xref: /freebsd/sys/kern/kern_malloc.c (revision 44a8ff315e2a51614155fcbb86ab0577bb1f1152)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_vm.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/mutex.h>
46 #include <sys/vmmeter.h>
47 #include <sys/proc.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_extern.h>
53 #include <vm/pmap.h>
54 #include <vm/vm_map.h>
55 
56 #if defined(INVARIANTS) && defined(__i386__)
57 #include <machine/cpu.h>
58 #endif
59 
60 /*
61  * When realloc() is called, if the new size is sufficiently smaller than
62  * the old size, realloc() will allocate a new, smaller block to avoid
63  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
64  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
65  */
66 #ifndef REALLOC_FRACTION
67 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
68 #endif
69 
70 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
71 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
72 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
73 
74 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
75 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
76 
77 static void kmeminit __P((void *));
78 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
79 
80 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
81 
82 static struct malloc_type *kmemstatistics;
83 static struct kmembuckets bucket[MINBUCKET + 16];
84 static struct kmemusage *kmemusage;
85 static char *kmembase;
86 static char *kmemlimit;
87 
88 static struct mtx malloc_mtx;
89 
90 u_int vm_kmem_size;
91 
92 #ifdef INVARIANTS
93 /*
94  * This structure provides a set of masks to catch unaligned frees.
95  */
96 static long addrmask[] = { 0,
97 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
98 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
99 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
100 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
101 };
102 
103 /*
104  * The WEIRD_ADDR is used as known text to copy into free objects so
105  * that modifications after frees can be detected.
106  */
107 #define WEIRD_ADDR	0xdeadc0de
108 #define MAX_COPY	64
109 
110 /*
111  * Normally the first word of the structure is used to hold the list
112  * pointer for free objects. However, when running with diagnostics,
113  * we use the third and fourth fields, so as to catch modifications
114  * in the most commonly trashed first two words.
115  */
116 struct freelist {
117 	long	spare0;
118 	struct malloc_type *type;
119 	long	spare1;
120 	caddr_t	next;
121 };
122 #else /* !INVARIANTS */
123 struct freelist {
124 	caddr_t	next;
125 };
126 #endif /* INVARIANTS */
127 
128 /*
129  *	malloc:
130  *
131  *	Allocate a block of memory.
132  *
133  *	If M_NOWAIT is set, this routine will not block and return NULL if
134  *	the allocation fails.
135  */
136 void *
137 malloc(size, type, flags)
138 	unsigned long size;
139 	struct malloc_type *type;
140 	int flags;
141 {
142 	register struct kmembuckets *kbp;
143 	register struct kmemusage *kup;
144 	register struct freelist *freep;
145 	long indx, npg, allocsize;
146 	int s;
147 	caddr_t va, cp, savedlist;
148 #ifdef INVARIANTS
149 	long *end, *lp;
150 	int copysize;
151 	const char *savedtype;
152 #endif
153 	register struct malloc_type *ksp = type;
154 
155 #if defined(INVARIANTS)
156 	if (flags == M_WAITOK)
157 		KASSERT(curthread->td_intr_nesting_level == 0,
158 		   ("malloc(M_WAITOK) in interrupt context"));
159 #endif
160 	indx = BUCKETINDX(size);
161 	kbp = &bucket[indx];
162 	s = splmem();
163 	mtx_lock(&malloc_mtx);
164 	while (ksp->ks_memuse >= ksp->ks_limit) {
165 		if (flags & M_NOWAIT) {
166 			splx(s);
167 			mtx_unlock(&malloc_mtx);
168 			return ((void *) NULL);
169 		}
170 		if (ksp->ks_limblocks < 65535)
171 			ksp->ks_limblocks++;
172 		msleep((caddr_t)ksp, &malloc_mtx, PSWP+2, type->ks_shortdesc,
173 		    0);
174 	}
175 	ksp->ks_size |= 1 << indx;
176 #ifdef INVARIANTS
177 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
178 #endif
179 	if (kbp->kb_next == NULL) {
180 		kbp->kb_last = NULL;
181 		if (size > MAXALLOCSAVE)
182 			allocsize = roundup(size, PAGE_SIZE);
183 		else
184 			allocsize = 1 << indx;
185 		npg = btoc(allocsize);
186 
187 		mtx_unlock(&malloc_mtx);
188 		va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
189 
190 		if (va == NULL) {
191 			splx(s);
192 			return ((void *) NULL);
193 		}
194 		/*
195 		 * Enter malloc_mtx after the error check to avoid having to
196 		 * immediately exit it again if there is an error.
