1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/kdb.h> 57 #include <sys/kernel.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mutex.h> 61 #include <sys/vmmeter.h> 62 #include <sys/proc.h> 63 #include <sys/sbuf.h> 64 #include <sys/smp.h> 65 #include <sys/sysctl.h> 66 #include <sys/time.h> 67 #include <sys/vmem.h> 68 #ifdef EPOCH_TRACE 69 #include <sys/epoch.h> 70 #endif 71 72 #include <vm/vm.h> 73 #include <vm/pmap.h> 74 #include <vm/vm_domainset.h> 75 #include <vm/vm_pageout.h> 76 #include <vm/vm_param.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_extern.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_page.h> 81 #include <vm/uma.h> 82 #include <vm/uma_int.h> 83 #include <vm/uma_dbg.h> 84 85 #ifdef DEBUG_MEMGUARD 86 #include <vm/memguard.h> 87 #endif 88 #ifdef DEBUG_REDZONE 89 #include <vm/redzone.h> 90 #endif 91 92 #if defined(INVARIANTS) && defined(__i386__) 93 #include <machine/cpu.h> 94 #endif 95 96 #include <ddb/ddb.h> 97 98 #ifdef KDTRACE_HOOKS 99 #include <sys/dtrace_bsd.h> 100 101 bool __read_frequently dtrace_malloc_enabled; 102 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 103 #endif 104 105 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 106 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 107 #define MALLOC_DEBUG 1 108 #endif 109 110 /* 111 * When realloc() is called, if the new size is sufficiently smaller than 112 * the old size, realloc() will allocate a new, smaller block to avoid 113 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 114 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 115 */ 116 #ifndef REALLOC_FRACTION 117 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 118 #endif 119 120 /* 121 * Centrally define some common malloc types. 122 */ 123 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 124 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 125 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 126 127 static struct malloc_type *kmemstatistics; 128 static int kmemcount; 129 130 #define KMEM_ZSHIFT 4 131 #define KMEM_ZBASE 16 132 #define KMEM_ZMASK (KMEM_ZBASE - 1) 133 134 #define KMEM_ZMAX 65536 135 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 136 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 137 138 #ifndef MALLOC_DEBUG_MAXZONES 139 #define MALLOC_DEBUG_MAXZONES 1 140 #endif 141 static int numzones = MALLOC_DEBUG_MAXZONES; 142 143 /* 144 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 145 * of various sizes. 146 * 147 * XXX: The comment here used to read "These won't be powers of two for 148 * long." It's possible that a significant amount of wasted memory could be 149 * recovered by tuning the sizes of these buckets. 150 */ 151 struct { 152 int kz_size; 153 char *kz_name; 154 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 155 } kmemzones[] = { 156 {16, "16", }, 157 {32, "32", }, 158 {64, "64", }, 159 {128, "128", }, 160 {256, "256", }, 161 {512, "512", }, 162 {1024, "1024", }, 163 {2048, "2048", }, 164 {4096, "4096", }, 165 {8192, "8192", }, 166 {16384, "16384", }, 167 {32768, "32768", }, 168 {65536, "65536", }, 169 {0, NULL}, 170 }; 171 172 /* 173 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 174 * types are described by a data structure passed by the declaring code, but 175 * the malloc(9) implementation has its own data structure describing the 176 * type and statistics. This permits the malloc(9)-internal data structures 177 * to be modified without breaking binary-compiled kernel modules that 178 * declare malloc types. 179 */ 180 static uma_zone_t mt_zone; 181 static uma_zone_t mt_stats_zone; 182 183 u_long vm_kmem_size; 184 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 185 "Size of kernel memory"); 186 187 static u_long kmem_zmax = KMEM_ZMAX; 188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 189 "Maximum allocation size that malloc(9) would use UMA as backend"); 190 191 static u_long vm_kmem_size_min; 192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 193 "Minimum size of kernel memory"); 194 195 static u_long vm_kmem_size_max; 196 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 197 "Maximum size of kernel memory"); 198 199 static u_int vm_kmem_size_scale; 200 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 201 "Scale factor for kernel memory size"); 202 203 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 204 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 205 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 206 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 207 208 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 209 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 210 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 211 sysctl_kmem_map_free, "LU", "Free space in kmem"); 212 213 /* 214 * The malloc_mtx protects the kmemstatistics linked list. 215 */ 216 struct mtx malloc_mtx; 217 218 #ifdef MALLOC_PROFILE 219 uint64_t krequests[KMEM_ZSIZE + 1]; 220 221 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 222 #endif 223 224 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 225 226 /* 227 * time_uptime of the last malloc(9) failure (induced or real). 