1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 37 * based on memory types. Back end is implemented using the UMA(9) zone 38 * allocator. A set of fixed-size buckets are used for smaller allocations, 39 * and a special UMA allocation interface is used for larger allocations. 40 * Callers declare memory types, and statistics are maintained independently 41 * for each memory type. Statistics are maintained per-CPU for performance 42 * reasons. See malloc(9) and comments in malloc.h for a detailed 43 * description. 44 */ 45 46 #include <sys/cdefs.h> 47 #include "opt_ddb.h" 48 #include "opt_vm.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/asan.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/msan.h> 58 #include <sys/mutex.h> 59 #include <sys/vmmeter.h> 60 #include <sys/proc.h> 61 #include <sys/queue.h> 62 #include <sys/sbuf.h> 63 #include <sys/smp.h> 64 #include <sys/sysctl.h> 65 #include <sys/time.h> 66 #include <sys/vmem.h> 67 #ifdef EPOCH_TRACE 68 #include <sys/epoch.h> 69 #endif 70 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #include <vm/vm_domainset.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_phys.h> 81 #include <vm/vm_pagequeue.h> 82 #include <vm/uma.h> 83 #include <vm/uma_int.h> 84 #include <vm/uma_dbg.h> 85 86 #ifdef DEBUG_MEMGUARD 87 #include <vm/memguard.h> 88 #endif 89 #ifdef DEBUG_REDZONE 90 #include <vm/redzone.h> 91 #endif 92 93 #if defined(INVARIANTS) && defined(__i386__) 94 #include <machine/cpu.h> 95 #endif 96 97 #include <ddb/ddb.h> 98 99 #ifdef KDTRACE_HOOKS 100 #include <sys/dtrace_bsd.h> 101 102 bool __read_frequently dtrace_malloc_enabled; 103 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 104 #endif 105 106 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 107 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 108 #define MALLOC_DEBUG 1 109 #endif 110 111 #if defined(KASAN) || defined(DEBUG_REDZONE) 112 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 113 #define DEBUG_REDZONE_ARG , osize 114 #else 115 #define DEBUG_REDZONE_ARG_DEF 116 #define DEBUG_REDZONE_ARG 117 #endif 118 119 /* 120 * When realloc() is called, if the new size is sufficiently smaller than 121 * the old size, realloc() will allocate a new, smaller block to avoid 122 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 123 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 124 */ 125 #ifndef REALLOC_FRACTION 126 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 127 #endif 128 129 /* 130 * Centrally define some common malloc types. 131 */ 132 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 133 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 134 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 135 136 static struct malloc_type *kmemstatistics; 137 static int kmemcount; 138 139 #define KMEM_ZSHIFT 4 140 #define KMEM_ZBASE 16 141 #define KMEM_ZMASK (KMEM_ZBASE - 1) 142 143 #define KMEM_ZMAX 65536 144 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 145 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 146 147 #ifndef MALLOC_DEBUG_MAXZONES 148 #define MALLOC_DEBUG_MAXZONES 1 149 #endif 150 static int numzones = MALLOC_DEBUG_MAXZONES; 151 152 /* 153 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 154 * of various sizes. 155 * 156 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 157 * 158 * XXX: The comment here used to read "These won't be powers of two for 159 * long." It's possible that a significant amount of wasted memory could be 160 * recovered by tuning the sizes of these buckets. 161 */ 162 struct { 163 int kz_size; 164 const char *kz_name; 165 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 166 } kmemzones[] = { 167 {16, "malloc-16", }, 168 {32, "malloc-32", }, 169 {64, "malloc-64", }, 170 {128, "malloc-128", }, 171 {256, "malloc-256", }, 172 {384, "malloc-384", }, 173 {512, "malloc-512", }, 174 {1024, "malloc-1024", }, 175 {2048, "malloc-2048", }, 176 {4096, "malloc-4096", }, 177 {8192, "malloc-8192", }, 178 {16384, "malloc-16384", }, 179 {32768, "malloc-32768", }, 180 {65536, "malloc-65536", }, 181 {0, NULL}, 182 }; 183 184 u_long vm_kmem_size; 185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 186 "Size of kernel memory"); 187 188 static u_long kmem_zmax = KMEM_ZMAX; 189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 190 "Maximum allocation size that malloc(9) would use UMA as backend"); 191 192 static u_long vm_kmem_size_min; 193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 194 "Minimum size of kernel memory"); 195 196 static u_long vm_kmem_size_max; 197 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 198 "Maximum size of kernel memory"); 199 200 static u_int vm_kmem_size_scale; 201 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 202 "Scale factor for kernel memory size"); 203 204 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 205 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 206 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 207 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 208 209 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 210 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 211 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 212 