197 		 */
198 		mtx_lock(&malloc_mtx);
199 
200 		kbp->kb_total += kbp->kb_elmpercl;
201 		kup = btokup(va);
202 		kup->ku_indx = indx;
203 		if (allocsize > MAXALLOCSAVE) {
204 			if (npg > 65535)
205 				panic("malloc: allocation too large");
206 			kup->ku_pagecnt = npg;
207 			ksp->ks_memuse += allocsize;
208 			goto out;
209 		}
210 		kup->ku_freecnt = kbp->kb_elmpercl;
211 		kbp->kb_totalfree += kbp->kb_elmpercl;
212 		/*
213 		 * Just in case we blocked while allocating memory,
214 		 * and someone else also allocated memory for this
215 		 * bucket, don't assume the list is still empty.
216 		 */
217 		savedlist = kbp->kb_next;
218 		kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
219 		for (;;) {
220 			freep = (struct freelist *)cp;
221 #ifdef INVARIANTS
222 			/*
223 			 * Copy in known text to detect modification
224 			 * after freeing.
225 			 */
226 			end = (long *)&cp[copysize];
227 			for (lp = (long *)cp; lp < end; lp++)
228 				*lp = WEIRD_ADDR;
229 			freep->type = M_FREE;
230 #endif /* INVARIANTS */
231 			if (cp <= va)
232 				break;
233 			cp -= allocsize;
234 			freep->next = cp;
235 		}
236 		freep->next = savedlist;
237 		if (kbp->kb_last == NULL)
238 			kbp->kb_last = (caddr_t)freep;
239 	}
240 	va = kbp->kb_next;
241 	kbp->kb_next = ((struct freelist *)va)->next;
242 #ifdef INVARIANTS
243 	freep = (struct freelist *)va;
244 	savedtype = (const char *) freep->type->ks_shortdesc;
245 	freep->type = (struct malloc_type *)WEIRD_ADDR;
246 	if ((intptr_t)(void *)&freep->next & 0x2)
247 		freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
248 	else
249 		freep->next = (caddr_t)WEIRD_ADDR;
250 	end = (long *)&va[copysize];
251 	for (lp = (long *)va; lp < end; lp++) {
252 		if (*lp == WEIRD_ADDR)
253 			continue;
254 		printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
255 			"Data modified on freelist: word",
256 			(long)(lp - (long *)va), (void *)va, size,
257 			"previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
258 		break;
259 	}
260 	freep->spare0 = 0;
261 #endif /* INVARIANTS */
262 	kup = btokup(va);
263 	if (kup->ku_indx != indx)
264 		panic("malloc: wrong bucket");
265 	if (kup->ku_freecnt == 0)
266 		panic("malloc: lost data");
267 	kup->ku_freecnt--;
268 	kbp->kb_totalfree--;
269 	ksp->ks_memuse += 1 << indx;
270 out:
271 	kbp->kb_calls++;
272 	ksp->ks_inuse++;
273 	ksp->ks_calls++;
274 	if (ksp->ks_memuse > ksp->ks_maxused)
275 		ksp->ks_maxused = ksp->ks_memuse;
276 	splx(s);
277 	mtx_unlock(&malloc_mtx);
278 	/* XXX: Do idle pre-zeroing.  */
279 	if (va != NULL && (flags & M_ZERO))
280 		bzero(va, size);
281 	return ((void *) va);
282 }
283 
284 /*
285  *	free:
286  *
287  *	Free a block of memory allocated by malloc.