228 */ 229 static time_t t_malloc_fail; 230 231 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 232 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 233 "Kernel malloc debugging options"); 234 #endif 235 236 /* 237 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 238 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 239 */ 240 #ifdef MALLOC_MAKE_FAILURES 241 static int malloc_failure_rate; 242 static int malloc_nowait_count; 243 static int malloc_failure_count; 244 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 245 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 246 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 247 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 248 #endif 249 250 static int 251 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 252 { 253 u_long size; 254 255 size = uma_size(); 256 return (sysctl_handle_long(oidp, &size, 0, req)); 257 } 258 259 static int 260 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 261 { 262 u_long size, limit; 263 264 /* The sysctl is unsigned, implement as a saturation value. */ 265 size = uma_size(); 266 limit = uma_limit(); 267 if (size > limit) 268 size = 0; 269 else 270 size = limit - size; 271 return (sysctl_handle_long(oidp, &size, 0, req)); 272 } 273 274 /* 275 * malloc(9) uma zone separation -- sub-page buffer overruns in one 276 * malloc type will affect only a subset of other malloc types. 277 */ 278 #if MALLOC_DEBUG_MAXZONES > 1 279 static void 280 tunable_set_numzones(void) 281 { 282 283 TUNABLE_INT_FETCH("debug.malloc.numzones", 284 &numzones); 285 286 /* Sanity check the number of malloc uma zones. */ 287 if (numzones <= 0) 288 numzones = 1; 289 if (numzones > MALLOC_DEBUG_MAXZONES) 290 numzones = MALLOC_DEBUG_MAXZONES; 291 } 292 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 293 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 294 &numzones, 0, "Number of malloc uma subzones"); 295 296 /* 297 * Any number that changes regularly is an okay choice for the 298 * offset. Build numbers are pretty good of you have them. 299 */ 300 static u_int zone_offset = __FreeBSD_version; 301 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 302 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 303 &zone_offset, 0, "Separate malloc types by examining the " 304 "Nth character in the malloc type short description."); 305 306 static void 307 mtp_set_subzone(struct malloc_type *mtp) 308 { 309 struct malloc_type_internal *mtip; 310 const char *desc; 311 size_t len; 312 u_int val; 313 314 mtip = mtp->ks_handle; 315 desc = mtp->ks_shortdesc; 316 if (desc == NULL || (len = strlen(desc)) == 0) 317 val = 0; 318 else 319 val = desc[zone_offset % len]; 320 mtip->mti_zone = (val % numzones); 321 } 322 323 static inline u_int 324 mtp_get_subzone(struct malloc_type *mtp) 325 { 326 struct malloc_type_internal *mtip; 327 328 mtip = mtp->ks_handle; 329 330 KASSERT(mtip->mti_zone < numzones, 331 ("mti_zone %u out of range %d", 332 mtip->mti_zone, numzones)); 333 return (mtip->mti_zone); 334 } 335 #elif MALLOC_DEBUG_MAXZONES == 0 336 #error "MALLOC_DEBUG_MAXZONES must be positive." 337 #else 338 static void 339 mtp_set_subzone(struct malloc_type *mtp) 340 { 341 struct malloc_type_internal *mtip; 342 343 mtip = mtp->ks_handle; 344 mtip->mti_zone = 0; 345 } 346 347 static inline u_int 348 mtp_get_subzone(struct malloc_type *mtp) 349 { 350 351 return (0); 352 } 353 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 354 355 int 356 malloc_last_fail(void) 357 { 358 359 return (time_uptime - t_malloc_fail); 360 } 361 362 /* 363 * An allocation has succeeded -- update malloc type statistics for the 364 * amount of bucket size. Occurs within a critical section so that the 365 * thread isn't preempted and doesn't migrate while updating per-PCU 366 * statistics. 