1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/kdb.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mutex.h> 61 #include <sys/vmmeter.h> 62 #include <sys/proc.h> 63 #include <sys/queue.h> 64 #include <sys/sbuf.h> 65 #include <sys/smp.h> 66 #include <sys/sysctl.h> 67 #include <sys/time.h> 68 #include <sys/vmem.h> 69 #ifdef EPOCH_TRACE 70 #include <sys/epoch.h> 71 #endif 72 73 #include <vm/vm.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_domainset.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_param.h> 78 #include <vm/vm_kern.h> 79 #include <vm/vm_extern.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_phys.h> 83 #include <vm/vm_pagequeue.h> 84 #include <vm/uma.h> 85 #include <vm/uma_int.h> 86 #include <vm/uma_dbg.h> 87 88 #ifdef DEBUG_MEMGUARD 89 #include <vm/memguard.h> 90 #endif 91 #ifdef DEBUG_REDZONE 92 #include <vm/redzone.h> 93 #endif 94 95 #if defined(INVARIANTS) && defined(__i386__) 96 #include <machine/cpu.h> 97 #endif 98 99 #include <ddb/ddb.h> 100 101 #ifdef KDTRACE_HOOKS 102 #include <sys/dtrace_bsd.h> 103 104 bool __read_frequently dtrace_malloc_enabled; 105 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 106 #endif 107 108 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 109 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 110 #define MALLOC_DEBUG 1 111 #endif 112 113 /* 114 * When realloc() is called, if the new size is sufficiently smaller than 115 * the old size, realloc() will allocate a new, smaller block to avoid 116 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 117 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 118 */ 119 #ifndef REALLOC_FRACTION 120 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 121 #endif 122 123 /* 124 * Centrally define some common malloc types. 125 */ 126 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 127 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 128 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 129 130 static struct malloc_type *kmemstatistics; 131 static int kmemcount; 132 133 #define KMEM_ZSHIFT 4 134 #define KMEM_ZBASE 16 135 #define KMEM_ZMASK (KMEM_ZBASE - 1) 136 137 #define KMEM_ZMAX 65536 138 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 139 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 140 141 #ifndef MALLOC_DEBUG_MAXZONES 142 #define MALLOC_DEBUG_MAXZONES 1 143 #endif 144 static int numzones = MALLOC_DEBUG_MAXZONES; 145 146 /* 147 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 148 * of various sizes. 149 * 150 * XXX: The comment here used to read "These won't be powers of two for 151 * long." It's possible that a significant amount of wasted memory could be 152 * recovered by tuning the sizes of these buckets. 153 */ 154 struct { 155 int kz_size; 156 const char *kz_name; 157 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 158 } kmemzones[] = { 159 {16, "16", }, 160 {32, "32", }, 161 {64, "64", }, 162 {128, "128", }, 163 {256, "256", }, 164 {512, "512", }, 165 {1024, "1024", }, 166 {2048, "2048", }, 167 {4096, "4096", }, 168 {8192, "8192", }, 169 {16384, "16384", }, 170 {32768, "32768", }, 171 {65536, "65536", }, 172 {0, NULL}, 173 }; 174 175 /* 176 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 177 * types are described by a data structure passed by the declaring code, but 178 * the malloc(9) implementation has its own data structure describing the 179 * type and statistics. This permits the malloc(9)-internal data structures 180 * to be modified without breaking binary-compiled kernel modules that 181 * declare malloc types. 182 */ 183 static uma_zone_t mt_zone; 184 static uma_zone_t mt_stats_zone; 185 186 u_long vm_kmem_size; 187 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 188 "Size of kernel memory"); 189 190 static u_long kmem_zmax = KMEM_ZMAX; 191 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 192 "Maximum allocation size that malloc(9) would use UMA as backend"); 193 194 static u_long vm_kmem_size_min; 195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 196 "Minimum size of kernel memory"); 197 198 static u_long vm_kmem_size_max; 199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 200 "Maximum size of kernel memory"); 201 202 static u_int vm_kmem_size_scale; 203 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 204 "Scale factor for kernel memory size"); 205 206 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 207 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 208 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 209 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 210 211 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 212 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 213 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 214 sysctl_kmem_map_free, "LU", "Free space in kmem"); 215 216 /* 217 * The malloc_mtx protects the kmemstatistics linked list. 218 */ 219 struct mtx malloc_mtx; 220 221 #ifdef MALLOC_PROFILE 222 uint64_t krequests[KMEM_ZSIZE + 1]; 223 224 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 225 #endif 226 227 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 228 229 /* 230 * time_uptime of the last malloc(9) failure (induced or real). 