288  *
289  *	This routine may not block.
290  */
291 void
292 free(addr, type)
293 	void *addr;
294 	struct malloc_type *type;
295 {
296 	register struct kmembuckets *kbp;
297 	register struct kmemusage *kup;
298 	register struct freelist *freep;
299 	long size;
300 	int s;
301 #ifdef INVARIANTS
302 	struct freelist *fp;
303 	long *end, *lp, alloc, copysize;
304 #endif
305 	register struct malloc_type *ksp = type;
306 
307 	/* free(NULL, ...) does nothing */
308 	if (addr == NULL)
309 		return;
310 
311 	KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
312 	    ("free: address %p out of range", (void *)addr));
313 	kup = btokup(addr);
314 	size = 1 << kup->ku_indx;
315 	kbp = &bucket[kup->ku_indx];
316 	s = splmem();
317 	mtx_lock(&malloc_mtx);
318 #ifdef INVARIANTS
319 	/*
320 	 * Check for returns of data that do not point to the
321 	 * beginning of the allocation.
322 	 */
323 	if (size > PAGE_SIZE)
324 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
325 	else
326 		alloc = addrmask[kup->ku_indx];
327 	if (((uintptr_t)(void *)addr & alloc) != 0)
328 		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
329 		    (void *)addr, size, type->ks_shortdesc, alloc);
330 #endif /* INVARIANTS */
331 	if (size > MAXALLOCSAVE) {
332 		mtx_unlock(&malloc_mtx);
333 		kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
334 		mtx_lock(&malloc_mtx);
335 
336 		size = kup->ku_pagecnt << PAGE_SHIFT;
337 		ksp->ks_memuse -= size;
338 		kup->ku_indx = 0;
339 		kup->ku_pagecnt = 0;
340 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
341 		    ksp->ks_memuse < ksp->ks_limit)
342 			wakeup((caddr_t)ksp);
343 		ksp->ks_inuse--;
344 		kbp->kb_total -= 1;
345 		splx(s);
346 		mtx_unlock(&malloc_mtx);
347 		return;
348 	}
349 	freep = (struct freelist *)addr;
350 #ifdef INVARIANTS
351 	/*
352 	 * Check for multiple frees. Use a quick check to see if
353 	 * it looks free before laboriously searching the freelist.
354 	 */
355 	if (freep->spare0 == WEIRD_ADDR) {
356 		fp = (struct freelist *)kbp->kb_next;
357 		while (fp) {
358 			if (fp->spare0 != WEIRD_ADDR)
359 				panic("free: free item %p modified", fp);
360 			else if (addr == (caddr_t)fp)
361 				panic("free: multiple freed item %p", addr);
362 			fp = (struct freelist *)fp->next;
363 		}
364 	}
365 	/*
366 	 * Copy in known text to detect modification after freeing
367 	 * and to make it look free. Also, save the type being freed
368 	 * so we can list likely culprit if modification is detected
369 	 * when the object is reallocated.
370 	 */
371 	copysize = size < MAX_COPY ? size : MAX_COPY;
372 	end = (long *)&((caddr_t)addr)[copysize];
373 	for (lp = (long *)addr; lp < end; lp++)
374 		*lp = WEIRD_ADDR;
375 	freep->type = type;
376 #endif /* INVARIANTS */
377 	kup->ku_freecnt++;
378 	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
379 		if (kup->ku_freecnt > kbp->kb_elmpercl)
380 			panic("free: multiple frees");
381 		else if (kbp->kb_totalfree > kbp->kb_highwat)
382 			kbp->kb_couldfree++;
383 	}
384 	kbp->kb_totalfree++;
385 	ksp->ks_memuse -= size;
386 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
387 	    ksp->ks_memuse < ksp->ks_limit)
388 		wakeup((caddr_t)ksp);
389 	ksp->ks_inuse--;
390 #ifdef OLD_MALLOC_MEMORY_POLICY
391 	if (kbp->kb_next == NULL)
392 		kbp->kb_next = addr;
393 	else
394 		((struct freelist *)kbp->kb_last)->next = addr;
395 	freep->next = NULL;
396 	kbp->kb_last = addr;
397 #else
398 	/*
399 	 * Return memory to the head of the queue for quick reuse.  This
400 	 * can improve performance by improving the probability of the
401 	 * item being in the cache when it is reused.