sysctl_kmem_map_free, "LU", "Free space in kmem"); 213 214 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 215 "Malloc information"); 216 217 static u_int vm_malloc_zone_count = nitems(kmemzones); 218 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 219 CTLFLAG_RD, &vm_malloc_zone_count, 0, 220 "Number of malloc zones"); 221 222 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 223 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 224 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 225 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 226 227 /* 228 * The malloc_mtx protects the kmemstatistics linked list. 229 */ 230 struct mtx malloc_mtx; 231 232 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 233 234 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 235 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 236 "Kernel malloc debugging options"); 237 #endif 238 239 /* 240 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 241 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 242 */ 243 #ifdef MALLOC_MAKE_FAILURES 244 static int malloc_failure_rate; 245 static int malloc_nowait_count; 246 static int malloc_failure_count; 247 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 248 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 249 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 250 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 251 #endif 252 253 static int 254 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 255 { 256 u_long size; 257 258 size = uma_size(); 259 return (sysctl_handle_long(oidp, &size, 0, req)); 260 } 261 262 static int 263 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 264 { 265 u_long size, limit; 266 267 /* The sysctl is unsigned, implement as a saturation value. */ 268 size = uma_size(); 269 limit = uma_limit(); 270 if (size > limit) 271 size = 0; 272 else 273 size = limit - size; 274 return (sysctl_handle_long(oidp, &size, 0, req)); 275 } 276 277 static int 278 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 279 { 280 int sizes[nitems(kmemzones)]; 281 int i; 282 283 for (i = 0; i < nitems(kmemzones); i++) { 284 sizes[i] = kmemzones[i].kz_size; 285 } 286 287 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 288 } 289 290 /* 291 * malloc(9) uma zone separation -- sub-page buffer overruns in one 292 * malloc type will affect only a subset of other malloc types. 293 */ 294 #if MALLOC_DEBUG_MAXZONES > 1 295 static void 296 tunable_set_numzones(void) 297 { 298 299 TUNABLE_INT_FETCH("debug.malloc.numzones", 300 &numzones); 301 302 /* Sanity check the number of malloc uma zones. */ 303 if (numzones <= 0) 304 numzones = 1; 305 if (numzones > MALLOC_DEBUG_MAXZONES) 306 numzones = MALLOC_DEBUG_MAXZONES; 307 } 308 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 309 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 310 &numzones, 0, "Number of malloc uma subzones"); 311 312 /* 313 * Any number that changes regularly is an okay choice for the 314 * offset. Build numbers are pretty good of you have them. 315 */ 316 static u_int zone_offset = __FreeBSD_version; 317 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 318 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 319 &zone_offset, 0, "Separate malloc types by examining the " 320 "Nth character in the malloc type short description."); 321 322 static void 323 mtp_set_subzone(struct malloc_type *mtp) 324 { 325 struct malloc_type_internal *mtip; 326 const char *desc; 327 size_t len; 328 u_int val; 329 330 mtip = &mtp->ks_mti; 331 desc = mtp->ks_shortdesc; 332 if (desc == NULL || (len = strlen(desc)) == 0) 333 val = 0; 334 else 335 val = desc[zone_offset % len]; 336 mtip->mti_zone = (val % numzones); 337 } 338 339 static inline u_int 340 mtp_get_subzone(struct malloc_type *mtp) 341 { 342 struct malloc_type_internal *mtip; 343 344 mtip = &mtp->ks_mti; 345 346 KASSERT(mtip->mti_zone < numzones, 347 ("mti_zone %u out of range %d", 348 mtip->mti_zone, numzones)); 349 return (mtip->mti_zone); 350 } 351 #elif MALLOC_DEBUG_MAXZONES == 0 352 #error "MALLOC_DEBUG_MAXZONES must be positive." 353 #else 354 static void 355 mtp_set_subzone(struct malloc_type *mtp) 356 { 357 struct malloc_type_internal *mtip; 358 359 mtip = &mtp->ks_mti; 360 mtip->mti_zone = 0; 361 } 362 363 static inline u_int 364 mtp_get_subzone(struct malloc_type *mtp) 365 { 366 367 return (0); 368 } 369 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 370 371 /* 372 * An allocation has succeeded -- update malloc type statistics for the 373 * amount of bucket size. Occurs within a critical section so that the 374 * thread isn't preempted and doesn't migrate while updating per-PCU 375 * statistics. 