1 /* 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 34 * $Id: kern_malloc.c,v 1.49 1998/11/10 08:46:24 peter Exp $ 35 */ 36 37 #include "opt_vm.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #define MALLOC_INSTANTIATE 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/vmmeter.h> 46 #include <sys/lock.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_extern.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 55 static void kmeminit __P((void *)); 56 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 57 58 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 59 60 static struct malloc_type *kmemstatistics; 61 static struct kmembuckets bucket[MINBUCKET + 16]; 62 static struct kmemusage *kmemusage; 63 static char *kmembase; 64 static char *kmemlimit; 65 static int vm_kmem_size; 66 67 #if defined(INVARIANTS) 68 /* 69 * This structure provides a set of masks to catch unaligned frees. 70 */ 71 static long addrmask[] = { 0, 72 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 73 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 74 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 75 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 76 }; 77 78 /* 79 * The WEIRD_ADDR is used as known text to copy into free objects so 80 * that modifications after frees can be detected. 81 */ 82 #define WEIRD_ADDR 0xdeadc0de 83 #define MAX_COPY 64 84 85 /* 86 * Normally the first word of the structure is used to hold the list 87 * pointer for free objects. However, when running with diagnostics, 88 * we use the third and fourth fields, so as to catch modifications 89 * in the most commonly trashed first two words. 90 */ 91 struct freelist { 92 long spare0; 93 struct malloc_type *type; 94 long spare1; 95 caddr_t next; 96 }; 97 #else /* !INVARIANTS */ 98 struct freelist { 99 caddr_t next; 100 }; 101 #endif /* INVARIANTS */ 102 103 /* 104 * Allocate a block of memory 105 */ 106 void * 107 malloc(size, type, flags) 108 unsigned long size; 109 struct malloc_type *type; 110 int flags; 111 { 112 register struct kmembuckets *kbp; 113 register struct kmemusage *kup; 114 register struct freelist *freep; 115 long indx, npg, allocsize; 116 int s; 117 caddr_t va, cp, savedlist; 118 #ifdef INVARIANTS 119 long *end, *lp; 120 int copysize; 121 char *savedtype; 122 #endif 123 register struct malloc_type *ksp = type; 124 125 if (!type->ks_next) 126 malloc_init(type); 127 128 indx = BUCKETINDX(size); 129 kbp = &bucket[indx]; 130 s = splmem(); 131 while (ksp->ks_memuse >= ksp->ks_limit) { 132 if (flags & M_NOWAIT) { 133 splx(s); 134 return ((void *) NULL); 135 } 136 if (ksp->ks_limblocks < 65535) 137 ksp->ks_limblocks++; 138 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0); 139 } 140 ksp->ks_size |= 1 << indx; 141 #ifdef INVARIANTS 142 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; 143 #endif 144 if (kbp->kb_next == NULL) { 145 kbp->kb_last = NULL; 146 if (size > MAXALLOCSAVE) 147 allocsize = roundup(size, PAGE_SIZE); 148 else 149 allocsize = 1 << indx; 150 npg = btoc(allocsize); 151 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags); 152 if (va == NULL) { 153 splx(s); 154 return ((void *) NULL); 155 } 156 kbp->kb_total += kbp->kb_elmpercl; 157 kup = btokup(va); 158 kup->ku_indx = indx; 159 if (allocsize > MAXALLOCSAVE) { 160 if (npg > 65535) 161 panic("malloc: allocation too large"); 162 kup->ku_pagecnt = npg; 163 ksp->ks_memuse += allocsize; 164 goto out; 165 } 166 kup->ku_freecnt = kbp->kb_elmpercl; 167 kbp->kb_totalfree += kbp->kb_elmpercl; 168 /* 169 * Just in case we blocked while allocating memory, 170 * and someone else also allocated memory for this 171 * bucket, don't assume the list is still empty. 172 */ 173 savedlist = kbp->kb_next; 174 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize; 175 for (;;) { 176 freep = (struct freelist *)cp; 177 #ifdef INVARIANTS 178 /* 179 * Copy in known text to detect modification 180 * after freeing. 