231 */ 232 static time_t t_malloc_fail; 233 234 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 235 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 236 "Kernel malloc debugging options"); 237 #endif 238 239 /* 240 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 241 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 242 */ 243 #ifdef MALLOC_MAKE_FAILURES 244 static int malloc_failure_rate; 245 static int malloc_nowait_count; 246 static int malloc_failure_count; 247 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 248 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 249 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 250 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 251 #endif 252 253 static int 254 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 255 { 256 u_long size; 257 258 size = uma_size(); 259 return (sysctl_handle_long(oidp, &size, 0, req)); 260 } 261 262 static int 263 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 264 { 265 u_long size, limit; 266 267 /* The sysctl is unsigned, implement as a saturation value. */ 268 size = uma_size(); 269 limit = uma_limit(); 270 if (size > limit) 271 size = 0; 272 else 273 size = limit - size; 274 return (sysctl_handle_long(oidp, &size, 0, req)); 275 } 276 277 /* 278 * malloc(9) uma zone separation -- sub-page buffer overruns in one 279 * malloc type will affect only a subset of other malloc types. 280 */ 281 #if MALLOC_DEBUG_MAXZONES > 1 282 static void 283 tunable_set_numzones(void) 284 { 285 286 TUNABLE_INT_FETCH("debug.malloc.numzones", 287 &numzones); 288 289 /* Sanity check the number of malloc uma zones. */ 290 if (numzones <= 0) 291 numzones = 1; 292 if (numzones > MALLOC_DEBUG_MAXZONES) 293 numzones = MALLOC_DEBUG_MAXZONES; 294 } 295 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 296 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 297 &numzones, 0, "Number of malloc uma subzones"); 298 299 /* 300 * Any number that changes regularly is an okay choice for the 301 * offset. Build numbers are pretty good of you have them. 302 */ 303 static u_int zone_offset = __FreeBSD_version; 304 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 305 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 306 &zone_offset, 0, "Separate malloc types by examining the " 307 "Nth character in the malloc type short description."); 308 309 static void 310 mtp_set_subzone(struct malloc_type *mtp) 311 { 312 struct malloc_type_internal *mtip; 313 const char *desc; 314 size_t len; 315 u_int val; 316 317 mtip = mtp->ks_handle; 318 desc = mtp->ks_shortdesc; 319 if (desc == NULL || (len = strlen(desc)) == 0) 320 val = 0; 321 else 322 val = desc[zone_offset % len]; 323 mtip->mti_zone = (val % numzones); 324 } 325 326 static inline u_int 327 mtp_get_subzone(struct malloc_type *mtp) 328 { 329 struct malloc_type_internal *mtip; 330 331 mtip = mtp->ks_handle; 332 333 KASSERT(mtip->mti_zone < numzones, 334 ("mti_zone %u out of range %d", 335 mtip->mti_zone, numzones)); 336 return (mtip->mti_zone); 337 } 338 #elif MALLOC_DEBUG_MAXZONES == 0 339 #error "MALLOC_DEBUG_MAXZONES must be positive." 340 #else 341 static void 342 mtp_set_subzone(struct malloc_type *mtp) 343 { 344 struct malloc_type_internal *mtip; 345 346 mtip = mtp->ks_handle; 347 mtip->mti_zone = 0; 348 } 349 350 static inline u_int 351 mtp_get_subzone(struct malloc_type *mtp) 352 { 353 354 return (0); 355 } 356 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 357 358 int 359 malloc_last_fail(void) 360 { 361 362 return (time_uptime - t_malloc_fail); 363 } 364 365 /* 366 * An allocation has succeeded -- update malloc type statistics for the 367 * amount of bucket size. Occurs within a critical section so that the 368 * thread isn't preempted and doesn't migrate while updating per-PCU 369 * statistics. 370 */ 371 static void 372 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 373 int zindx) 374 { 375 struct malloc_type_internal *mtip; 376 struct malloc_type_stats *mtsp; 377 378 critical_enter(); 379 mtip = mtp->ks_handle; 380 mtsp = zpcpu_get(mtip->mti_stats); 381 if (size > 0) { 382 mtsp->mts_memalloced += size; 383 mtsp->mts_numallocs++; 384 } 385 if (zindx != -1) 386 mtsp->mts_size |= 1 << zindx; 387 388 #ifdef KDTRACE_HOOKS 389 if (__predict_false(dtrace_malloc_enabled)) { 390 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 391 if (probe_id != 0) 392 (dtrace_malloc_probe)(probe_id, 393 (uintptr_t) mtp, (uintptr_t) mtip, 394 (uintptr_t) mtsp, size, zindx); 395 } 396 #endif 397 398 critical_exit(); 399 } 400 401 void 402 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 403 { 404 405 if (size > 0) 406 malloc_type_zone_allocated(mtp, size, -1); 407 } 408 409 /* 410 * A free operation has occurred -- update malloc type statistics for the 411 * amount of the bucket size. Occurs within a critical section so that the 412 * thread isn't preempted and doesn't migrate while updating per-CPU 413 * statistics. 