376 */ 377 static void 378 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 379 int zindx) 380 { 381 struct malloc_type_internal *mtip; 382 struct malloc_type_stats *mtsp; 383 384 critical_enter(); 385 mtip = &mtp->ks_mti; 386 mtsp = zpcpu_get(mtip->mti_stats); 387 if (size > 0) { 388 mtsp->mts_memalloced += size; 389 mtsp->mts_numallocs++; 390 } 391 if (zindx != -1) 392 mtsp->mts_size |= 1 << zindx; 393 394 #ifdef KDTRACE_HOOKS 395 if (__predict_false(dtrace_malloc_enabled)) { 396 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 397 if (probe_id != 0) 398 (dtrace_malloc_probe)(probe_id, 399 (uintptr_t) mtp, (uintptr_t) mtip, 400 (uintptr_t) mtsp, size, zindx); 401 } 402 #endif 403 404 critical_exit(); 405 } 406 407 void 408 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 409 { 410 411 if (size > 0) 412 malloc_type_zone_allocated(mtp, size, -1); 413 } 414 415 /* 416 * A free operation has occurred -- update malloc type statistics for the 417 * amount of the bucket size. Occurs within a critical section so that the 418 * thread isn't preempted and doesn't migrate while updating per-CPU 419 * statistics. 420 */ 421 void 422 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 423 { 424 struct malloc_type_internal *mtip; 425 struct malloc_type_stats *mtsp; 426 427 critical_enter(); 428 mtip = &mtp->ks_mti; 429 mtsp = zpcpu_get(mtip->mti_stats); 430 mtsp->mts_memfreed += size; 431 mtsp->mts_numfrees++; 432 433 #ifdef KDTRACE_HOOKS 434 if (__predict_false(dtrace_malloc_enabled)) { 435 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 436 if (probe_id != 0) 437 (dtrace_malloc_probe)(probe_id, 438 (uintptr_t) mtp, (uintptr_t) mtip, 439 (uintptr_t) mtsp, size, 0); 440 } 441 #endif 442 443 critical_exit(); 444 } 445 446 /* 447 * contigmalloc: 448 * 449 * Allocate a block of physically contiguous memory. 450 * 451 * If M_NOWAIT is set, this routine will not block and return NULL if 452 * the allocation fails. 453 */ 454 void * 455 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 456 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 457 vm_paddr_t boundary) 458 { 459 void *ret; 460 461 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 462 boundary, VM_MEMATTR_DEFAULT); 463 if (ret != NULL) 464 malloc_type_allocated(type, round_page(size)); 465 return (ret); 466 } 467 468 void * 469 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 470 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 471 unsigned long alignment, vm_paddr_t boundary) 472 { 473 void *ret; 474 475 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 476 alignment, boundary, VM_MEMATTR_DEFAULT); 477 if (ret != NULL) 478 malloc_type_allocated(type, round_page(size)); 479 return (ret); 480 } 481 482 /* 483 * contigfree: 484 * 485 * Free a block of memory allocated by contigmalloc. 486 * 487 * This routine may not block. 488 */ 489 void 490 contigfree(void *addr, unsigned long size, struct malloc_type *type) 491 { 492 493 kmem_free(addr, size); 494 malloc_type_freed(type, round_page(size)); 495 } 496 497 #ifdef MALLOC_DEBUG 498 static int 499 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 500 int flags) 501 { 502 #ifdef INVARIANTS 503 int indx; 504 505 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 506 /* 507 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 508 */ 509 indx = flags & (M_WAITOK | M_NOWAIT); 510 if (indx != M_NOWAIT && indx != M_WAITOK) { 511 static struct timeval lasterr; 512 static int curerr, once; 513 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 514 printf("Bad malloc flags: %x\n", indx); 515 kdb_backtrace(); 516 flags |= M_WAITOK; 517 once++; 518 } 519 } 520 #endif 521 #ifdef MALLOC_MAKE_FAILURES 522 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 523 atomic_add_int(&malloc_nowait_count, 1); 524 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 525 atomic_add_int(&malloc_failure_count, 1); 526 *vap = NULL; 527 return (EJUSTRETURN); 528 } 529 } 530 #endif 531 if (flags & M_WAITOK) { 532 KASSERT(curthread->td_intr_nesting_level == 0, 533 ("malloc(M_WAITOK) in interrupt context")); 534 if (__predict_false(!THREAD_CAN_SLEEP())) { 535 #ifdef EPOCH_TRACE 536 epoch_trace_list(curthread); 537 #endif 538 KASSERT(0, 539 ("malloc(M_WAITOK) with sleeping prohibited")); 540 } 541 } 542 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 543 ("malloc: called with spinlock or critical section held")); 544 545 #ifdef DEBUG_MEMGUARD 546 if (memguard_cmp_mtp(mtp, *sizep)) { 547 *vap = memguard_alloc(*sizep, flags); 548 if (*vap != NULL) 549 return (EJUSTRETURN); 550 /* This is unfortunate but should not be fatal. */ 551 } 552 #endif 553 554 #ifdef DEBUG_REDZONE 555 *sizep = redzone_size_ntor(*sizep); 556 #endif 557 558 return (0); 559 } 560 #endif 561 562 /* 563 * Handle large allocations and frees by using kmem_malloc directly. 564 */ 565 static inline bool 566 malloc_large_slab(uma_slab_t slab) 567 { 568 uintptr_t va; 569 570 va = (uintptr_t)slab; 571 return ((va & 1) != 0); 572 } 573 574 static inline size_t 575 malloc_large_size(uma_slab_t slab) 576 { 577 uintptr_t va; 578 579 va = (uintptr_t)slab; 580 return (va >> 1); 581 } 582 583 static caddr_t __noinline 584 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy, 585 int flags DEBUG_REDZONE_ARG_DEF) 586 { 587 void *va; 588 589 size = roundup(size, PAGE_SIZE); 590 va = kmem_malloc_domainset(policy, size, flags); 591 if (va != NULL) { 592 /* The low bit is unused for slab pointers. */ 593 vsetzoneslab((uintptr_t)va, NULL, (void *)((size << 1) | 1)); 594 uma_total_inc(size); 595 } 596 malloc_type_allocated(mtp, va == NULL ? 