402 	 */
403 	if (kbp->kb_next == NULL) {
404 		kbp->kb_next = addr;
405 		kbp->kb_last = addr;
406 		freep->next = NULL;
407 	} else {
408 		freep->next = kbp->kb_next;
409 		kbp->kb_next = addr;
410 	}
411 #endif
412 	splx(s);
413 	mtx_unlock(&malloc_mtx);
414 }
415 
416 /*
417  *	realloc: change the size of a memory block
418  */
419 void *
420 realloc(addr, size, type, flags)
421 	void *addr;
422 	unsigned long size;
423 	struct malloc_type *type;
424 	int flags;
425 {
426 	struct kmemusage *kup;
427 	unsigned long alloc;
428 	void *newaddr;
429 
430 	/* realloc(NULL, ...) is equivalent to malloc(...) */
431 	if (addr == NULL)
432 		return (malloc(size, type, flags));
433 
434 	/* Sanity check */
435 	KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
436 	    ("realloc: address %p out of range", (void *)addr));
437 
438 	/* Get the size of the original block */
439 	kup = btokup(addr);
440 	alloc = 1 << kup->ku_indx;
441 	if (alloc > MAXALLOCSAVE)
442 		alloc = kup->ku_pagecnt << PAGE_SHIFT;
443 
444 	/* Reuse the original block if appropriate */
445 	if (size <= alloc
446 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
447 		return (addr);
448 
449 	/* Allocate a new, bigger (or smaller) block */
450 	if ((newaddr = malloc(size, type, flags)) == NULL)
451 		return (NULL);
452 
453 	/* Copy over original contents */
454 	bcopy(addr, newaddr, min(size, alloc));
455 	free(addr, type);
456 	return (newaddr);
457 }
458 
459 /*
460  *	reallocf: same as realloc() but free memory on failure.
461  */
462 void *
463 reallocf(addr, size, type, flags)
464 	void *addr;
465 	unsigned long size;
466 	struct malloc_type *type;
467 	int flags;
468 {
469 	void *mem;
470 
471 	if ((mem = realloc(addr, size, type, flags)) == NULL)
472 		free(addr, type);
473 	return (mem);
474 }
475 
476 /*
477  * Initialize the kernel memory allocator
478  */
479 /* ARGSUSED*/
480 static void
481 kmeminit(dummy)
482 	void *dummy;
483 {
484 	register long indx;
485 	u_long npg;
486 	u_long mem_size;
487 
488 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
489 #error "kmeminit: MAXALLOCSAVE not power of 2"
490 #endif
491 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
492 #error "kmeminit: MAXALLOCSAVE too big"
493 #endif
494 #if	(MAXALLOCSAVE < PAGE_SIZE)
495 #error "kmeminit: MAXALLOCSAVE too small"
496 #endif
497 
498 	mtx_init(&malloc_mtx, "malloc", MTX_DEF);
499 
500 	/*
501 	 * Try to auto-tune the kernel memory size, so that it is
502 	 * more applicable for a wider range of machine sizes.
503 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
504 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
505 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
506 	 * available, and on an X86 with a total KVA space of 256MB,
507 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
508 	 *
509 	 * Note that the kmem_map is also used by the zone allocator,
510 	 * so make sure that there is enough space.