367 */ 368 static void 369 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 370 int zindx) 371 { 372 struct malloc_type_internal *mtip; 373 struct malloc_type_stats *mtsp; 374 375 critical_enter(); 376 mtip = mtp->ks_handle; 377 mtsp = zpcpu_get(mtip->mti_stats); 378 if (size > 0) { 379 mtsp->mts_memalloced += size; 380 mtsp->mts_numallocs++; 381 } 382 if (zindx != -1) 383 mtsp->mts_size |= 1 << zindx; 384 385 #ifdef KDTRACE_HOOKS 386 if (__predict_false(dtrace_malloc_enabled)) { 387 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 388 if (probe_id != 0) 389 (dtrace_malloc_probe)(probe_id, 390 (uintptr_t) mtp, (uintptr_t) mtip, 391 (uintptr_t) mtsp, size, zindx); 392 } 393 #endif 394 395 critical_exit(); 396 } 397 398 void 399 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 400 { 401 402 if (size > 0) 403 malloc_type_zone_allocated(mtp, size, -1); 404 } 405 406 /* 407 * A free operation has occurred -- update malloc type statistics for the 408 * amount of the bucket size. Occurs within a critical section so that the 409 * thread isn't preempted and doesn't migrate while updating per-CPU 410 * statistics. 411 */ 412 void 413 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 414 { 415 struct malloc_type_internal *mtip; 416 struct malloc_type_stats *mtsp; 417 418 critical_enter(); 419 mtip = mtp->ks_handle; 420 mtsp = zpcpu_get(mtip->mti_stats); 421 mtsp->mts_memfreed += size; 422 mtsp->mts_numfrees++; 423 424 #ifdef KDTRACE_HOOKS 425 if (__predict_false(dtrace_malloc_enabled)) { 426 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 427 if (probe_id != 0) 428 (dtrace_malloc_probe)(probe_id, 429 (uintptr_t) mtp, (uintptr_t) mtip, 430 (uintptr_t) mtsp, size, 0); 431 } 432 #endif 433 434 critical_exit(); 435 } 436 437 /* 438 * contigmalloc: 439 * 440 * Allocate a block of physically contiguous memory. 441 * 442 * If M_NOWAIT is set, this routine will not block and return NULL if 443 * the allocation fails. 444 */ 445 void * 446 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 447 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 448 vm_paddr_t boundary) 449 { 450 void *ret; 451 452 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 453 boundary, VM_MEMATTR_DEFAULT); 454 if (ret != NULL) 455 malloc_type_allocated(type, round_page(size)); 456 return (ret); 457 } 458 459 void * 460 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 461 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 462 unsigned long alignment, vm_paddr_t boundary) 463 { 464 void *ret; 465 466 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 467 alignment, boundary, VM_MEMATTR_DEFAULT); 468 if (ret != NULL) 469 malloc_type_allocated(type, round_page(size)); 470 return (ret); 471 } 472 473 /* 474 * contigfree: 475 * 476 * Free a block of memory allocated by contigmalloc. 477 * 478 * This routine may not block. 479 */ 480 void 481 contigfree(void *addr, unsigned long size, struct malloc_type *type) 482 { 483 484 kmem_free((vm_offset_t)addr, size); 485 malloc_type_freed(type, round_page(size)); 486 } 487 488 #ifdef MALLOC_DEBUG 489 static int 490 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 491 int flags) 492 { 493 #ifdef INVARIANTS 494 int indx; 495 496 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic")); 497 /* 498 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 499 */ 500 indx = flags & (M_WAITOK | M_NOWAIT); 501 if (indx != M_NOWAIT && indx != M_WAITOK) { 502 static struct timeval lasterr; 503 static int curerr, once; 504 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 505 printf("Bad malloc flags: %x\n", indx); 506 kdb_backtrace(); 507 flags |= M_WAITOK; 508 once++; 509 } 510 } 511 #endif 512 #ifdef MALLOC_MAKE_FAILURES 513 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 514 atomic_add_int(&malloc_nowait_count, 1); 515 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 516 atomic_add_int(&malloc_failure_count, 1); 517 t_malloc_fail = time_uptime; 518 *vap = NULL; 519 return (EJUSTRETURN); 520 } 521 } 522 #endif 523 if (flags & M_WAITOK) { 524 KASSERT(curthread->td_intr_nesting_level == 0, 525 ("malloc(M_WAITOK) in interrupt context")); 526 if (__predict_false(!THREAD_CAN_SLEEP())) { 527 #ifdef EPOCH_TRACE 528 epoch_trace_list(curthread); 529 #endif 530 KASSERT(1, 531 ("malloc(M_WAITOK) with sleeping prohibited")); 532 } 533 } 534 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 535 ("malloc: called with spinlock or critical section held")); 536 537 #ifdef DEBUG_MEMGUARD 538 if (memguard_cmp_mtp(mtp, *sizep)) { 539 *vap = memguard_alloc(*sizep, flags); 540 if (*vap != NULL) 541 return (EJUSTRETURN); 542 /* This is unfortunate but should not be fatal. */ 543 } 544 #endif 545 546 #ifdef DEBUG_REDZONE 547 *sizep = redzone_size_ntor(*sizep); 548 #endif 549 550 return (0); 551 } 552 #endif 553 554 /* 555 * malloc: 556 * 557 * Allocate a block of memory. 