0 : size); 597 if (__predict_false(va == NULL)) { 598 KASSERT((flags & M_WAITOK) == 0, 599 ("malloc(M_WAITOK) returned NULL")); 600 } else { 601 #ifdef DEBUG_REDZONE 602 va = redzone_setup(va, osize); 603 #endif 604 kasan_mark(va, osize, size, KASAN_MALLOC_REDZONE); 605 } 606 return (va); 607 } 608 609 static void 610 free_large(void *addr, size_t size) 611 { 612 613 kmem_free(addr, size); 614 uma_total_dec(size); 615 } 616 617 /* 618 * malloc: 619 * 620 * Allocate a block of memory. 621 * 622 * If M_NOWAIT is set, this routine will not block and return NULL if 623 * the allocation fails. 624 */ 625 void * 626 (malloc)(size_t size, struct malloc_type *mtp, int flags) 627 { 628 int indx; 629 caddr_t va; 630 uma_zone_t zone; 631 #if defined(DEBUG_REDZONE) || defined(KASAN) 632 unsigned long osize = size; 633 #endif 634 635 MPASS((flags & M_EXEC) == 0); 636 637 #ifdef MALLOC_DEBUG 638 va = NULL; 639 if (malloc_dbg(&va, &size, mtp, flags) != 0) 640 return (va); 641 #endif 642 643 if (__predict_false(size > kmem_zmax)) 644 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 645 DEBUG_REDZONE_ARG)); 646 647 if (size & KMEM_ZMASK) 648 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 649 indx = kmemsize[size >> KMEM_ZSHIFT]; 650 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 651 va = uma_zalloc_arg(zone, zone, flags); 652 if (va != NULL) { 653 size = zone->uz_size; 654 if ((flags & M_ZERO) == 0) { 655 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 656 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 657 } 658 } 659 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 660 if (__predict_false(va == NULL)) { 661 KASSERT((flags & M_WAITOK) == 0, 662 ("malloc(M_WAITOK) returned NULL")); 663 } 664 #ifdef DEBUG_REDZONE 665 if (va != NULL) 666 va = redzone_setup(va, osize); 667 #endif 668 #ifdef KASAN 669 if (va != NULL) 670 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 671 #endif 672 return ((void *) va); 673 } 674 675 static void * 676 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 677 int flags) 678 { 679 uma_zone_t zone; 680 caddr_t va; 681 size_t size; 682 int indx; 683 684 size = *sizep; 685 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 686 ("malloc_domain: Called with bad flag / size combination.")); 687 if (size & KMEM_ZMASK) 688 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 689 indx = kmemsize[size >> KMEM_ZSHIFT]; 690 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 691 va = uma_zalloc_domain(zone, zone, domain, flags); 692 if (va != NULL) 693 *sizep = zone->uz_size; 694 *indxp = indx; 695 return ((void *)va); 696 } 697 698 void * 699 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 700 int flags) 701 { 702 struct vm_domainset_iter di; 703 caddr_t va; 704 int domain; 705 int indx; 706 #if defined(KASAN) || defined(DEBUG_REDZONE) 707 unsigned long osize = size; 708 #endif 709 710 MPASS((flags & M_EXEC) == 0); 711 712 #ifdef MALLOC_DEBUG 713 va = NULL; 714 if (malloc_dbg(&va, &size, mtp, flags) != 0) 715 return (va); 716 #endif 717 718 if (__predict_false(size > kmem_zmax)) 719 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 720 DEBUG_REDZONE_ARG)); 721 722 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 723 do { 724 va = malloc_domain(&size, &indx, mtp, domain, flags); 725 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 726 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 727 if (__predict_false(va == NULL)) { 728 KASSERT((flags & M_WAITOK) == 0, 729 ("malloc(M_WAITOK) returned NULL")); 730 } 731 #ifdef DEBUG_REDZONE 732 if (va != NULL) 733 va = redzone_setup(va, osize); 734 #endif 735 #ifdef KASAN 736 if (va != NULL) 737 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 738 #endif 739 #ifdef KMSAN 740 if ((flags & M_ZERO) == 0) { 741 kmsan_mark(va, size, KMSAN_STATE_UNINIT); 742 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR); 743 } 744 #endif 745 return (va); 746 } 747 748 /* 749 * Allocate an executable area. 750 */ 751 void * 752 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 753 { 754 755 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 756 } 757 758 void * 759 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 760 int flags) 761 { 762 #if defined(DEBUG_REDZONE) || defined(KASAN) 763 unsigned long osize = size; 764 #endif 765 #ifdef MALLOC_DEBUG 766 caddr_t va; 767 #endif 768 769 flags |= M_EXEC; 770 771 #ifdef MALLOC_DEBUG 772 va = NULL; 773 if (malloc_dbg(&va, &size, mtp, flags) != 0) 774 return (va); 775 #endif 776 777 return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG)); 778 } 779 780 void * 781 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags) 782 { 783 return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(), 784 flags)); 785 } 786 787 void * 788 malloc_domainset_aligned(size_t size, size_t align, 789 struct malloc_type *mtp, struct domainset *ds, int flags) 790 { 791 void *res; 792 size_t asize; 793 794 KASSERT(powerof2(align), 795 ("malloc_domainset_aligned: wrong align %#zx size %#zx", 796 align, size)); 797 KASSERT(align <= PAGE_SIZE, 798 ("malloc_domainset_aligned: align %#zx (size %#zx) too large", 799 align, size)); 800 801 /* 802 * Round the allocation size up to the next power of 2, 803 * because we can only guarantee alignment for 804 * power-of-2-sized allocations. Further increase the 805 * allocation size to align