181 */ 182 end = (long *)&cp[copysize]; 183 for (lp = (long *)cp; lp < end; lp++) 184 *lp = WEIRD_ADDR; 185 freep->type = M_FREE; 186 #endif /* INVARIANTS */ 187 if (cp <= va) 188 break; 189 cp -= allocsize; 190 freep->next = cp; 191 } 192 freep->next = savedlist; 193 if (kbp->kb_last == NULL) 194 kbp->kb_last = (caddr_t)freep; 195 } 196 va = kbp->kb_next; 197 kbp->kb_next = ((struct freelist *)va)->next; 198 #ifdef INVARIANTS 199 freep = (struct freelist *)va; 200 savedtype = (char *) type->ks_shortdesc; 201 #if BYTE_ORDER == BIG_ENDIAN 202 freep->type = (struct malloc_type *)WEIRD_ADDR >> 16; 203 #endif 204 #if BYTE_ORDER == LITTLE_ENDIAN 205 freep->type = (struct malloc_type *)WEIRD_ADDR; 206 #endif 207 if ((intptr_t)(void *)&freep->next & 0x2) 208 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16)); 209 else 210 freep->next = (caddr_t)WEIRD_ADDR; 211 end = (long *)&va[copysize]; 212 for (lp = (long *)va; lp < end; lp++) { 213 if (*lp == WEIRD_ADDR) 214 continue; 215 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n", 216 "Data modified on freelist: word", 217 (long)(lp - (long *)va), (void *)va, size, 218 "previous type", savedtype, *lp, (u_long)WEIRD_ADDR); 219 break; 220 } 221 freep->spare0 = 0; 222 #endif /* INVARIANTS */ 223 kup = btokup(va); 224 if (kup->ku_indx != indx) 225 panic("malloc: wrong bucket"); 226 if (kup->ku_freecnt == 0) 227 panic("malloc: lost data"); 228 kup->ku_freecnt--; 229 kbp->kb_totalfree--; 230 ksp->ks_memuse += 1 << indx; 231 out: 232 kbp->kb_calls++; 233 ksp->ks_inuse++; 234 ksp->ks_calls++; 235 if (ksp->ks_memuse > ksp->ks_maxused) 236 ksp->ks_maxused = ksp->ks_memuse; 237 splx(s); 238 return ((void *) va); 239 } 240 241 /* 242 * Free a block of memory allocated by malloc. 243 */ 244 void 245 free(addr, type) 246 void *addr; 247 struct malloc_type *type; 248 { 249 register struct kmembuckets *kbp; 250 register struct kmemusage *kup; 251 register struct freelist *freep; 252 long size; 253 int s; 254 #ifdef INVARIANTS 255 struct freelist *fp; 256 long *end, *lp, alloc, copysize; 257 #endif 258 register struct malloc_type *ksp = type; 259 260 if (!type->ks_next) 261 panic("freeing with unknown type (%s)", type->ks_shortdesc); 262 263 KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit, 264 ("free: address %p out of range", (void *)addr)); 265 kup = btokup(addr); 266 size = 1 << kup->ku_indx; 267 kbp = &bucket[kup->ku_indx]; 268 s = splmem(); 269 #ifdef INVARIANTS 270 /* 271 * Check for returns of data that do not point to the 272 * beginning of the allocation. 273 */ 274 if (size > PAGE_SIZE) 275 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 276 else 277 alloc = addrmask[kup->ku_indx]; 278 if (((uintptr_t)(void *)addr & alloc) != 0) 279 panic("free: unaligned addr %p, size %ld, type %s, mask %ld", 280 (void *)addr, size, type->ks_shortdesc, alloc); 281 #endif /* INVARIANTS */ 282 if (size > MAXALLOCSAVE) { 283 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt)); 284 size = kup->ku_pagecnt << PAGE_SHIFT; 285 ksp->ks_memuse -= size; 286 kup->ku_indx = 0; 287 kup->ku_pagecnt = 0; 288 if (ksp->ks_memuse + size >= ksp->ks_limit && 289 ksp->ks_memuse < ksp->ks_limit) 290 wakeup((caddr_t)ksp); 291 ksp->ks_inuse--; 292 kbp->kb_total -= 1; 293 splx(s); 294 return; 295 } 296 freep = (struct freelist *)addr; 297 #ifdef INVARIANTS 298 /* 299 * Check for multiple frees. Use a quick check to see if 300 * it looks free before laboriously searching the freelist. 301 */ 302 if (freep->spare0 == WEIRD_ADDR) { 303 fp = (struct freelist *)kbp->kb_next; 304 while (fp) { 305 if (fp->spare0 != WEIRD_ADDR) { 306 panic("free: free item %p modified", fp); 307 } else if (addr == (caddr_t)fp) { 308 panic("free: multiple freed item %p", addr); 309 } 310 fp = (struct freelist *)fp->next; 311 } 312 } 313 /* 314 * Copy in known text to detect modification after freeing 315 * and to make it look free. Also, save the type being freed 316 * so we can list likely culprit if modification is detected 317 * when the object is reallocated. 