xref: /freebsd/sys/kern/kern_malloc.c (revision 3110d4ebd6c0848cf5e25890d01791bb407e2a9b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1987, 1991, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005-2009 Robert N. M. Watson
7  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
35  */
36 
37 /*
38  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
39  * based on memory types.  Back end is implemented using the UMA(9) zone
40  * allocator.  A set of fixed-size buckets are used for smaller allocations,
41  * and a special UMA allocation interface is used for larger allocations.
42  * Callers declare memory types, and statistics are maintained independently
43  * for each memory type.  Statistics are maintained per-CPU for performance
44  * reasons.  See malloc(9) and comments in malloc.h for a detailed
45  * description.
46  */
47 
48 #include <sys/cdefs.h>
49 __FBSDID("$FreeBSD$");
50 
51 #include "opt_ddb.h"
52 #include "opt_vm.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kdb.h>
57 #include <sys/kernel.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/vmmeter.h>
62 #include <sys/proc.h>
63 #include <sys/queue.h>
64 #include <sys/sbuf.h>
65 #include <sys/smp.h>
66 #include <sys/sysctl.h>
67 #include <sys/time.h>
68 #include <sys/vmem.h>
69 #ifdef EPOCH_TRACE
70 #include <sys/epoch.h>
71 #endif
72 
73 #include <vm/vm.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_domainset.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_phys.h>
83 #include <vm/vm_pagequeue.h>
84 #include <vm/uma.h>
85 #include <vm/uma_int.h>
86 #include <vm/uma_dbg.h>
87 
88 #ifdef DEBUG_MEMGUARD
89 #include <vm/memguard.h>
90 #endif
91 #ifdef DEBUG_REDZONE
92 #include <vm/redzone.h>
93 #endif
94 
95 #if defined(INVARIANTS) && defined(__i386__)
96 #include <machine/cpu.h>
97 #endif
98 
99 #include <ddb/ddb.h>
100 
101 #ifdef KDTRACE_HOOKS
102 #include <sys/dtrace_bsd.h>
103 
104 bool	__read_frequently			dtrace_malloc_enabled;
105 dtrace_malloc_probe_func_t __read_mostly	dtrace_malloc_probe;
106 #endif
107 
108 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) ||		\
109     defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
110 #define	MALLOC_DEBUG	1
111 #endif
112 
113 #ifdef DEBUG_REDZONE
114 #define	DEBUG_REDZONE_ARG_DEF	, unsigned long osize
115 #define	DEBUG_REDZONE_ARG	, osize
116 #else
117 #define	DEBUG_REDZONE_ARG_DEF
118 #define	DEBUG_REDZONE_ARG
119 #endif
120 
121 /*
122  * When realloc() is called, if the new size is sufficiently smaller than
123  * the old size, realloc() will allocate a new, smaller block to avoid
124  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
125  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
126  */
127 #ifndef REALLOC_FRACTION
128 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
129 #endif
130 
131 /*
132  * Centrally define some common malloc types.
133  */
134 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
135 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
136 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
137 
138 static struct malloc_type *kmemstatistics;
139 static int kmemcount;
140 
141 #define KMEM_ZSHIFT	4
142 #define KMEM_ZBASE	16
143 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
144 
145 #define KMEM_ZMAX	65536
146 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
147 static uint8_t kmemsize[KMEM_ZSIZE + 1];
148 
149 #ifndef MALLOC_DEBUG_MAXZONES
150 #define	MALLOC_DEBUG_MAXZONES	1
151 #endif
152 static int numzones = MALLOC_DEBUG_MAXZONES;
153 
154 /*
155  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
156  * of various sizes.
157  *
158  * Warning: the layout of the struct is duplicated in libmemstat for KVM support.
159  *
160  * XXX: The comment here used to read "These won't be powers of two for
161  * long."  It's possible that a significant amount of wasted memory could be
162  * recovered by tuning the sizes of these buckets.