if the rounded size is less than 806 * align, since malloc zones provide alignment equal to their 807 * size. 808 */ 809 if (size == 0) 810 size = 1; 811 asize = size <= align ? align : 1UL << flsl(size - 1); 812 813 res = malloc_domainset(asize, mtp, ds, flags); 814 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, 815 ("malloc_domainset_aligned: result not aligned %p size %#zx " 816 "allocsize %#zx align %#zx", res, size, asize, align)); 817 return (res); 818 } 819 820 void * 821 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 822 { 823 824 if (WOULD_OVERFLOW(nmemb, size)) 825 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 826 827 return (malloc(size * nmemb, type, flags)); 828 } 829 830 void * 831 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, 832 struct domainset *ds, int flags) 833 { 834 835 if (WOULD_OVERFLOW(nmemb, size)) 836 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); 837 838 return (malloc_domainset(size * nmemb, type, ds, flags)); 839 } 840 841 #if defined(INVARIANTS) && !defined(KASAN) 842 static void 843 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 844 { 845 struct malloc_type **mtpp = addr; 846 847 /* 848 * Cache a pointer to the malloc_type that most recently freed 849 * this memory here. This way we know who is most likely to 850 * have stepped on it later. 851 * 852 * This code assumes that size is a multiple of 8 bytes for 853 * 64 bit machines 854 */ 855 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 856 mtpp += (size - sizeof(struct malloc_type *)) / 857 sizeof(struct malloc_type *); 858 *mtpp = mtp; 859 } 860 #endif 861 862 #ifdef MALLOC_DEBUG 863 static int 864 free_dbg(void **addrp, struct malloc_type *mtp) 865 { 866 void *addr; 867 868 addr = *addrp; 869 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 870 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 871 ("free: called with spinlock or critical section held")); 872 873 /* free(NULL, ...) does nothing */ 874 if (addr == NULL) 875 return (EJUSTRETURN); 876 877 #ifdef DEBUG_MEMGUARD 878 if (is_memguard_addr(addr)) { 879 memguard_free(addr); 880 return (EJUSTRETURN); 881 } 882 #endif 883 884 #ifdef DEBUG_REDZONE 885 redzone_check(addr); 886 *addrp = redzone_addr_ntor(addr); 887 #endif 888 889 return (0); 890 } 891 #endif 892 893 /* 894 * free: 895 * 896 * Free a block of memory allocated by malloc. 897 * 898 * This routine may not block. 899 */ 900 void 901 free(void *addr, struct malloc_type *mtp) 902 { 903 uma_zone_t zone; 904 uma_slab_t slab; 905 u_long size; 906 907 #ifdef MALLOC_DEBUG 908 if (free_dbg(&addr, mtp) != 0) 909 return; 910 #endif 911 /* free(NULL, ...) does nothing */ 912 if (addr == NULL) 913 return; 914 915 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 916 if (slab == NULL) 917 panic("free: address %p(%p) has not been allocated.\n", 918 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 919 920 if (__predict_true(!malloc_large_slab(slab))) { 921 size = zone->uz_size; 922 #if defined(INVARIANTS) && !defined(KASAN) 923 free_save_type(addr, mtp, size); 924 #endif 925 uma_zfree_arg(zone, addr, slab); 926 } else { 927 size = malloc_large_size(slab); 928 free_large(addr, size); 929 } 930 malloc_type_freed(mtp, size); 931 } 932 933 /* 934 * zfree: 935 * 936 * Zero then free a block of memory allocated by malloc. 937 * 938 * This routine may not block. 939 */ 940 void 941 zfree(void *addr, struct malloc_type *mtp) 942 { 943 uma_zone_t zone; 944 uma_slab_t slab; 945 u_long size; 946 947 #ifdef MALLOC_DEBUG 948 if (free_dbg(&addr, mtp) != 0) 949 return; 950 #endif 951 /* free(NULL, ...) does nothing */ 952 if (addr == NULL) 953 return; 954 955 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 956 if (slab == NULL) 957 panic("free: address %p(%p) has not been allocated.\n", 958 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 959 960 if (__predict_true(!malloc_large_slab(slab))) { 961 size = zone->uz_size; 962 #if defined(INVARIANTS) && !defined(KASAN) 963 free_save_type(addr, mtp, size); 964 #endif 965 kasan_mark(addr, size, size, 0); 966 explicit_bzero(addr, size); 967 uma_zfree_arg(zone, addr, slab); 968 } else { 969 size = malloc_large_size(slab); 970 kasan_mark(addr, size, size, 0); 971 explicit_bzero(addr, size); 972 free_large(addr, size); 973 } 974 malloc_type_freed(mtp, size); 975 } 976 977 /* 978 * realloc: change the size of a memory block 979 */ 980 void * 981 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 982 { 983 #ifndef DEBUG_REDZONE 984 uma_zone_t zone; 985 uma_slab_t slab; 986 #endif 987 unsigned long alloc; 988 void *newaddr; 989 990 KASSERT(mtp->ks_version == M_VERSION, 991 ("realloc: bad malloc type version")); 992 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 993 ("realloc: called with spinlock or critical section held")); 994 995 /* realloc(NULL, ...) is equivalent to malloc(...) */ 996 if (addr == NULL) 997 return (malloc(size, mtp, flags)); 998 999 /* 1000 * XXX: Should report free of old memory and alloc of new memory to 1001 * per-CPU stats. 