414 */ 415 void 416 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 417 { 418 struct malloc_type_internal *mtip; 419 struct malloc_type_stats *mtsp; 420 421 critical_enter(); 422 mtip = mtp->ks_handle; 423 mtsp = zpcpu_get(mtip->mti_stats); 424 mtsp->mts_memfreed += size; 425 mtsp->mts_numfrees++; 426 427 #ifdef KDTRACE_HOOKS 428 if (__predict_false(dtrace_malloc_enabled)) { 429 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 430 if (probe_id != 0) 431 (dtrace_malloc_probe)(probe_id, 432 (uintptr_t) mtp, (uintptr_t) mtip, 433 (uintptr_t) mtsp, size, 0); 434 } 435 #endif 436 437 critical_exit(); 438 } 439 440 /* 441 * contigmalloc: 442 * 443 * Allocate a block of physically contiguous memory. 444 * 445 * If M_NOWAIT is set, this routine will not block and return NULL if 446 * the allocation fails. 447 */ 448 void * 449 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 450 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 451 vm_paddr_t boundary) 452 { 453 void *ret; 454 455 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 456 boundary, VM_MEMATTR_DEFAULT); 457 if (ret != NULL) 458 malloc_type_allocated(type, round_page(size)); 459 return (ret); 460 } 461 462 void * 463 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 464 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 465 unsigned long alignment, vm_paddr_t boundary) 466 { 467 void *ret; 468 469 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 470 alignment, boundary, VM_MEMATTR_DEFAULT); 471 if (ret != NULL) 472 malloc_type_allocated(type, round_page(size)); 473 return (ret); 474 } 475 476 /* 477 * contigfree: 478 * 479 * Free a block of memory allocated by contigmalloc. 480 * 481 * This routine may not block. 482 */ 483 void 484 contigfree(void *addr, unsigned long size, struct malloc_type *type) 485 { 486 487 kmem_free((vm_offset_t)addr, size); 488 malloc_type_freed(type, round_page(size)); 489 } 490 491 #ifdef MALLOC_DEBUG 492 static int 493 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 494 int flags) 495 { 496 #ifdef INVARIANTS 497 int indx; 498 499 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic")); 500 /* 501 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 502 */ 503 indx = flags & (M_WAITOK | M_NOWAIT); 504 if (indx != M_NOWAIT && indx != M_WAITOK) { 505 static struct timeval lasterr; 506 static int curerr, once; 507 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 508 printf("Bad malloc flags: %x\n", indx); 509 kdb_backtrace(); 510 flags |= M_WAITOK; 511 once++; 512 } 513 } 514 #endif 515 #ifdef MALLOC_MAKE_FAILURES 516 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 517 atomic_add_int(&malloc_nowait_count, 1); 518 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 519 atomic_add_int(&malloc_failure_count, 1); 520 t_malloc_fail = time_uptime; 521 *vap = NULL; 522 return (EJUSTRETURN); 523 } 524 } 525 #endif 526 if (flags & M_WAITOK) { 527 KASSERT(curthread->td_intr_nesting_level == 0, 528 ("malloc(M_WAITOK) in interrupt context")); 529 if (__predict_false(!THREAD_CAN_SLEEP())) { 530 #ifdef EPOCH_TRACE 531 epoch_trace_list(curthread); 532 #endif 533 KASSERT(1, 534 ("malloc(M_WAITOK) with sleeping prohibited")); 535 } 536 } 537 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 538 ("malloc: called with spinlock or critical section held")); 539 540 #ifdef DEBUG_MEMGUARD 541 if (memguard_cmp_mtp(mtp, *sizep)) { 542 *vap = memguard_alloc(*sizep, flags); 543 if (*vap != NULL) 544 return (EJUSTRETURN); 545 /* This is unfortunate but should not be fatal. */ 546 } 547 #endif 548 549 #ifdef DEBUG_REDZONE 550 *sizep = redzone_size_ntor(*sizep); 551 #endif 552 553 return (0); 554 } 555 #endif 556 557 /* 558 * Handle large allocations and frees by using kmem_malloc directly. 559 */ 560 static inline bool 561 malloc_large_slab(uma_slab_t slab) 562 { 563 uintptr_t va; 564 565 va = (uintptr_t)slab; 566 return ((va & 1) != 0); 567 } 568 569 static inline size_t 570 malloc_large_size(uma_slab_t slab) 571 { 572 uintptr_t va; 573 574 va = (uintptr_t)slab; 575 return (va >> 1); 576 } 577 578 static caddr_t 579 malloc_large(size_t *size, struct domainset *policy, int flags) 580 { 581 vm_offset_t va; 582 size_t sz; 583 584 sz = roundup(*size, PAGE_SIZE); 585 va = kmem_malloc_domainset(policy, sz, flags); 586 if (va != 0) { 587 /* The low bit is unused for slab pointers. */ 588 vsetzoneslab(va, NULL, (void *)((sz << 1) | 1)); 589 uma_total_inc(sz); 590 *size = sz; 591 } 592 return ((caddr_t)va); 593 } 594 595 static void 596 free_large(void *addr, size_t size) 597 { 598 599 kmem_free((vm_offset_t)addr, size); 600 uma_total_dec(size); 601 } 602 603 /* 604 * malloc: 605 * 606 * Allocate a block of memory. 607 * 608 * If M_NOWAIT is set, this routine will not block and return NULL if 609 * the allocation fails. 