558 * 559 * If M_NOWAIT is set, this routine will not block and return NULL if 560 * the allocation fails. 561 */ 562 void * 563 (malloc)(size_t size, struct malloc_type *mtp, int flags) 564 { 565 int indx; 566 caddr_t va; 567 uma_zone_t zone; 568 #if defined(DEBUG_REDZONE) 569 unsigned long osize = size; 570 #endif 571 572 #ifdef MALLOC_DEBUG 573 va = NULL; 574 if (malloc_dbg(&va, &size, mtp, flags) != 0) 575 return (va); 576 #endif 577 578 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 579 if (size & KMEM_ZMASK) 580 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 581 indx = kmemsize[size >> KMEM_ZSHIFT]; 582 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 583 #ifdef MALLOC_PROFILE 584 krequests[size >> KMEM_ZSHIFT]++; 585 #endif 586 va = uma_zalloc(zone, flags); 587 if (va != NULL) 588 size = zone->uz_size; 589 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 590 } else { 591 size = roundup(size, PAGE_SIZE); 592 zone = NULL; 593 va = uma_large_malloc(size, flags); 594 malloc_type_allocated(mtp, va == NULL ? 0 : size); 595 } 596 if (flags & M_WAITOK) 597 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 598 else if (va == NULL) 599 t_malloc_fail = time_uptime; 600 #ifdef DEBUG_REDZONE 601 if (va != NULL) 602 va = redzone_setup(va, osize); 603 #endif 604 return ((void *) va); 605 } 606 607 static void * 608 malloc_domain(size_t size, struct malloc_type *mtp, int domain, int flags) 609 { 610 int indx; 611 caddr_t va; 612 uma_zone_t zone; 613 #if defined(DEBUG_REDZONE) 614 unsigned long osize = size; 615 #endif 616 617 #ifdef MALLOC_DEBUG 618 va = NULL; 619 if (malloc_dbg(&va, &size, mtp, flags) != 0) 620 return (va); 621 #endif 622 if (size <= kmem_zmax && (flags & M_EXEC) == 0) { 623 if (size & KMEM_ZMASK) 624 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 625 indx = kmemsize[size >> KMEM_ZSHIFT]; 626 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 627 #ifdef MALLOC_PROFILE 628 krequests[size >> KMEM_ZSHIFT]++; 629 #endif 630 va = uma_zalloc_domain(zone, NULL, domain, flags); 631 if (va != NULL) 632 size = zone->uz_size; 633 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 634 } else { 635 size = roundup(size, PAGE_SIZE); 636 zone = NULL; 637 va = uma_large_malloc_domain(size, domain, flags); 638 malloc_type_allocated(mtp, va == NULL ? 0 : size); 639 } 640 if (flags & M_WAITOK) 641 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 642 else if (va == NULL) 643 t_malloc_fail = time_uptime; 644 #ifdef DEBUG_REDZONE 645 if (va != NULL) 646 va = redzone_setup(va, osize); 647 #endif 648 return ((void *) va); 649 } 650 651 void * 652 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 653 int flags) 654 { 655 struct vm_domainset_iter di; 656 void *ret; 657 int domain; 658 659 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 660 do { 661 ret = malloc_domain(size, mtp, domain, flags); 662 if (ret != NULL) 663 break; 664 } while (vm_domainset_iter_policy(&di, &domain) == 0); 665 666 return (ret); 667 } 668 669 void * 670 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 671 { 672 673 if (WOULD_OVERFLOW(nmemb, size)) 674 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 675 676 return (malloc(size * nmemb, type, flags)); 677 } 678 679 #ifdef INVARIANTS 680 static void 681 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 682 { 683 struct malloc_type **mtpp = addr; 684 685 /* 686 * Cache a pointer to the malloc_type that most recently freed 687 * this memory here. This way we know who is most likely to 688 * have stepped on it later. 689 * 690 * This code assumes that size is a multiple of 8 bytes for 691 * 64 bit machines 692 */ 693 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 694 mtpp += (size - sizeof(struct malloc_type *)) / 695 sizeof(struct malloc_type *); 696 *mtpp = mtp; 697 } 698 #endif 699 700 #ifdef MALLOC_DEBUG 701 static int 702 free_dbg(void **addrp, struct malloc_type *mtp) 703 { 704 void *addr; 705 706 addr = *addrp; 707 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic")); 708 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 709 ("free: called with spinlock or critical section held")); 710 711 /* free(NULL, ...) does nothing */ 712 if (addr == NULL) 713 return (EJUSTRETURN); 714 715 #ifdef DEBUG_MEMGUARD 716 if (is_memguard_addr(addr)) { 717 memguard_free(addr); 718 return (EJUSTRETURN); 719 } 720 #endif 721 722 #ifdef DEBUG_REDZONE 723 redzone_check(addr); 724 *addrp = redzone_addr_ntor(addr); 725 #endif 726 727 return (0); 728 } 729 #endif 730 731 /* 732 * free: 733 * 734 * Free a block of memory allocated by malloc. 