1002 */ 1003 1004 #ifdef DEBUG_MEMGUARD 1005 if (is_memguard_addr(addr)) 1006 return (memguard_realloc(addr, size, mtp, flags)); 1007 #endif 1008 1009 #ifdef DEBUG_REDZONE 1010 alloc = redzone_get_size(addr); 1011 #else 1012 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1013 1014 /* Sanity check */ 1015 KASSERT(slab != NULL, 1016 ("realloc: address %p out of range", (void *)addr)); 1017 1018 /* Get the size of the original block */ 1019 if (!malloc_large_slab(slab)) 1020 alloc = zone->uz_size; 1021 else 1022 alloc = malloc_large_size(slab); 1023 1024 /* Reuse the original block if appropriate */ 1025 if (size <= alloc && 1026 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) { 1027 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE); 1028 return (addr); 1029 } 1030 #endif /* !DEBUG_REDZONE */ 1031 1032 /* Allocate a new, bigger (or smaller) block */ 1033 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1034 return (NULL); 1035 1036 /* 1037 * Copy over original contents. For KASAN, the redzone must be marked 1038 * valid before performing the copy. 1039 */ 1040 kasan_mark(addr, alloc, alloc, 0); 1041 bcopy(addr, newaddr, min(size, alloc)); 1042 free(addr, mtp); 1043 return (newaddr); 1044 } 1045 1046 /* 1047 * reallocf: same as realloc() but free memory on failure. 1048 */ 1049 void * 1050 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1051 { 1052 void *mem; 1053 1054 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1055 free(addr, mtp); 1056 return (mem); 1057 } 1058 1059 /* 1060 * malloc_size: returns the number of bytes allocated for a request of the 1061 * specified size 1062 */ 1063 size_t 1064 malloc_size(size_t size) 1065 { 1066 int indx; 1067 1068 if (size > kmem_zmax) 1069 return (0); 1070 if (size & KMEM_ZMASK) 1071 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1072 indx = kmemsize[size >> KMEM_ZSHIFT]; 1073 return (kmemzones[indx].kz_size); 1074 } 1075 1076 /* 1077 * malloc_usable_size: returns the usable size of the allocation. 1078 */ 1079 size_t 1080 malloc_usable_size(const void *addr) 1081 { 1082 #ifndef DEBUG_REDZONE 1083 uma_zone_t zone; 1084 uma_slab_t slab; 1085 #endif 1086 u_long size; 1087 1088 if (addr == NULL) 1089 return (0); 1090 1091 #ifdef DEBUG_MEMGUARD 1092 if (is_memguard_addr(__DECONST(void *, addr))) 1093 return (memguard_get_req_size(addr)); 1094 #endif 1095 1096 #ifdef DEBUG_REDZONE 1097 size = redzone_get_size(__DECONST(void *, addr)); 1098 #else 1099 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1100 if (slab == NULL) 1101 panic("malloc_usable_size: address %p(%p) is not allocated.\n", 1102 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1103 1104 if (!malloc_large_slab(slab)) 1105 size = zone->uz_size; 1106 else 1107 size = malloc_large_size(slab); 1108 #endif 1109 1110 /* 1111 * Unmark the redzone to avoid reports from consumers who are 1112 * (presumably) about to use the full allocation size. 1113 */ 1114 kasan_mark(addr, size, size, 0); 1115 1116 return (size); 1117 } 1118 1119 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1120 1121 /* 1122 * Initialize the kernel memory (kmem) arena. 1123 */ 1124 void 1125 kmeminit(void) 1126 { 1127 u_long mem_size; 1128 u_long tmp; 1129 1130 #ifdef VM_KMEM_SIZE 1131 if (vm_kmem_size == 0) 1132 vm_kmem_size = VM_KMEM_SIZE; 1133 #endif 1134 #ifdef VM_KMEM_SIZE_MIN 1135 if (vm_kmem_size_min == 0) 1136 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1137 #endif 1138 #ifdef VM_KMEM_SIZE_MAX 1139 if (vm_kmem_size_max == 0) 1140 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1141 #endif 1142 /* 1143 * Calculate the amount of kernel virtual address (KVA) space that is 1144 * preallocated to the kmem arena. In order to support a wide range 1145 * of machines, it is a function of the physical memory size, 1146 * specifically, 1147 * 1148 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1149 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1150 * 1151 * Every architecture must define an integral value for 1152 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1153 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1154 * ceiling on this preallocation, are optional. Typically, 1155 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1156 * a given architecture. 1157 */ 1158 mem_size = vm_cnt.v_page_count; 1159 if (mem_size <= 32768) /* delphij XXX 128MB */ 1160 kmem_zmax = PAGE_SIZE; 1161 1162 if (vm_kmem_size_scale < 1) 1163 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1164 1165 /* 1166 * Check if we should use defaults for the "vm_kmem_size" 1167 * variable: 1168 */ 1169 if (vm_kmem_size == 0) { 1170 vm_kmem_size = mem_size / vm_kmem_size_scale; 1171 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1172 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1173 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1174 vm_kmem_size = vm_kmem_size_min; 1175 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1176 vm_kmem_size = vm_kmem_size_max; 1177 } 1178 if (vm_kmem_size == 0) 1179 panic("Tune VM_KMEM_SIZE_* for the platform"); 1180 1181 /* 1182 * The amount of KVA space that is preallocated to the 1183 * kmem arena can be set statically at compile-time or manually 1184 * through the kernel environment. However, it is still limited to 1185 * twice the physical memory size, which has been sufficient to handle 1186 * the most severe cases of external fragmentation in the kmem arena. 