610 */ 611 void * 612 (malloc)(size_t size, struct malloc_type *mtp, int flags) 613 { 614 int indx; 615 caddr_t va; 616 uma_zone_t zone; 617 #if defined(DEBUG_REDZONE) 618 unsigned long osize = size; 619 #endif 620 621 MPASS((flags & M_EXEC) == 0); 622 #ifdef MALLOC_DEBUG 623 va = NULL; 624 if (malloc_dbg(&va, &size, mtp, flags) != 0) 625 return (va); 626 #endif 627 628 if (size <= kmem_zmax) { 629 if (size & KMEM_ZMASK) 630 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 631 indx = kmemsize[size >> KMEM_ZSHIFT]; 632 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 633 #ifdef MALLOC_PROFILE 634 krequests[size >> KMEM_ZSHIFT]++; 635 #endif 636 va = uma_zalloc(zone, flags); 637 if (va != NULL) 638 size = zone->uz_size; 639 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 640 } else { 641 va = malloc_large(&size, DOMAINSET_RR(), flags); 642 malloc_type_allocated(mtp, va == NULL ? 0 : size); 643 } 644 if (__predict_false(va == NULL)) { 645 KASSERT((flags & M_WAITOK) == 0, 646 ("malloc(M_WAITOK) returned NULL")); 647 t_malloc_fail = time_uptime; 648 } 649 #ifdef DEBUG_REDZONE 650 if (va != NULL) 651 va = redzone_setup(va, osize); 652 #endif 653 return ((void *) va); 654 } 655 656 static void * 657 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 658 int flags) 659 { 660 uma_zone_t zone; 661 caddr_t va; 662 size_t size; 663 int indx; 664 665 size = *sizep; 666 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 667 ("malloc_domain: Called with bad flag / size combination.")); 668 if (size & KMEM_ZMASK) 669 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 670 indx = kmemsize[size >> KMEM_ZSHIFT]; 671 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 672 #ifdef MALLOC_PROFILE 673 krequests[size >> KMEM_ZSHIFT]++; 674 #endif 675 va = uma_zalloc_domain(zone, NULL, domain, flags); 676 if (va != NULL) 677 *sizep = zone->uz_size; 678 *indxp = indx; 679 return ((void *)va); 680 } 681 682 void * 683 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 684 int flags) 685 { 686 struct vm_domainset_iter di; 687 caddr_t va; 688 int domain; 689 int indx; 690 691 #if defined(DEBUG_REDZONE) 692 unsigned long osize = size; 693 #endif 694 MPASS((flags & M_EXEC) == 0); 695 #ifdef MALLOC_DEBUG 696 va = NULL; 697 if (malloc_dbg(&va, &size, mtp, flags) != 0) 698 return (va); 699 #endif 700 if (size <= kmem_zmax) { 701 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 702 do { 703 va = malloc_domain(&size, &indx, mtp, domain, flags); 704 } while (va == NULL && 705 vm_domainset_iter_policy(&di, &domain) == 0); 706 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 707 } else { 708 /* Policy is handled by kmem. */ 709 va = malloc_large(&size, ds, flags); 710 malloc_type_allocated(mtp, va == NULL ? 0 : size); 711 } 712 if (__predict_false(va == NULL)) { 713 KASSERT((flags & M_WAITOK) == 0, 714 ("malloc(M_WAITOK) returned NULL")); 715 t_malloc_fail = time_uptime; 716 } 717 #ifdef DEBUG_REDZONE 718 if (va != NULL) 719 va = redzone_setup(va, osize); 720 #endif 721 return (va); 722 } 723 724 /* 725 * Allocate an executable area. 726 */ 727 void * 728 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 729 { 730 caddr_t va; 731 #if defined(DEBUG_REDZONE) 732 unsigned long osize = size; 733 #endif 734 735 flags |= M_EXEC; 736 #ifdef MALLOC_DEBUG 737 va = NULL; 738 if (malloc_dbg(&va, &size, mtp, flags) != 0) 739 return (va); 740 #endif 741 va = malloc_large(&size, DOMAINSET_RR(), flags); 742 malloc_type_allocated(mtp, va == NULL ? 0 : size); 743 if (__predict_false(va == NULL)) { 744 KASSERT((flags & M_WAITOK) == 0, 745 ("malloc(M_WAITOK) returned NULL")); 746 t_malloc_fail = time_uptime; 747 } 748 #ifdef DEBUG_REDZONE 749 if (va != NULL) 750 va = redzone_setup(va, osize); 751 #endif 752 return ((void *) va); 753 } 754 755 void * 756 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 757 int flags) 758 { 759 caddr_t va; 760 #if defined(DEBUG_REDZONE) 761 unsigned long osize = size; 762 #endif 763 764 flags |= M_EXEC; 765 #ifdef MALLOC_DEBUG 766 va = NULL; 767 if (malloc_dbg(&va, &size, mtp, flags) != 0) 768 return (va); 769 #endif 770 /* Policy is handled by kmem. */ 771 va = malloc_large(&size, ds, flags); 772 malloc_type_allocated(mtp, va == NULL ? 0 : size); 773 if (__predict_false(va == NULL)) { 774 KASSERT((flags & M_WAITOK) == 0, 775 ("malloc(M_WAITOK) returned NULL")); 776 t_malloc_fail = time_uptime; 777 } 778 #ifdef DEBUG_REDZONE 779 if (va != NULL) 780 va = redzone_setup(va, osize); 781 #endif 782 return (va); 783 } 784 785 void * 786 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 787 { 788 789 if (WOULD_OVERFLOW(nmemb, size)) 790 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 791 792 return (malloc(size * nmemb, type, flags)); 793 } 794 795 #ifdef INVARIANTS 796 static void 797 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 798 { 799 struct malloc_type **mtpp = addr; 800 801 /* 802 * Cache a pointer to the malloc_type that most recently freed 803 * this memory here. This way we know who is most likely to 804 * have stepped on it later. 