163  */
164 struct {
165 	int kz_size;
166 	const char *kz_name;
167 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
168 } kmemzones[] = {
169 	{16, "malloc-16", },
170 	{32, "malloc-32", },
171 	{64, "malloc-64", },
172 	{128, "malloc-128", },
173 	{256, "malloc-256", },
174 	{384, "malloc-384", },
175 	{512, "malloc-512", },
176 	{1024, "malloc-1024", },
177 	{2048, "malloc-2048", },
178 	{4096, "malloc-4096", },
179 	{8192, "malloc-8192", },
180 	{16384, "malloc-16384", },
181 	{32768, "malloc-32768", },
182 	{65536, "malloc-65536", },
183 	{0, NULL},
184 };
185 
186 u_long vm_kmem_size;
187 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
188     "Size of kernel memory");
189 
190 static u_long kmem_zmax = KMEM_ZMAX;
191 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
192     "Maximum allocation size that malloc(9) would use UMA as backend");
193 
194 static u_long vm_kmem_size_min;
195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
196     "Minimum size of kernel memory");
197 
198 static u_long vm_kmem_size_max;
199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
200     "Maximum size of kernel memory");
201 
202 static u_int vm_kmem_size_scale;
203 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
204     "Scale factor for kernel memory size");
205 
206 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
207 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
208     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
209     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
210 
211 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
212 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
213     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
214     sysctl_kmem_map_free, "LU", "Free space in kmem");
215 
216 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
217     "Malloc information");
218 
219 static u_int vm_malloc_zone_count = nitems(kmemzones);
220 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count,
221     CTLFLAG_RD, &vm_malloc_zone_count, 0,
222     "Number of malloc zones");
223 
224 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes,
226     CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
227     sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc");
228 
229 /*
230  * The malloc_mtx protects the kmemstatistics linked list.
231  */
232 struct mtx malloc_mtx;
233 
234 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
235 
236 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
237 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
238     "Kernel malloc debugging options");
239 #endif
240 
241 /*
242  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
243  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
244  */
245 #ifdef MALLOC_MAKE_FAILURES
246 static int malloc_failure_rate;
247 static int malloc_nowait_count;
248 static int malloc_failure_count;
249 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
250     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
251 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
252     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
253 #endif
254 
255 static int
256 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
257 {
258 	u_long size;
259 
260 	size = uma_size();
261 	return (sysctl_handle_long(oidp, &size, 0, req));
262 }
263 
264 static int
265 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
266 {
267 	u_long size, limit;
268 
269 	/* The sysctl is unsigned, implement as a saturation value. */
270 	size = uma_size();
271 	limit = uma_limit();
272 	if (size > limit)
273 		size = 0;
274 	else
275 		size = limit - size;
276 	return (sysctl_handle_long(oidp, &size, 0, req));
277 }
278 
279 static int
280 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
281 {
282 	int sizes[nitems(kmemzones)];
283 	int i;
284 
285 	for (i = 0; i < nitems(kmemzones); i++) {
286 		sizes[i] = kmemzones[i].kz_size;
287 	}
288 
289 	return (SYSCTL_OUT(req, &sizes, sizeof(sizes)));
290 }
291 
292 /*
293  * malloc(9) uma zone separation -- sub-page buffer overruns in one
294  * malloc type will affect only a subset of other malloc types.
295  */
296 #if MALLOC_DEBUG_MAXZONES > 1
297 static void
298 tunable_set_numzones(void)
299 {
300 
301 	TUNABLE_INT_FETCH("debug.malloc.numzones",
302 	    &numzones);
303 
304 	/* Sanity check the number of malloc uma zones. */
305 	if (numzones <= 0)
306 		numzones = 1;
307 	if (numzones > MALLOC_DEBUG_MAXZONES)
308 		numzones = MALLOC_DEBUG_MAXZONES;
309 }
310 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
311 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
312     &numzones, 0, "Number of malloc uma subzones");
313 
314 /*
315  * Any number that changes regularly is an okay choice for the
316  * offset.  Build numbers are pretty good of you have them.