1187 */ 1188 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1189 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1190 1191 vm_kmem_size = round_page(vm_kmem_size); 1192 1193 /* 1194 * With KASAN or KMSAN enabled, dynamically allocated kernel memory is 1195 * shadowed. Account for this when setting the UMA limit. 1196 */ 1197 #if defined(KASAN) 1198 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) / 1199 (KASAN_SHADOW_SCALE + 1); 1200 #elif defined(KMSAN) 1201 vm_kmem_size /= 3; 1202 #endif 1203 1204 #ifdef DEBUG_MEMGUARD 1205 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1206 #else 1207 tmp = vm_kmem_size; 1208 #endif 1209 uma_set_limit(tmp); 1210 1211 #ifdef DEBUG_MEMGUARD 1212 /* 1213 * Initialize MemGuard if support compiled in. MemGuard is a 1214 * replacement allocator used for detecting tamper-after-free 1215 * scenarios as they occur. It is only used for debugging. 1216 */ 1217 memguard_init(kernel_arena); 1218 #endif 1219 } 1220 1221 /* 1222 * Initialize the kernel memory allocator 1223 */ 1224 /* ARGSUSED*/ 1225 static void 1226 mallocinit(void *dummy) 1227 { 1228 int i; 1229 uint8_t indx; 1230 1231 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1232 1233 kmeminit(); 1234 1235 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1236 kmem_zmax = KMEM_ZMAX; 1237 1238 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1239 int size = kmemzones[indx].kz_size; 1240 const char *name = kmemzones[indx].kz_name; 1241 size_t align; 1242 int subzone; 1243 1244 align = UMA_ALIGN_PTR; 1245 if (powerof2(size) && size > sizeof(void *)) 1246 align = MIN(size, PAGE_SIZE) - 1; 1247 for (subzone = 0; subzone < numzones; subzone++) { 1248 kmemzones[indx].kz_zone[subzone] = 1249 uma_zcreate(name, size, 1250 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 1251 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1252 #else 1253 NULL, NULL, NULL, NULL, 1254 #endif 1255 align, UMA_ZONE_MALLOC); 1256 } 1257 for (;i <= size; i+= KMEM_ZBASE) 1258 kmemsize[i >> KMEM_ZSHIFT] = indx; 1259 } 1260 } 1261 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1262 1263 void 1264 malloc_init(void *data) 1265 { 1266 struct malloc_type_internal *mtip; 1267 struct malloc_type *mtp; 1268 1269 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1270 1271 mtp = data; 1272 if (mtp->ks_version != M_VERSION) 1273 panic("malloc_init: type %s with unsupported version %lu", 1274 mtp->ks_shortdesc, mtp->ks_version); 1275 1276 mtip = &mtp->ks_mti; 1277 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1278 mtp_set_subzone(mtp); 1279 1280 mtx_lock(&malloc_mtx); 1281 mtp->ks_next = kmemstatistics; 1282 kmemstatistics = mtp; 1283 kmemcount++; 1284 mtx_unlock(&malloc_mtx); 1285 } 1286 1287 void 1288 malloc_uninit(void *data) 1289 { 1290 struct malloc_type_internal *mtip; 1291 struct malloc_type_stats *mtsp; 1292 struct malloc_type *mtp, *temp; 1293 long temp_allocs, temp_bytes; 1294 int i; 1295 1296 mtp = data; 1297 KASSERT(mtp->ks_version == M_VERSION, 1298 ("malloc_uninit: bad malloc type version")); 1299 1300 mtx_lock(&malloc_mtx); 1301 mtip = &mtp->ks_mti; 1302 if (mtp != kmemstatistics) { 1303 for (temp = kmemstatistics; temp != NULL; 1304 temp = temp->ks_next) { 1305 if (temp->ks_next == mtp) { 1306 temp->ks_next = mtp->ks_next; 1307 break; 1308 } 1309 } 1310 KASSERT(temp, 1311 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1312 } else 1313 kmemstatistics = mtp->ks_next; 1314 kmemcount--; 1315 mtx_unlock(&malloc_mtx); 1316 1317 /* 1318 * Look for memory leaks. 1319 */ 1320 temp_allocs = temp_bytes = 0; 1321 for (i = 0; i <= mp_maxid; i++) { 1322 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1323 temp_allocs += mtsp->mts_numallocs; 1324 temp_allocs -= mtsp->mts_numfrees; 1325 temp_bytes += mtsp->mts_memalloced; 1326 temp_bytes -= mtsp->mts_memfreed; 1327 } 1328 if (temp_allocs > 0 || temp_bytes > 0) { 1329 printf("Warning: memory type %s leaked memory on destroy " 1330 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1331 temp_allocs, temp_bytes); 1332 } 1333 1334 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1335 } 1336 1337 struct malloc_type * 1338 malloc_desc2type(const char *desc) 1339 { 1340 struct malloc_type *mtp; 1341 1342 mtx_assert(&malloc_mtx, MA_OWNED); 1343 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1344 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1345 return (mtp); 1346 } 1347 return (NULL); 1348 } 1349 1350 static int 1351 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1352 { 1353 struct malloc_type_stream_header mtsh; 1354 struct malloc_type_internal *mtip; 1355 struct malloc_type_stats *mtsp, zeromts; 1356 struct malloc_type_header mth; 1357 struct malloc_type *mtp; 1358 int error, i; 1359 struct sbuf sbuf; 1360 1361 error = sysctl_wire_old_buffer(req, 0); 1362 if (error != 0) 1363 return (error); 1364 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1365 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1366 mtx_lock(&malloc_mtx); 1367 1368 bzero(&zeromts, sizeof(zeromts)); 1369 1370 /* 1371 * Insert stream header. 