805 * 806 * This code assumes that size is a multiple of 8 bytes for 807 * 64 bit machines 808 */ 809 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 810 mtpp += (size - sizeof(struct malloc_type *)) / 811 sizeof(struct malloc_type *); 812 *mtpp = mtp; 813 } 814 #endif 815 816 #ifdef MALLOC_DEBUG 817 static int 818 free_dbg(void **addrp, struct malloc_type *mtp) 819 { 820 void *addr; 821 822 addr = *addrp; 823 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic")); 824 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 825 ("free: called with spinlock or critical section held")); 826 827 /* free(NULL, ...) does nothing */ 828 if (addr == NULL) 829 return (EJUSTRETURN); 830 831 #ifdef DEBUG_MEMGUARD 832 if (is_memguard_addr(addr)) { 833 memguard_free(addr); 834 return (EJUSTRETURN); 835 } 836 #endif 837 838 #ifdef DEBUG_REDZONE 839 redzone_check(addr); 840 *addrp = redzone_addr_ntor(addr); 841 #endif 842 843 return (0); 844 } 845 #endif 846 847 /* 848 * free: 849 * 850 * Free a block of memory allocated by malloc. 851 * 852 * This routine may not block. 853 */ 854 void 855 free(void *addr, struct malloc_type *mtp) 856 { 857 uma_zone_t zone; 858 uma_slab_t slab; 859 u_long size; 860 861 #ifdef MALLOC_DEBUG 862 if (free_dbg(&addr, mtp) != 0) 863 return; 864 #endif 865 /* free(NULL, ...) does nothing */ 866 if (addr == NULL) 867 return; 868 869 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 870 if (slab == NULL) 871 panic("free: address %p(%p) has not been allocated.\n", 872 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 873 874 if (__predict_true(!malloc_large_slab(slab))) { 875 size = zone->uz_size; 876 #ifdef INVARIANTS 877 free_save_type(addr, mtp, size); 878 #endif 879 uma_zfree_arg(zone, addr, slab); 880 } else { 881 size = malloc_large_size(slab); 882 free_large(addr, size); 883 } 884 malloc_type_freed(mtp, size); 885 } 886 887 /* 888 * zfree: 889 * 890 * Zero then free a block of memory allocated by malloc. 891 * 892 * This routine may not block. 893 */ 894 void 895 zfree(void *addr, struct malloc_type *mtp) 896 { 897 uma_zone_t zone; 898 uma_slab_t slab; 899 u_long size; 900 901 #ifdef MALLOC_DEBUG 902 if (free_dbg(&addr, mtp) != 0) 903 return; 904 #endif 905 /* free(NULL, ...) does nothing */ 906 if (addr == NULL) 907 return; 908 909 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 910 if (slab == NULL) 911 panic("free: address %p(%p) has not been allocated.\n", 912 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 913 914 if (__predict_true(!malloc_large_slab(slab))) { 915 size = zone->uz_size; 916 #ifdef INVARIANTS 917 free_save_type(addr, mtp, size); 918 #endif 919 explicit_bzero(addr, size); 920 uma_zfree_arg(zone, addr, slab); 921 } else { 922 size = malloc_large_size(slab); 923 explicit_bzero(addr, size); 924 free_large(addr, size); 925 } 926 malloc_type_freed(mtp, size); 927 } 928 929 /* 930 * realloc: change the size of a memory block 931 */ 932 void * 933 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 934 { 935 uma_zone_t zone; 936 uma_slab_t slab; 937 unsigned long alloc; 938 void *newaddr; 939 940 KASSERT(mtp->ks_magic == M_MAGIC, 941 ("realloc: bad malloc type magic")); 942 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 943 ("realloc: called with spinlock or critical section held")); 944 945 /* realloc(NULL, ...) is equivalent to malloc(...) */ 946 if (addr == NULL) 947 return (malloc(size, mtp, flags)); 948 949 /* 950 * XXX: Should report free of old memory and alloc of new memory to 951 * per-CPU stats. 952 */ 953 954 #ifdef DEBUG_MEMGUARD 955 if (is_memguard_addr(addr)) 956 return (memguard_realloc(addr, size, mtp, flags)); 957 #endif 958 959 #ifdef DEBUG_REDZONE 960 slab = NULL; 961 zone = NULL; 962 alloc = redzone_get_size(addr); 963 #else 964 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 965 966 /* Sanity check */ 967 KASSERT(slab != NULL, 968 ("realloc: address %p out of range", (void *)addr)); 969 970 /* Get the size of the original block */ 971 if (!malloc_large_slab(slab)) 972 alloc = zone->uz_size; 973 else 974 alloc = malloc_large_size(slab); 975 976 /* Reuse the original block if appropriate */ 977 if (size <= alloc 978 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 979 return (addr); 980 #endif /* !DEBUG_REDZONE */ 981 982 /* Allocate a new, bigger (or smaller) block */ 983 if ((newaddr = malloc(size, mtp, flags)) == NULL) 984 return (NULL); 985 986 /* Copy over original contents */ 987 bcopy(addr, newaddr, min(size, alloc)); 988 free(addr, mtp); 989 return (newaddr); 990 } 991 992 /* 993 * reallocf: same as realloc() but free memory on failure. 994 */ 995 void * 996 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 997 { 998 void *mem; 999 1000 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1001 free(addr, mtp); 1002 return (mem); 1003 } 1004 1005 /* 1006 * malloc_usable_size: returns the usable size of the allocation. 