317  */
318 static u_int zone_offset = __FreeBSD_version;
319 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
320 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
321     &zone_offset, 0, "Separate malloc types by examining the "
322     "Nth character in the malloc type short description.");
323 
324 static void
325 mtp_set_subzone(struct malloc_type *mtp)
326 {
327 	struct malloc_type_internal *mtip;
328 	const char *desc;
329 	size_t len;
330 	u_int val;
331 
332 	mtip = &mtp->ks_mti;
333 	desc = mtp->ks_shortdesc;
334 	if (desc == NULL || (len = strlen(desc)) == 0)
335 		val = 0;
336 	else
337 		val = desc[zone_offset % len];
338 	mtip->mti_zone = (val % numzones);
339 }
340 
341 static inline u_int
342 mtp_get_subzone(struct malloc_type *mtp)
343 {
344 	struct malloc_type_internal *mtip;
345 
346 	mtip = &mtp->ks_mti;
347 
348 	KASSERT(mtip->mti_zone < numzones,
349 	    ("mti_zone %u out of range %d",
350 	    mtip->mti_zone, numzones));
351 	return (mtip->mti_zone);
352 }
353 #elif MALLOC_DEBUG_MAXZONES == 0
354 #error "MALLOC_DEBUG_MAXZONES must be positive."
355 #else
356 static void
357 mtp_set_subzone(struct malloc_type *mtp)
358 {
359 	struct malloc_type_internal *mtip;
360 
361 	mtip = &mtp->ks_mti;
362 	mtip->mti_zone = 0;
363 }
364 
365 static inline u_int
366 mtp_get_subzone(struct malloc_type *mtp)
367 {
368 
369 	return (0);
370 }
371 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
372 
373 /*
374  * An allocation has succeeded -- update malloc type statistics for the
375  * amount of bucket size.  Occurs within a critical section so that the
376  * thread isn't preempted and doesn't migrate while updating per-PCU
377  * statistics.
378  */
379 static void
380 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
381     int zindx)
382 {
383 	struct malloc_type_internal *mtip;
384 	struct malloc_type_stats *mtsp;
385 
386 	critical_enter();
387 	mtip = &mtp->ks_mti;
388 	mtsp = zpcpu_get(mtip->mti_stats);
389 	if (size > 0) {
390 		mtsp->mts_memalloced += size;
391 		mtsp->mts_numallocs++;
392 	}
393 	if (zindx != -1)
394 		mtsp->mts_size |= 1 << zindx;
395 
396 #ifdef KDTRACE_HOOKS
397 	if (__predict_false(dtrace_malloc_enabled)) {
398 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
399 		if (probe_id != 0)
400 			(dtrace_malloc_probe)(probe_id,
401 			    (uintptr_t) mtp, (uintptr_t) mtip,
402 			    (uintptr_t) mtsp, size, zindx);
403 	}
404 #endif
405 
406 	critical_exit();
407 }
408 
409 void
410 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
411 {
412 
413 	if (size > 0)
414 		malloc_type_zone_allocated(mtp, size, -1);
415 }
416 
417 /*
418  * A free operation has occurred -- update malloc type statistics for the
419  * amount of the bucket size.  Occurs within a critical section so that the
420  * thread isn't preempted and doesn't migrate while updating per-CPU
421  * statistics.
422  */
423 void
424 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
425 {
426 	struct malloc_type_internal *mtip;
427 	struct malloc_type_stats *mtsp;
428 
429 	critical_enter();
430 	mtip = &mtp->ks_mti;
431 	mtsp = zpcpu_get(mtip->mti_stats);
432 	mtsp->mts_memfreed += size;
433 	mtsp->mts_numfrees++;
434 
435 #ifdef KDTRACE_HOOKS
436 	if (__predict_false(dtrace_malloc_enabled)) {
437 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
438 		if (probe_id != 0)
439 			(dtrace_malloc_probe)(probe_id,
440 			    (uintptr_t) mtp, (uintptr_t) mtip,
441 			    (uintptr_t) mtsp, size, 0);
442 	}
443 #endif
444 
445 	critical_exit();
446 }
447 
448 /*
449  *	contigmalloc:
450  *
451  *	Allocate a block of physically contiguous memory.
