistics) 459 kmemstatistics = type->ks_next; 460 else { 461 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 462 if (t->ks_next == type) { 463 t->ks_next = type->ks_next; 464 break; 465 } 466 } 467 } 468 type->ks_next = NULL; 469 mtx_destroy(&type->ks_mtx); 470 mtx_unlock(&malloc_mtx); 471 } 472 473 static int 474 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS) 475 { 476 struct malloc_type *type; 477 int linesize = 128; 478 int curline; 479 int bufsize; 480 int first; 481 int error; 482 char *buf; 483 char *p; 484 int cnt; 485 int len; 486 int i; 487 488 cnt = 0; 489 490 mtx_lock(&malloc_mtx); 491 for (type = kmemstatistics; type != NULL; type = type->ks_next) 492 cnt++; 493 494 mtx_unlock(&malloc_mtx); 495 bufsize = linesize * (cnt + 1); 496 p = buf = (char *)malloc(bufsize, M_TEMP, M_ZERO); 497 mtx_lock(&malloc_mtx); 498 499 len = snprintf(p, linesize, 500 "\n Type InUse MemUse HighUse Requests Size(s)\n"); 501 p += len; 502 503 for (type = kmemstatistics; cnt != 0 && type != NULL; 504 type = type->ks_next, cnt--) { 505 if (type->ks_calls == 0) 506 continue; 507 508 curline = linesize - 2; /* Leave room for the \n */ 509 len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu", 510 type->ks_shortdesc, 511 type->ks_inuse, 512 (type->ks_memuse + 1023) / 1024, 513 (type->ks_maxused + 1023) / 1024, 514 (long long unsigned)type->ks_calls); 515 curline -= len; 516 p += len; 517 518 first = 1; 519 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1; 520 i++) { 521 if (type->ks_size & (1 << i)) { 522 if (first) 523 len = snprintf(p, curline, " "); 524 else 525 len = snprintf(p, curline, ","); 526 curline -= len; 527 p += len; 528 529 len = snprintf(p, curline, 530 "%s", kmemzones[i].kz_name); 531 curline -= len; 532 p += len; 533 534 first = 0; 535 } 536 } 537 538 len = snprintf(p, 2, "\n"); 539 p += len; 540 } 541 542 mtx_unlock(&malloc_mtx); 543 error = SYSCTL_OUT(req, buf, p - buf); 544 545 free(buf, M_TEMP); 546 return (error); 547 } 548 549 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD, 550 NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats"); 551 552 #ifdef MALLOC_PROFILE 553 554 static int 555 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 556 { 557 int linesize = 64; 558 uint64_t count; 559 uint64_t waste; 560 uint64_t mem; 561 int bufsize; 562 int error; 563 char *buf; 564 int rsize; 565 int size; 566 char *p; 567 int len; 568 int i; 569 570 bufsize = linesize * (KMEM_ZSIZE + 1); 571 bufsize += 128; /* For the stats line */ 572 bufsize += 128; /* For the banner line */ 573 waste = 0; 574 mem = 0; 575 576 p = buf = (char *)malloc(bufsize, M_TEMP, M_ZERO); 577 len = snprintf(p, bufsize, 578 "\n Size Requests Real Size\n"); 579 bufsize -= len; 580 p += len; 581 582 for (i = 0; i < KMEM_ZSIZE; i++) { 583 size = i << KMEM_ZSHIFT; 584 rsize = kmemzones[kmemsize[i]].kz_size; 585 count = (long long unsigned)krequests[i]; 586 587 len = snprintf(p, bufsize, "%6d%28llu%11d\n", 588 size, (unsigned long long)count, rsize); 589 bufsize -= len; 590 p += len; 591 592 if ((rsize * count) > (size * count)) 593 waste += (rsize * count) - (size * count); 594 mem += (rsize * count); 595 } 596 597 len = snprintf(p, bufsize, 598 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 599 (unsigned long long)mem, (unsigned long long)waste); 600 p += len; 601 602 error = SYSCTL_OUT(req, buf, p - buf); 603 604 free(buf, M_TEMP); 605 return (error); 606 } 607 608 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 609 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 610 #endif /* MALLOC_PROFILE */ 611