1007 */ 1008 size_t 1009 malloc_usable_size(const void *addr) 1010 { 1011 #ifndef DEBUG_REDZONE 1012 uma_zone_t zone; 1013 uma_slab_t slab; 1014 #endif 1015 u_long size; 1016 1017 if (addr == NULL) 1018 return (0); 1019 1020 #ifdef DEBUG_MEMGUARD 1021 if (is_memguard_addr(__DECONST(void *, addr))) 1022 return (memguard_get_req_size(addr)); 1023 #endif 1024 1025 #ifdef DEBUG_REDZONE 1026 size = redzone_get_size(__DECONST(void *, addr)); 1027 #else 1028 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1029 if (slab == NULL) 1030 panic("malloc_usable_size: address %p(%p) is not allocated.\n", 1031 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1032 1033 if (!malloc_large_slab(slab)) 1034 size = zone->uz_size; 1035 else 1036 size = malloc_large_size(slab); 1037 #endif 1038 return (size); 1039 } 1040 1041 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1042 1043 /* 1044 * Initialize the kernel memory (kmem) arena. 1045 */ 1046 void 1047 kmeminit(void) 1048 { 1049 u_long mem_size; 1050 u_long tmp; 1051 1052 #ifdef VM_KMEM_SIZE 1053 if (vm_kmem_size == 0) 1054 vm_kmem_size = VM_KMEM_SIZE; 1055 #endif 1056 #ifdef VM_KMEM_SIZE_MIN 1057 if (vm_kmem_size_min == 0) 1058 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1059 #endif 1060 #ifdef VM_KMEM_SIZE_MAX 1061 if (vm_kmem_size_max == 0) 1062 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1063 #endif 1064 /* 1065 * Calculate the amount of kernel virtual address (KVA) space that is 1066 * preallocated to the kmem arena. In order to support a wide range 1067 * of machines, it is a function of the physical memory size, 1068 * specifically, 1069 * 1070 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1071 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1072 * 1073 * Every architecture must define an integral value for 1074 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1075 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1076 * ceiling on this preallocation, are optional. Typically, 1077 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1078 * a given architecture. 1079 */ 1080 mem_size = vm_cnt.v_page_count; 1081 if (mem_size <= 32768) /* delphij XXX 128MB */ 1082 kmem_zmax = PAGE_SIZE; 1083 1084 if (vm_kmem_size_scale < 1) 1085 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1086 1087 /* 1088 * Check if we should use defaults for the "vm_kmem_size" 1089 * variable: 1090 */ 1091 if (vm_kmem_size == 0) { 1092 vm_kmem_size = mem_size / vm_kmem_size_scale; 1093 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1094 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1095 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1096 vm_kmem_size = vm_kmem_size_min; 1097 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1098 vm_kmem_size = vm_kmem_size_max; 1099 } 1100 if (vm_kmem_size == 0) 1101 panic("Tune VM_KMEM_SIZE_* for the platform"); 1102 1103 /* 1104 * The amount of KVA space that is preallocated to the 1105 * kmem arena can be set statically at compile-time or manually 1106 * through the kernel environment. However, it is still limited to 1107 * twice the physical memory size, which has been sufficient to handle 1108 * the most severe cases of external fragmentation in the kmem arena. 1109 */ 1110 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1111 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1112 1113 vm_kmem_size = round_page(vm_kmem_size); 1114 #ifdef DEBUG_MEMGUARD 1115 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1116 #else 1117 tmp = vm_kmem_size; 1118 #endif 1119 uma_set_limit(tmp); 1120 1121 #ifdef DEBUG_MEMGUARD 1122 /* 1123 * Initialize MemGuard if support compiled in. MemGuard is a 1124 * replacement allocator used for detecting tamper-after-free 1125 * scenarios as they occur. It is only used for debugging. 1126 */ 1127 memguard_init(kernel_arena); 1128 #endif 1129 } 1130 1131 /* 1132 * Initialize the kernel memory allocator 1133 */ 1134 /* ARGSUSED*/ 1135 static void 1136 mallocinit(void *dummy) 1137 { 1138 int i; 1139 uint8_t indx; 1140 1141 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1142 1143 kmeminit(); 1144 1145 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1146 kmem_zmax = KMEM_ZMAX; 1147 1148 mt_stats_zone = uma_zcreate("mt_stats_zone", 1149 sizeof(struct malloc_type_stats), NULL, NULL, NULL, NULL, 1150 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 1151 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 1152 #ifdef INVARIANTS 1153 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1154 #else 1155 NULL, NULL, NULL, NULL, 1156 #endif 1157 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 1158 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1159 int size = kmemzones[indx].kz_size; 1160 const char *name = kmemzones[indx].kz_name; 1161 int subzone; 1162 1163 for (subzone = 0; subzone < numzones; subzone++) { 1164 kmemzones[indx].kz_zone[subzone] = 1165 uma_zcreate(name, size, 1166 #ifdef INVARIANTS 1167 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1168 #else 1169 NULL, NULL, NULL, NULL, 1170 #endif 1171 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 