452  *
453  *	If M_NOWAIT is set, this routine will not block and return NULL if
454  *	the allocation fails.
455  */
456 void *
457 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
458     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
459     vm_paddr_t boundary)
460 {
461 	void *ret;
462 
463 	ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
464 	    boundary, VM_MEMATTR_DEFAULT);
465 	if (ret != NULL)
466 		malloc_type_allocated(type, round_page(size));
467 	return (ret);
468 }
469 
470 void *
471 contigmalloc_domainset(unsigned long size, struct malloc_type *type,
472     struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
473     unsigned long alignment, vm_paddr_t boundary)
474 {
475 	void *ret;
476 
477 	ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
478 	    alignment, boundary, VM_MEMATTR_DEFAULT);
479 	if (ret != NULL)
480 		malloc_type_allocated(type, round_page(size));
481 	return (ret);
482 }
483 
484 /*
485  *	contigfree:
486  *
487  *	Free a block of memory allocated by contigmalloc.
488  *
489  *	This routine may not block.
490  */
491 void
492 contigfree(void *addr, unsigned long size, struct malloc_type *type)
493 {
494 
495 	kmem_free((vm_offset_t)addr, size);
496 	malloc_type_freed(type, round_page(size));
497 }
498 
499 #ifdef MALLOC_DEBUG
500 static int
501 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
502     int flags)
503 {
504 #ifdef INVARIANTS
505 	int indx;
506 
507 	KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version"));
508 	/*
509 	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
510 	 */
511 	indx = flags & (M_WAITOK | M_NOWAIT);
512 	if (indx != M_NOWAIT && indx != M_WAITOK) {
513 		static	struct timeval lasterr;
514 		static	int curerr, once;
515 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
516 			printf("Bad malloc flags: %x\n", indx);
517 			kdb_backtrace();
518 			flags |= M_WAITOK;
519 			once++;
520 		}
521 	}
522 #endif
523 #ifdef MALLOC_MAKE_FAILURES
524 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
525 		atomic_add_int(&malloc_nowait_count, 1);
526 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
527 			atomic_add_int(&malloc_failure_count, 1);
528 			*vap = NULL;
529 			return (EJUSTRETURN);
530 		}
531 	}
532 #endif
533 	if (flags & M_WAITOK) {
534 		KASSERT(curthread->td_intr_nesting_level == 0,
535 		   ("malloc(M_WAITOK) in interrupt context"));
536 		if (__predict_false(!THREAD_CAN_SLEEP())) {
537 #ifdef EPOCH_TRACE
538 			epoch_trace_list(curthread);
539 #endif
540 			KASSERT(1,
541 			    ("malloc(M_WAITOK) with sleeping prohibited"));
542 		}
543 	}
544 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
545 	    ("malloc: called with spinlock or critical section held"));
546 
547 #ifdef DEBUG_MEMGUARD
548 	if (memguard_cmp_mtp(mtp, *sizep)) {
549 		*vap = memguard_alloc(*sizep, flags);
550 		if (*vap != NULL)
551 			return (EJUSTRETURN);
552 		/* This is unfortunate but should not be fatal. */
553 	}
554 #endif
555 
556 #ifdef DEBUG_REDZONE
557 	*sizep = redzone_size_ntor(*sizep);
558 #endif
559 
560 	return (0);
561 }
562 #endif
563 
564 /*
565  * Handle large allocations and frees by using kmem_malloc directly.