511 	 */
512 	vm_kmem_size = VM_KMEM_SIZE;
513 	mem_size = cnt.v_page_count * PAGE_SIZE;
514 
515 #if defined(VM_KMEM_SIZE_SCALE)
516 	if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
517 		vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
518 #endif
519 
520 #if defined(VM_KMEM_SIZE_MAX)
521 	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
522 		vm_kmem_size = VM_KMEM_SIZE_MAX;
523 #endif
524 
525 	/* Allow final override from the kernel environment */
526 	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
527 
528 	/*
529 	 * Limit kmem virtual size to twice the physical memory.
530 	 * This allows for kmem map sparseness, but limits the size
531 	 * to something sane. Be careful to not overflow the 32bit
532 	 * ints while doing the check.
533 	 */
534 	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
535 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
536 
537 	/*
538 	 * In mbuf_init(), we set up submaps for mbufs and clusters, in which
539 	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
540 	 * respectively. Mathematically, this means that what we do here may
541 	 * amount to slightly more address space than we need for the submaps,
542 	 * but it never hurts to have an extra page in kmem_map.
543 	 */
544 	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt *
545 	    sizeof(u_int) + vm_kmem_size) / PAGE_SIZE;
546 
547 	kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
548 		(vm_size_t)(npg * sizeof(struct kmemusage)));
549 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
550 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
551 	kmem_map->system_map = 1;
552 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
553 		if (1 << indx >= PAGE_SIZE)
554 			bucket[indx].kb_elmpercl = 1;
555 		else
556 			bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
557 		bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
558 	}
559 }
560 
561 void
562 malloc_init(data)
563 	void *data;
564 {
565 	struct malloc_type *type = (struct malloc_type *)data;
566 
567 	if (type->ks_magic != M_MAGIC)
568 		panic("malloc type lacks magic");
569 
570 	if (type->ks_limit != 0)
571 		return;
572 
573 	if (cnt.v_page_count == 0)
574 		panic("malloc_init not allowed before vm init");
575 
576 	/*
577 	 * The default limits for each malloc region is 1/2 of the
578 	 * malloc portion of the kmem map size.
579 	 */
580 	type->ks_limit = vm_kmem_size / 2;
581 	type->ks_next = kmemstatistics;
582 	kmemstatistics = type;
583 }
584 
585 void
586 malloc_uninit(data)
587 	void *data;
588 {
589 	struct malloc_type *type = (struct malloc_type *)data;
590 	struct malloc_type *t;
591 #ifdef INVARIANTS
592 	struct kmembuckets *kbp;
593 	struct freelist *freep;
594 	long indx;
595 	int s;
596 #endif
597 
598 	if (type->ks_magic != M_MAGIC)
599 		panic("malloc type lacks magic");
600 
601 	if (cnt.v_page_count == 0)
602 		panic("malloc_uninit not allowed before vm init");
603 
604 	if (type->ks_limit == 0)
605 		panic("malloc_uninit on uninitialized type");
606 
607 #ifdef INVARIANTS
608 	s = splmem();
609 	mtx_lock(&malloc_mtx);
610 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
611 		kbp = bucket + indx;
612 		freep = (struct freelist*)kbp->kb_next;
613 		while (freep) {
614 			if (freep->type == type)
615 				freep->type = M_FREE;
616 			freep = (struct freelist*)freep->next;
617 		}
618 	}
619 	splx(s);
620 	mtx_unlock(&malloc_mtx);
621 
622 	if (type->ks_memuse != 0)
623 		printf("malloc_uninit: %ld bytes of '%s' still allocated\n",
624 		    type->ks_memuse, type->ks_shortdesc);
625 #endif
626 
627 	if (type == kmemstatistics)
628 		kmemstatistics = type->ks_next;
629 	else {
630 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
631 			if (t->ks_next == type) {
632 				t->ks_next = type->ks_next;
633 				break;
634 			}
635 		}
636 	}
637 	type->ks_next = NULL;
638 	type->ks_limit = 0;
639 }
640