735 * 736 * This routine may not block. 737 */ 738 void 739 free(void *addr, struct malloc_type *mtp) 740 { 741 uma_slab_t slab; 742 u_long size; 743 744 #ifdef MALLOC_DEBUG 745 if (free_dbg(&addr, mtp) != 0) 746 return; 747 #endif 748 /* free(NULL, ...) does nothing */ 749 if (addr == NULL) 750 return; 751 752 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 753 if (slab == NULL) 754 panic("free: address %p(%p) has not been allocated.\n", 755 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 756 757 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 758 size = slab->us_keg->uk_size; 759 #ifdef INVARIANTS 760 free_save_type(addr, mtp, size); 761 #endif 762 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 763 } else { 764 size = slab->us_size; 765 uma_large_free(slab); 766 } 767 malloc_type_freed(mtp, size); 768 } 769 770 void 771 free_domain(void *addr, struct malloc_type *mtp) 772 { 773 uma_slab_t slab; 774 u_long size; 775 776 #ifdef MALLOC_DEBUG 777 if (free_dbg(&addr, mtp) != 0) 778 return; 779 #endif 780 781 /* free(NULL, ...) does nothing */ 782 if (addr == NULL) 783 return; 784 785 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 786 if (slab == NULL) 787 panic("free_domain: address %p(%p) has not been allocated.\n", 788 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 789 790 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 791 size = slab->us_keg->uk_size; 792 #ifdef INVARIANTS 793 free_save_type(addr, mtp, size); 794 #endif 795 uma_zfree_domain(LIST_FIRST(&slab->us_keg->uk_zones), 796 addr, slab); 797 } else { 798 size = slab->us_size; 799 uma_large_free(slab); 800 } 801 malloc_type_freed(mtp, size); 802 } 803 804 /* 805 * realloc: change the size of a memory block 806 */ 807 void * 808 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 809 { 810 uma_slab_t slab; 811 unsigned long alloc; 812 void *newaddr; 813 814 KASSERT(mtp->ks_magic == M_MAGIC, 815 ("realloc: bad malloc type magic")); 816 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 817 ("realloc: called with spinlock or critical section held")); 818 819 /* realloc(NULL, ...) is equivalent to malloc(...) */ 820 if (addr == NULL) 821 return (malloc(size, mtp, flags)); 822 823 /* 824 * XXX: Should report free of old memory and alloc of new memory to 825 * per-CPU stats. 826 */ 827 828 #ifdef DEBUG_MEMGUARD 829 if (is_memguard_addr(addr)) 830 return (memguard_realloc(addr, size, mtp, flags)); 831 #endif 832 833 #ifdef DEBUG_REDZONE 834 slab = NULL; 835 alloc = redzone_get_size(addr); 836 #else 837 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 838 839 /* Sanity check */ 840 KASSERT(slab != NULL, 841 ("realloc: address %p out of range", (void *)addr)); 842 843 /* Get the size of the original block */ 844 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 845 alloc = slab->us_keg->uk_size; 846 else 847 alloc = slab->us_size; 848 849 /* Reuse the original block if appropriate */ 850 if (size <= alloc 851 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 852 return (addr); 853 #endif /* !DEBUG_REDZONE */ 854 855 /* Allocate a new, bigger (or smaller) block */ 856 if ((newaddr = malloc(size, mtp, flags)) == NULL) 857 return (NULL); 858 859 /* Copy over original contents */ 860 bcopy(addr, newaddr, min(size, alloc)); 861 free(addr, mtp); 862 return (newaddr); 863 } 864 865 /* 866 * reallocf: same as realloc() but free memory on failure. 867 */ 868 void * 869 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 870 { 871 void *mem; 872 873 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 874 free(addr, mtp); 875 return (mem); 876 } 877 878 #ifndef __sparc64__ 879 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 880 #endif 881 882 /* 883 * Initialize the kernel memory (kmem) arena. 