566  */
567 static inline bool
568 malloc_large_slab(uma_slab_t slab)
569 {
570 	uintptr_t va;
571 
572 	va = (uintptr_t)slab;
573 	return ((va & 1) != 0);
574 }
575 
576 static inline size_t
577 malloc_large_size(uma_slab_t slab)
578 {
579 	uintptr_t va;
580 
581 	va = (uintptr_t)slab;
582 	return (va >> 1);
583 }
584 
585 static caddr_t __noinline
586 malloc_large(size_t *size, struct malloc_type *mtp, struct domainset *policy,
587     int flags DEBUG_REDZONE_ARG_DEF)
588 {
589 	vm_offset_t kva;
590 	caddr_t va;
591 	size_t sz;
592 
593 	sz = roundup(*size, PAGE_SIZE);
594 	kva = kmem_malloc_domainset(policy, sz, flags);
595 	if (kva != 0) {
596 		/* The low bit is unused for slab pointers. */
597 		vsetzoneslab(kva, NULL, (void *)((sz << 1) | 1));
598 		uma_total_inc(sz);
599 		*size = sz;
600 	}
601 	va = (caddr_t)kva;
602 	malloc_type_allocated(mtp, va == NULL ? 0 : sz);
603 	if (__predict_false(va == NULL)) {
604 		KASSERT((flags & M_WAITOK) == 0,
605 		    ("malloc(M_WAITOK) returned NULL"));
606 	}
607 #ifdef DEBUG_REDZONE
608 	if (va != NULL)
609 		va = redzone_setup(va, osize);
610 #endif
611 	return (va);
612 }
613 
614 static void
615 free_large(void *addr, size_t size)
616 {
617 
618 	kmem_free((vm_offset_t)addr, size);
619 	uma_total_dec(size);
620 }
621 
622 /*
623  *	malloc:
624  *
625  *	Allocate a block of memory.
626  *
627  *	If M_NOWAIT is set, this routine will not block and return NULL if
628  *	the allocation fails.
629  */
630 void *
631 (malloc)(size_t size, struct malloc_type *mtp, int flags)
632 {
633 	int indx;
634 	caddr_t va;
635 	uma_zone_t zone;
636 #ifdef DEBUG_REDZONE
637 	unsigned long osize = size;
638 #endif
639 
640 	MPASS((flags & M_EXEC) == 0);
641 
642 #ifdef MALLOC_DEBUG
643 	va = NULL;
644 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
645 		return (va);
646 #endif
647 
648 	if (__predict_false(size > kmem_zmax))
649 		return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
650 		    DEBUG_REDZONE_ARG));
651 
652 	if (size & KMEM_ZMASK)
653 		size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
654 	indx = kmemsize[size >> KMEM_ZSHIFT];
655 	zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
656 	va = uma_zalloc(zone, flags);
657 	if (va != NULL)
658 		size = zone->uz_size;
659 	malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
660 	if (__predict_false(va == NULL)) {
661 		KASSERT((flags & M_WAITOK) == 0,
662 		    ("malloc(M_WAITOK) returned NULL"));
663 	}
664 #ifdef DEBUG_REDZONE
665 	if (va != NULL)
666 		va = redzone_setup(va, osize);
667 #endif
668 	return ((void *) va);
669 }
670 
671 static void *
672 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain,
673     int flags)
674 {
675 	uma_zone_t zone;
676 	caddr_t va;
677 	size_t size;
678 	int indx;
679 
680 	size = *sizep;
681 	KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0,
682 	    ("malloc_domain: Called with bad flag / size combination."));
683 	if (size & KMEM_ZMASK)
684 		size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
685 	indx = kmemsize[size >> KMEM_ZSHIFT];
686 	zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
687 	va = uma_zalloc_domain(zone, NULL, domain, flags);
688 	if (va != NULL)
689 		*sizep = zone->uz_size;
690 	*indxp = indx;
691 	return ((void *)va);
692 }
693 
694 void *
695 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
696     int flags)
697 {
698 	struct vm_domainset_iter di;
699 	caddr_t va;
700 	int domain;
701 	int indx;
702 #ifdef DEBUG_REDZONE
703 	unsigned long osize = size;
704 #endif
705 
706 	MPASS((flags & M_EXEC) == 0);
707 
708 #ifdef MALLOC_DEBUG
709 	va = NULL;
710 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
711 		return (va);
712 #endif
713 
714 	if (__predict_false(size > kmem_zmax))
715 		return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
716 		    DEBUG_REDZONE_ARG));
717 
718 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
719 	do {
720 		va = malloc_domain(&size, &indx, mtp, domain, flags);
721 	} while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0);
722 	malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
723 	if (__predict_false(va == NULL)) {
724 		KASSERT((flags & M_WAITOK) == 0,
725 		    ("malloc(M_WAITOK) returned NULL"));
726 	}
727 #ifdef DEBUG_REDZONE
728 	if (va != NULL)
729 		va = redzone_setup(va, osize);
730 #endif
731 	return (va);
732 }
733 
734 /*
735  * Allocate an executable area.