1172 } 1173 for (;i <= size; i+= KMEM_ZBASE) 1174 kmemsize[i >> KMEM_ZSHIFT] = indx; 1175 } 1176 } 1177 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1178 1179 void 1180 malloc_init(void *data) 1181 { 1182 struct malloc_type_internal *mtip; 1183 struct malloc_type *mtp; 1184 1185 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1186 1187 mtp = data; 1188 if (mtp->ks_magic != M_MAGIC) 1189 panic("malloc_init: bad malloc type magic"); 1190 1191 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 1192 mtip->mti_stats = uma_zalloc_pcpu(mt_stats_zone, M_WAITOK | M_ZERO); 1193 mtp->ks_handle = mtip; 1194 mtp_set_subzone(mtp); 1195 1196 mtx_lock(&malloc_mtx); 1197 mtp->ks_next = kmemstatistics; 1198 kmemstatistics = mtp; 1199 kmemcount++; 1200 mtx_unlock(&malloc_mtx); 1201 } 1202 1203 void 1204 malloc_uninit(void *data) 1205 { 1206 struct malloc_type_internal *mtip; 1207 struct malloc_type_stats *mtsp; 1208 struct malloc_type *mtp, *temp; 1209 uma_slab_t slab; 1210 long temp_allocs, temp_bytes; 1211 int i; 1212 1213 mtp = data; 1214 KASSERT(mtp->ks_magic == M_MAGIC, 1215 ("malloc_uninit: bad malloc type magic")); 1216 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 1217 1218 mtx_lock(&malloc_mtx); 1219 mtip = mtp->ks_handle; 1220 mtp->ks_handle = NULL; 1221 if (mtp != kmemstatistics) { 1222 for (temp = kmemstatistics; temp != NULL; 1223 temp = temp->ks_next) { 1224 if (temp->ks_next == mtp) { 1225 temp->ks_next = mtp->ks_next; 1226 break; 1227 } 1228 } 1229 KASSERT(temp, 1230 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1231 } else 1232 kmemstatistics = mtp->ks_next; 1233 kmemcount--; 1234 mtx_unlock(&malloc_mtx); 1235 1236 /* 1237 * Look for memory leaks. 1238 */ 1239 temp_allocs = temp_bytes = 0; 1240 for (i = 0; i <= mp_maxid; i++) { 1241 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1242 temp_allocs += mtsp->mts_numallocs; 1243 temp_allocs -= mtsp->mts_numfrees; 1244 temp_bytes += mtsp->mts_memalloced; 1245 temp_bytes -= mtsp->mts_memfreed; 1246 } 1247 if (temp_allocs > 0 || temp_bytes > 0) { 1248 printf("Warning: memory type %s leaked memory on destroy " 1249 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1250 temp_allocs, temp_bytes); 1251 } 1252 1253 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 1254 uma_zfree_pcpu(mt_stats_zone, mtip->mti_stats); 1255 uma_zfree_arg(mt_zone, mtip, slab); 1256 } 1257 1258 struct malloc_type * 1259 malloc_desc2type(const char *desc) 1260 { 1261 struct malloc_type *mtp; 1262 1263 mtx_assert(&malloc_mtx, MA_OWNED); 1264 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1265 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1266 return (mtp); 1267 } 1268 return (NULL); 1269 } 1270 1271 static int 1272 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1273 { 1274 struct malloc_type_stream_header mtsh; 1275 struct malloc_type_internal *mtip; 1276 struct malloc_type_stats *mtsp, zeromts; 1277 struct malloc_type_header mth; 1278 struct malloc_type *mtp; 1279 int error, i; 1280 struct sbuf sbuf; 1281 1282 error = sysctl_wire_old_buffer(req, 0); 1283 if (error != 0) 1284 return (error); 1285 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1286 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1287 mtx_lock(&malloc_mtx); 1288 1289 bzero(&zeromts, sizeof(zeromts)); 1290 1291 /* 1292 * Insert stream header. 1293 */ 1294 bzero(&mtsh, sizeof(mtsh)); 1295 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1296 mtsh.mtsh_maxcpus = MAXCPU; 1297 mtsh.mtsh_count = kmemcount; 1298 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1299 1300 /* 1301 * Insert alternating sequence of type headers and type statistics. 1302 */ 1303 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1304 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1305 1306 /* 1307 * Insert type header. 1308 */ 1309 bzero(&mth, sizeof(mth)); 1310 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1311 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1312 1313 /* 1314 * Insert type statistics for each CPU. 1315 */ 1316 for (i = 0; i <= mp_maxid; i++) { 1317 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1318 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1319 } 1320 /* 1321 * Fill in the missing CPUs. 1322 */ 1323 for (; i < MAXCPU; i++) { 1324 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1325 } 1326 } 1327 mtx_unlock(&malloc_mtx); 1328 error = sbuf_finish(&sbuf); 1329 sbuf_delete(&sbuf); 1330 return (error); 1331 } 1332 1333 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1334 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1335 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1336 "Return malloc types"); 1337 1338 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1339 "Count of kernel malloc types"); 1340 1341 void 1342 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1343 { 1344 struct malloc_type *mtp, **bufmtp; 1345 int count, i; 1346 size_t buflen; 1347 1348 mtx_lock(&malloc_mtx); 1349 restart: 1350 