318 */ 319 copysize = size < MAX_COPY ? size : MAX_COPY; 320 end = (long *)&((caddr_t)addr)[copysize]; 321 for (lp = (long *)addr; lp < end; lp++) 322 *lp = WEIRD_ADDR; 323 freep->type = type; 324 #endif /* INVARIANTS */ 325 kup->ku_freecnt++; 326 if (kup->ku_freecnt >= kbp->kb_elmpercl) 327 if (kup->ku_freecnt > kbp->kb_elmpercl) 328 panic("free: multiple frees"); 329 else if (kbp->kb_totalfree > kbp->kb_highwat) 330 kbp->kb_couldfree++; 331 kbp->kb_totalfree++; 332 ksp->ks_memuse -= size; 333 if (ksp->ks_memuse + size >= ksp->ks_limit && 334 ksp->ks_memuse < ksp->ks_limit) 335 wakeup((caddr_t)ksp); 336 ksp->ks_inuse--; 337 #ifdef OLD_MALLOC_MEMORY_POLICY 338 if (kbp->kb_next == NULL) 339 kbp->kb_next = addr; 340 else 341 ((struct freelist *)kbp->kb_last)->next = addr; 342 freep->next = NULL; 343 kbp->kb_last = addr; 344 #else 345 /* 346 * Return memory to the head of the queue for quick reuse. This 347 * can improve performance by improving the probability of the 348 * item being in the cache when it is reused. 349 */ 350 if (kbp->kb_next == NULL) { 351 kbp->kb_next = addr; 352 kbp->kb_last = addr; 353 freep->next = NULL; 354 } else { 355 freep->next = kbp->kb_next; 356 kbp->kb_next = addr; 357 } 358 #endif 359 splx(s); 360 } 361 362 /* 363 * Initialize the kernel memory allocator 364 */ 365 /* ARGSUSED*/ 366 static void 367 kmeminit(dummy) 368 void *dummy; 369 { 370 register long indx; 371 int npg; 372 int mem_size; 373 374 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) 375 #error "kmeminit: MAXALLOCSAVE not power of 2" 376 #endif 377 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) 378 #error "kmeminit: MAXALLOCSAVE too big" 379 #endif 380 #if (MAXALLOCSAVE < PAGE_SIZE) 381 #error "kmeminit: MAXALLOCSAVE too small" 382 #endif 383 384 /* 385 * Try to auto-tune the kernel memory size, so that it is 386 * more applicable for a wider range of machine sizes. 387 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 388 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 389 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 390 * available, and on an X86 with a total KVA space of 256MB, 391 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 392 * 393 * Note that the kmem_map is also used by the zone allocator, 394 * so make sure that there is enough space. 395 */ 396 vm_kmem_size = VM_KMEM_SIZE; 397 mem_size = cnt.v_page_count * PAGE_SIZE; 398 399 #if defined(VM_KMEM_SIZE_SCALE) 400 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size) 401 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; 402 #endif 403 404 #if defined(VM_KMEM_SIZE_MAX) 405 if (vm_kmem_size >= VM_KMEM_SIZE_MAX) 406 vm_kmem_size = VM_KMEM_SIZE_MAX; 407 #endif 408 409 if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE)) 410 vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE); 411 412 npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size) 413 / PAGE_SIZE; 414 415 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map, 416 (vm_size_t)(npg * sizeof(struct kmemusage))); 417 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 418 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); 419 kmem_map->system_map = 1; 420 for (indx = 0; indx < MINBUCKET + 16; indx++) { 421 if (1 << indx >= PAGE_SIZE) 422 bucket[indx].kb_elmpercl = 1; 423 else 424 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 425 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 426 } 427 } 428 429 void 430 malloc_init(data) 431 void *data; 432 { 433 struct malloc_type *type = (struct malloc_type *)data; 434 435 if (type->ks_magic != M_MAGIC) 436 panic("malloc type lacks magic"); 437 438 if (type->ks_next) 439 return; 440 441 if (cnt.v_page_count == 0) 442 panic("malloc_init not allowed before vm init"); 443 444 /* 445 * The default limits for each malloc region is 1/2 of the 446 * malloc portion of the kmem map size. 447 */ 448 type->ks_limit = vm_kmem_size / 2; 449 type->ks_next = kmemstatistics; 450 kmemstatistics = type; 451 } 452 453 void 454 malloc_uninit(data) 455 void *data; 456 { 457 struct malloc_type *type = (struct malloc_type *)data; 458 struct malloc_type *t; 459 460 if (type->ks_magic != M_MAGIC) 461 panic("malloc type lacks magic"); 462 463 if (cnt.v_page_count == 0) 464 panic("malloc_uninit not allowed before vm init"); 465 466 if (type == kmemstatistics) 467 kmemstatistics = type->ks_next; 468 else { 469 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 470 if (t->ks_next == type) { 471 t->ks_next = type->ks_next; 472 break; 473 } 474 } 475 } 476 } 477