1372 */ 1373 bzero(&mtsh, sizeof(mtsh)); 1374 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1375 mtsh.mtsh_maxcpus = MAXCPU; 1376 mtsh.mtsh_count = kmemcount; 1377 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1378 1379 /* 1380 * Insert alternating sequence of type headers and type statistics. 1381 */ 1382 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1383 mtip = &mtp->ks_mti; 1384 1385 /* 1386 * Insert type header. 1387 */ 1388 bzero(&mth, sizeof(mth)); 1389 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1390 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1391 1392 /* 1393 * Insert type statistics for each CPU. 1394 */ 1395 for (i = 0; i <= mp_maxid; i++) { 1396 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1397 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1398 } 1399 /* 1400 * Fill in the missing CPUs. 1401 */ 1402 for (; i < MAXCPU; i++) { 1403 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1404 } 1405 } 1406 mtx_unlock(&malloc_mtx); 1407 error = sbuf_finish(&sbuf); 1408 sbuf_delete(&sbuf); 1409 return (error); 1410 } 1411 1412 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1413 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1414 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1415 "Return malloc types"); 1416 1417 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1418 "Count of kernel malloc types"); 1419 1420 void 1421 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1422 { 1423 struct malloc_type *mtp, **bufmtp; 1424 int count, i; 1425 size_t buflen; 1426 1427 mtx_lock(&malloc_mtx); 1428 restart: 1429 mtx_assert(&malloc_mtx, MA_OWNED); 1430 count = kmemcount; 1431 mtx_unlock(&malloc_mtx); 1432 1433 buflen = sizeof(struct malloc_type *) * count; 1434 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1435 1436 mtx_lock(&malloc_mtx); 1437 1438 if (count < kmemcount) { 1439 free(bufmtp, M_TEMP); 1440 goto restart; 1441 } 1442 1443 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1444 bufmtp[i] = mtp; 1445 1446 mtx_unlock(&malloc_mtx); 1447 1448 for (i = 0; i < count; i++) 1449 (func)(bufmtp[i], arg); 1450 1451 free(bufmtp, M_TEMP); 1452 } 1453 1454 #ifdef DDB 1455 static int64_t 1456 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1457 uint64_t *inuse) 1458 { 1459 const struct malloc_type_stats *mtsp; 1460 uint64_t frees, alloced, freed; 1461 int i; 1462 1463 *allocs = 0; 1464 frees = 0; 1465 alloced = 0; 1466 freed = 0; 1467 for (i = 0; i <= mp_maxid; i++) { 1468 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1469 1470 *allocs += mtsp->mts_numallocs; 1471 frees += mtsp->mts_numfrees; 1472 alloced += mtsp->mts_memalloced; 1473 freed += mtsp->mts_memfreed; 1474 } 1475 *inuse = *allocs - frees; 1476 return (alloced - freed); 1477 } 1478 1479 DB_SHOW_COMMAND_FLAGS(malloc, db_show_malloc, DB_CMD_MEMSAFE) 1480 { 1481 const char *fmt_hdr, *fmt_entry; 1482 struct malloc_type *mtp; 1483 uint64_t allocs, inuse; 1484 int64_t size; 1485 /* variables for sorting */ 1486 struct malloc_type *last_mtype, *cur_mtype; 1487 int64_t cur_size, last_size; 1488 int ties; 1489 1490 if (modif[0] == 'i') { 1491 fmt_hdr = "%s,%s,%s,%s\n"; 1492 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1493 } else { 1494 fmt_hdr = "%18s %12s %12s %12s\n"; 1495 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1496 } 1497 1498 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1499 1500 /* Select sort, largest size first. */ 1501 last_mtype = NULL; 1502 last_size = INT64_MAX; 1503 for (;;) { 1504 cur_mtype = NULL; 1505 cur_size = -1; 1506 ties = 0; 1507 1508 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1509 /* 1510 * In the case of size ties, print out mtypes 1511 * in the order they are encountered. That is, 1512 * when we encounter the most recently output 1513 * mtype, we have already printed all preceding 1514 * ties, and we must print all following ties. 1515 */ 1516 if (mtp == last_mtype) { 1517 ties = 1; 1518 continue; 1519 } 1520 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1521 &inuse); 1522 if (size > cur_size && size < last_size + ties) { 1523 cur_size = size; 1524 cur_mtype = mtp; 1525 } 1526 } 1527 if (cur_mtype == NULL) 1528 break; 1529 1530 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1531 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1532 howmany(size, 1024), allocs); 1533 1534 if (db_pager_quit) 1535 break; 1536 1537 last_mtype = cur_mtype; 1538 last_size = cur_size; 1539 } 1540 } 1541 1542 #if MALLOC_DEBUG_MAXZONES > 1 1543 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1544 { 1545 struct malloc_type_internal *mtip; 1546 struct malloc_type *mtp; 1547 u_int subzone; 1548 1549 if (!have_addr) { 1550 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1551 return; 1552 } 1553 mtp = (void *)addr; 1554 if (mtp->ks_version != M_VERSION) { 1555 db_printf("Version %lx does not match expected %x\n", 1556 mtp->ks_version, M_VERSION); 1557 return; 1558 } 1559 1560 mtip = &mtp->ks_mti; 1561 subzone = mtip->mti_zone; 1562 1563 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1564 mtip = &mtp->ks_mti; 1565 if (mtip->mti_zone != subzone) 1566 continue; 1567 db_printf("%s\n", mtp->ks_shortdesc); 1568 if (db_pager_quit) 1569 break; 1570 } 1571 } 1572 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1573 #endif /* DDB */ 1574