mtx_assert(&malloc_mtx, MA_OWNED); 1351 count = kmemcount; 1352 mtx_unlock(&malloc_mtx); 1353 1354 buflen = sizeof(struct malloc_type *) * count; 1355 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1356 1357 mtx_lock(&malloc_mtx); 1358 1359 if (count < kmemcount) { 1360 free(bufmtp, M_TEMP); 1361 goto restart; 1362 } 1363 1364 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1365 bufmtp[i] = mtp; 1366 1367 mtx_unlock(&malloc_mtx); 1368 1369 for (i = 0; i < count; i++) 1370 (func)(bufmtp[i], arg); 1371 1372 free(bufmtp, M_TEMP); 1373 } 1374 1375 #ifdef DDB 1376 static int64_t 1377 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1378 uint64_t *inuse) 1379 { 1380 const struct malloc_type_stats *mtsp; 1381 uint64_t frees, alloced, freed; 1382 int i; 1383 1384 *allocs = 0; 1385 frees = 0; 1386 alloced = 0; 1387 freed = 0; 1388 for (i = 0; i <= mp_maxid; i++) { 1389 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1390 1391 *allocs += mtsp->mts_numallocs; 1392 frees += mtsp->mts_numfrees; 1393 alloced += mtsp->mts_memalloced; 1394 freed += mtsp->mts_memfreed; 1395 } 1396 *inuse = *allocs - frees; 1397 return (alloced - freed); 1398 } 1399 1400 DB_SHOW_COMMAND(malloc, db_show_malloc) 1401 { 1402 const char *fmt_hdr, *fmt_entry; 1403 struct malloc_type *mtp; 1404 uint64_t allocs, inuse; 1405 int64_t size; 1406 /* variables for sorting */ 1407 struct malloc_type *last_mtype, *cur_mtype; 1408 int64_t cur_size, last_size; 1409 int ties; 1410 1411 if (modif[0] == 'i') { 1412 fmt_hdr = "%s,%s,%s,%s\n"; 1413 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1414 } else { 1415 fmt_hdr = "%18s %12s %12s %12s\n"; 1416 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1417 } 1418 1419 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1420 1421 /* Select sort, largest size first. */ 1422 last_mtype = NULL; 1423 last_size = INT64_MAX; 1424 for (;;) { 1425 cur_mtype = NULL; 1426 cur_size = -1; 1427 ties = 0; 1428 1429 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1430 /* 1431 * In the case of size ties, print out mtypes 1432 * in the order they are encountered. That is, 1433 * when we encounter the most recently output 1434 * mtype, we have already printed all preceding 1435 * ties, and we must print all following ties. 1436 */ 1437 if (mtp == last_mtype) { 1438 ties = 1; 1439 continue; 1440 } 1441 size = get_malloc_stats(mtp->ks_handle, &allocs, 1442 &inuse); 1443 if (size > cur_size && size < last_size + ties) { 1444 cur_size = size; 1445 cur_mtype = mtp; 1446 } 1447 } 1448 if (cur_mtype == NULL) 1449 break; 1450 1451 size = get_malloc_stats(cur_mtype->ks_handle, &allocs, &inuse); 1452 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1453 howmany(size, 1024), allocs); 1454 1455 if (db_pager_quit) 1456 break; 1457 1458 last_mtype = cur_mtype; 1459 last_size = cur_size; 1460 } 1461 } 1462 1463 #if MALLOC_DEBUG_MAXZONES > 1 1464 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1465 { 1466 struct malloc_type_internal *mtip; 1467 struct malloc_type *mtp; 1468 u_int subzone; 1469 1470 if (!have_addr) { 1471 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1472 return; 1473 } 1474 mtp = (void *)addr; 1475 if (mtp->ks_magic != M_MAGIC) { 1476 db_printf("Magic %lx does not match expected %x\n", 1477 mtp->ks_magic, M_MAGIC); 1478 return; 1479 } 1480 1481 mtip = mtp->ks_handle; 1482 subzone = mtip->mti_zone; 1483 1484 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1485 mtip = mtp->ks_handle; 1486 if (mtip->mti_zone != subzone) 1487 continue; 1488 db_printf("%s\n", mtp->ks_shortdesc); 1489 if (db_pager_quit) 1490 break; 1491 } 1492 } 1493 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1494 #endif /* DDB */ 1495 1496 #ifdef MALLOC_PROFILE 1497 1498 static int 1499 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 1500 { 1501 struct sbuf sbuf; 1502 uint64_t count; 1503 uint64_t waste; 1504 uint64_t mem; 1505 int error; 1506 int rsize; 1507 int size; 1508 int i; 1509 1510 waste = 0; 1511 mem = 0; 1512 1513 error = sysctl_wire_old_buffer(req, 0); 1514 if (error != 0) 1515 return (error); 1516 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1517 sbuf_printf(&sbuf, 1518 "\n Size Requests Real Size\n"); 1519 for (i = 0; i < KMEM_ZSIZE; i++) { 1520 size = i << KMEM_ZSHIFT; 1521 rsize = kmemzones[kmemsize[i]].kz_size; 1522 count = (long long unsigned)krequests[i]; 1523 1524 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 1525 (unsigned long long)count, rsize); 1526 1527 if ((rsize * count) > (size * count)) 1528 waste += (rsize * count) - (size * count); 1529 mem += (rsize * count); 1530 } 1531 sbuf_printf(&sbuf, 1532 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 1533 (unsigned long long)mem, (unsigned long long)waste); 1534 error = sbuf_finish(&sbuf); 1535 sbuf_delete(&sbuf); 1536 return (error); 1537 } 1538 1539 SYSCTL_OID(_kern, OID_AUTO, mprof, 1540 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 1541 sysctl_kern_mprof, "A", 1542 "Malloc Profiling"); 1543 #endif /* MALLOC_PROFILE */ 1544