884 */ 885 void 886 kmeminit(void) 887 { 888 u_long mem_size; 889 u_long tmp; 890 891 #ifdef VM_KMEM_SIZE 892 if (vm_kmem_size == 0) 893 vm_kmem_size = VM_KMEM_SIZE; 894 #endif 895 #ifdef VM_KMEM_SIZE_MIN 896 if (vm_kmem_size_min == 0) 897 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 898 #endif 899 #ifdef VM_KMEM_SIZE_MAX 900 if (vm_kmem_size_max == 0) 901 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 902 #endif 903 /* 904 * Calculate the amount of kernel virtual address (KVA) space that is 905 * preallocated to the kmem arena. In order to support a wide range 906 * of machines, it is a function of the physical memory size, 907 * specifically, 908 * 909 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 910 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 911 * 912 * Every architecture must define an integral value for 913 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 914 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 915 * ceiling on this preallocation, are optional. Typically, 916 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 917 * a given architecture. 918 */ 919 mem_size = vm_cnt.v_page_count; 920 if (mem_size <= 32768) /* delphij XXX 128MB */ 921 kmem_zmax = PAGE_SIZE; 922 923 if (vm_kmem_size_scale < 1) 924 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 925 926 /* 927 * Check if we should use defaults for the "vm_kmem_size" 928 * variable: 929 */ 930 if (vm_kmem_size == 0) { 931 vm_kmem_size = mem_size / vm_kmem_size_scale; 932 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 933 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 934 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 935 vm_kmem_size = vm_kmem_size_min; 936 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 937 vm_kmem_size = vm_kmem_size_max; 938 } 939 if (vm_kmem_size == 0) 940 panic("Tune VM_KMEM_SIZE_* for the platform"); 941 942 /* 943 * The amount of KVA space that is preallocated to the 944 * kmem arena can be set statically at compile-time or manually 945 * through the kernel environment. However, it is still limited to 946 * twice the physical memory size, which has been sufficient to handle 947 * the most severe cases of external fragmentation in the kmem arena. 948 */ 949 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 950 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 951 952 vm_kmem_size = round_page(vm_kmem_size); 953 #ifdef DEBUG_MEMGUARD 954 tmp = memguard_fudge(vm_kmem_size, kernel_map); 955 #else 956 tmp = vm_kmem_size; 957 #endif 958 uma_set_limit(tmp); 959 960 #ifdef DEBUG_MEMGUARD 961 /* 962 * Initialize MemGuard if support compiled in. MemGuard is a 963 * replacement allocator used for detecting tamper-after-free 964 * scenarios as they occur. It is only used for debugging. 965 */ 966 memguard_init(kernel_arena); 967 #endif 968 } 969 970 /* 971 * Initialize the kernel memory allocator 972 */ 973 /* ARGSUSED*/ 974 static void 975 mallocinit(void *dummy) 976 { 977 int i; 978 uint8_t indx; 979 980 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 981 982 kmeminit(); 983 984 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 985 kmem_zmax = KMEM_ZMAX; 986 987 mt_stats_zone = uma_zcreate("mt_stats_zone", 988 sizeof(struct malloc_type_stats), NULL, NULL, NULL, NULL, 989 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 990 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 991 #ifdef INVARIANTS 992 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 993 #else 994 NULL, NULL, NULL, NULL, 995 #endif 996 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 997 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 998 int size = kmemzones[indx].kz_size; 999 char *name = kmemzones[indx].kz_name; 1000 int subzone; 1001 1002 for (subzone = 0; subzone < numzones; subzone++) { 1003 kmemzones[indx].kz_zone[subzone] = 1004 uma_zcreate(name, size, 1005 #ifdef INVARIANTS 1006 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1007 #else 1008 NULL, NULL, NULL, NULL, 1009 #endif 1010 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 1011 } 1012 for (;i <= size; i+= KMEM_ZBASE) 1013 kmemsize[i >> KMEM_ZSHIFT] = indx; 1014 1015 } 1016 } 1017 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1018 1019 void 1020 malloc_init(void *data) 1021 { 1022 struct malloc_type_internal *mtip; 1023 struct malloc_type *mtp; 1024 1025 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1026 1027 mtp = data; 1028 if (mtp->ks_magic != M_MAGIC) 1029 panic("malloc_init: bad malloc type magic"); 1030 1031 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 1032 mtip->mti_stats = uma_zalloc_pcpu(mt_stats_zone, M_WAITOK | M_ZERO); 1033 mtp->ks_handle = mtip; 1034 mtp_set_subzone(mtp); 1035 1036 mtx_lock(&malloc_mtx); 1037 mtp->ks_next = kmemstatistics; 1038 kmemstatistics = mtp; 1039 kmemcount++; 1040 mtx_unlock(&malloc_mtx); 1041 } 1042 1043 void 1044 malloc_uninit(void *data) 1045 { 1046 struct malloc_type_internal *mtip; 1047 struct malloc_type_stats *mtsp; 1048 struct malloc_type *mtp, *temp; 1049 uma_slab_t slab; 1050 long temp_allocs, temp_bytes; 1051 int i; 1052 1053 mtp = data; 1054 KASSERT(mtp->ks_magic == M_MAGIC, 1055 ("malloc_uninit: bad malloc type magic")); 1056 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 1057 1058 mtx_lock(&malloc_mtx); 1059 mtip = mtp->ks_handle; 1060 mtp->ks_handle = NULL; 1061 if (mtp != kmemstatistics) { 1062 for (temp = kmemstatistics; temp != NULL; 1063 temp = temp->ks_next) { 1064 if (temp->ks_next == mtp) { 1065 temp->ks_next = mtp->ks_next; 1066 break; 1067 } 1068 } 1069 KASSERT(temp, 1070 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1071 } else 1072 kmemstatistics = mtp->ks_next; 1073 kmemcount--; 1074 mtx_unlock(&malloc_mtx); 1075 1076 /* 1077 * Look for memory leaks. 1078 */ 1079 temp_allocs = temp_bytes = 0; 1080 for (i = 0; i <= mp_maxid; i++) { 1081 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1082 temp_allocs += mtsp->mts_numallocs; 1083 temp_allocs -= mtsp->mts_numfrees; 1084 temp_bytes += mtsp->mts_memalloced; 1085 temp_bytes -= mtsp->mts_memfreed; 1086 } 1087 if (temp_allocs > 0 || temp_bytes > 0) { 1088 printf("Warning: memory type %s leaked memory on destroy " 1089 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1090 temp_allocs, temp_bytes); 1091 } 1092 1093 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 1094 uma_zfree_pcpu(mt_stats_zone, mtip->mti_stats); 1095 uma_zfree_arg(mt_zone, mtip, slab); 1096 } 1097 1098 struct malloc_type * 1099 malloc_desc2type(const char *desc) 1100 { 1101 struct malloc_type *mtp; 1102 1103 mtx_assert(&malloc_mtx, MA_OWNED); 1104 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1105 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1106 return (mtp); 1107 } 1108 return (NULL); 1109 } 1110 1111 static int 1112 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1113 { 1114 struct malloc_type_stream_header mtsh; 1115 struct malloc_type_internal *mtip; 1116 struct malloc_type_stats *mtsp, zeromts; 1117 struct malloc_type_header mth; 1118 struct malloc_type *mtp; 1119 int error, i; 1120 struct sbuf sbuf; 1121 1122 error = sysctl_wire_old_buffer(req, 0); 1123 if (error != 0) 1124 return (error); 1125 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1126 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1127 mtx_lock(&malloc_mtx); 1128 1129 bzero(&zeromts, sizeof(zeromts)); 1130 1131 /* 1132 * Insert stream header. 1133 */ 1134 bzero(&mtsh, sizeof(mtsh)); 1135 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1136 mtsh.mtsh_maxcpus = MAXCPU; 1137 mtsh.mtsh_count = kmemcount; 1138 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1139 1140 /* 1141 * Insert alternating sequence of type headers and type statistics. 1142 */ 1143 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1144 mtip = (struct malloc_type_internal *)mtp->ks_handle; 1145 1146 /* 1147 * Insert type header. 1148 */ 1149 bzero(&mth, sizeof(mth)); 1150 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1151 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1152 1153 /* 1154 * Insert type statistics for each CPU. 1155 */ 1156 for (i = 0; i <= mp_maxid; i++) { 1157 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1158 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1159 } 1160 /* 1161 * Fill in the missing CPUs. 1162 */ 1163 for (; i < MAXCPU; i++) { 1164 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1165 } 1166 1167 } 1168 mtx_unlock(&malloc_mtx); 1169 error = sbuf_finish(&sbuf); 1170 sbuf_delete(&sbuf); 1171 return (error); 1172 } 1173 1174 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 1175 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1176 "Return malloc types"); 1177 1178 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1179 "Count of kernel malloc types"); 1180 1181 void 1182 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1183 { 1184 struct malloc_type *mtp, **bufmtp; 1185 int count, i; 1186 size_t buflen; 1187 1188 mtx_lock(&malloc_mtx); 1189 restart: 1190 mtx_assert(&malloc_mtx, MA_OWNED); 1191 count = kmemcount; 1192 mtx_unlock(&malloc_mtx); 1193 1194 buflen = sizeof(struct malloc_type *) * count; 1195 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1196 1197 mtx_lock(&malloc_mtx); 1198 1199 if (count < kmemcount) { 1200 free(bufmtp, M_TEMP); 1201 goto restart; 1202 } 1203 1204 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1205 bufmtp[i] = mtp; 1206 1207 mtx_unlock(&malloc_mtx); 1208 1209 for (i = 0; i < count; i++) 1210 (func)(bufmtp[i], arg); 1211 1212 free(bufmtp, M_TEMP); 1213 } 1214 1215 #ifdef DDB 1216 static int64_t 1217 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1218 uint64_t *inuse) 1219 { 1220 const struct malloc_type_stats *mtsp; 1221 uint64_t frees, alloced, freed; 1222 int i; 1223 1224 *allocs = 0; 1225 frees = 0; 1226 alloced = 0; 1227 freed = 0; 1228 for (i = 0; i <= mp_maxid; i++) { 1229 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1230 1231 *allocs += mtsp->mts_numallocs; 1232 frees += mtsp->mts_numfrees; 1233 alloced += mtsp->mts_memalloced; 1234 freed += mtsp->mts_memfreed; 1235 } 1236 *inuse = *allocs - frees; 1237 return (alloced - freed); 1238 } 1239 1240 DB_SHOW_COMMAND(malloc, db_show_malloc) 1241 { 1242 const char *fmt_hdr, *fmt_entry; 1243 struct malloc_type *mtp; 1244 uint64_t allocs, inuse; 1245 int64_t size; 1246 /* variables for sorting */ 1247 struct malloc_type *last_mtype, *cur_mtype; 1248 int64_t cur_size, last_size; 1249 int ties; 1250 1251 if (modif[0] == 'i') { 1252 fmt_hdr = "%s,%s,%s,%s\n"; 1253 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1254 } else { 1255 fmt_hdr = "%18s %12s %12s %12s\n"; 1256 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1257 } 1258 1259 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1260 1261 /* Select sort, largest size first. */ 1262 last_mtype = NULL; 1263 last_size = INT64_MAX; 1264 for (;;) { 1265 cur_mtype = NULL; 1266 cur_size = -1; 1267 ties = 0; 1268 1269 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1270 /* 1271 * In the case of size ties, print out mtypes 1272 * in the order they are encountered. That is, 1273 * when we encounter the most recently output 1274 * mtype, we have already printed all preceding 1275 * ties, and we must print all following ties. 1276 */ 1277 if (mtp == last_mtype) { 1278 ties = 1; 1279 continue; 1280 } 1281 size = get_malloc_stats(mtp->ks_handle, &allocs, 1282 &inuse); 1283 if (size > cur_size && size < last_size + ties) { 1284 cur_size = size; 1285 cur_mtype = mtp; 1286 } 1287 } 1288 if (cur_mtype == NULL) 1289 break; 1290 1291 size = get_malloc_stats(cur_mtype->ks_handle, &allocs, &inuse); 1292 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1293 howmany(size, 1024), allocs); 1294 1295 if (db_pager_quit) 1296 break; 1297 1298 last_mtype = cur_mtype; 1299 last_size = cur_size; 1300 } 1301 } 1302 1303 #if MALLOC_DEBUG_MAXZONES > 1 1304 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1305 { 1306 struct malloc_type_internal *mtip; 1307 struct malloc_type *mtp; 1308 u_int subzone; 1309 1310 if (!have_addr) { 1311 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1312 return; 1313 } 1314 mtp = (void *)addr; 1315 if (mtp->ks_magic != M_MAGIC) { 1316 db_printf("Magic %lx does not match expected %x\n", 1317 mtp->ks_magic, M_MAGIC); 1318 return; 1319 } 1320 1321 mtip = mtp->ks_handle; 1322 subzone = mtip->mti_zone; 1323 1324 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1325 mtip = mtp->ks_handle; 1326 if (mtip->mti_zone != subzone) 1327 continue; 1328 db_printf("%s\n", mtp->ks_shortdesc); 1329 if (db_pager_quit) 1330 break; 1331 } 1332 } 1333 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1334 #endif /* DDB */ 1335 1336 #ifdef MALLOC_PROFILE 1337 1338 static int 1339 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 1340 { 1341 struct sbuf sbuf; 1342 uint64_t count; 1343 uint64_t waste; 1344 uint64_t mem; 1345 int error; 1346 int rsize; 1347 int size; 1348 int i; 1349 1350 waste = 0; 1351 mem = 0; 1352 1353 error = sysctl_wire_old_buffer(req, 0); 1354 if (error != 0) 1355 return (error); 1356 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1357 sbuf_printf(&sbuf, 1358 "\n Size Requests Real Size\n"); 1359 for (i = 0; i < KMEM_ZSIZE; i++) { 1360 size = i << KMEM_ZSHIFT; 1361 rsize = kmemzones[kmemsize[i]].kz_size; 1362 count = (long long unsigned)krequests[i]; 1363 1364 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 1365 (unsigned long long)count, rsize); 1366 1367 if ((rsize * count) > (size * count)) 1368 waste += (rsize * count) - (size * count); 1369 mem += (rsize * count); 1370 } 1371 sbuf_printf(&sbuf, 1372 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 1373 (unsigned long long)mem, (unsigned long long)waste); 1374 error = sbuf_finish(&sbuf); 1375 sbuf_delete(&sbuf); 1376 return (error); 1377 } 1378 1379 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 1380 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 1381 #endif /* MALLOC_PROFILE */ 1382