736  */
737 void *
738 malloc_exec(size_t size, struct malloc_type *mtp, int flags)
739 {
740 
741 	return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags));
742 }
743 
744 void *
745 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds,
746     int flags)
747 {
748 #ifdef DEBUG_REDZONE
749 	unsigned long osize = size;
750 #endif
751 #ifdef MALLOC_DEBUG
752 	caddr_t va;
753 #endif
754 
755 	flags |= M_EXEC;
756 
757 #ifdef MALLOC_DEBUG
758 	va = NULL;
759 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
760 		return (va);
761 #endif
762 
763 	return (malloc_large(&size, mtp, ds, flags DEBUG_REDZONE_ARG));
764 }
765 
766 void *
767 malloc_domainset_aligned(size_t size, size_t align,
768     struct malloc_type *mtp, struct domainset *ds, int flags)
769 {
770 	void *res;
771 	size_t asize;
772 
773 	KASSERT(align != 0 && powerof2(align),
774 	    ("malloc_domainset_aligned: wrong align %#zx size %#zx",
775 	    align, size));
776 	KASSERT(align <= PAGE_SIZE,
777 	    ("malloc_domainset_aligned: align %#zx (size %#zx) too large",
778 	    align, size));
779 
780 	/*
781 	 * Round the allocation size up to the next power of 2,
782 	 * because we can only guarantee alignment for
783 	 * power-of-2-sized allocations.  Further increase the
784 	 * allocation size to align if the rounded size is less than
785 	 * align, since malloc zones provide alignment equal to their
786 	 * size.
787 	 */
788 	asize = size <= align ? align : 1UL << flsl(size - 1);
789 
790 	res = malloc_domainset(asize, mtp, ds, flags);
791 	KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0,
792 	    ("malloc_domainset_aligned: result not aligned %p size %#zx "
793 	    "allocsize %#zx align %#zx", res, size, asize, align));
794 	return (res);
795 }
796 
797 void *
798 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
799 {
800 
801 	if (WOULD_OVERFLOW(nmemb, size))
802 		panic("mallocarray: %zu * %zu overflowed", nmemb, size);
803 
804 	return (malloc(size * nmemb, type, flags));
805 }
806 
807 #ifdef INVARIANTS
808 static void
809 free_save_type(void *addr, struct malloc_type *mtp, u_long size)
810 {
811 	struct malloc_type **mtpp = addr;
812 
813 	/*
814 	 * Cache a pointer to the malloc_type that most recently freed
815 	 * this memory here.  This way we know who is most likely to
816 	 * have stepped on it later.
817 	 *
818 	 * This code assumes that size is a multiple of 8 bytes for
819 	 * 64 bit machines
820 	 */
821 	mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
822 	mtpp += (size - sizeof(struct malloc_type *)) /
823 	    sizeof(struct malloc_type *);
824 	*mtpp = mtp;
825 }
826 #endif
827 
828 #ifdef MALLOC_DEBUG
829 static int
830 free_dbg(void **addrp, struct malloc_type *mtp)
831 {
832 	void *addr;
833 
834 	addr = *addrp;
835 	KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version"));
836 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
837 	    ("free: called with spinlock or critical section held"));
838 
839 	/* free(NULL, ...) does nothing */
840 	if (addr == NULL)
841 		return (EJUSTRETURN);
842 
843 #ifdef DEBUG_MEMGUARD
844 	if (is_memguard_addr(addr)) {
845 		memguard_free(addr);
846 		return (EJUSTRETURN);
847 	}
848 #endif
849 
850 #ifdef DEBUG_REDZONE
851 	redzone_check(addr);
852 	*addrp = redzone_addr_ntor(addr);
853 #endif
854 
855 	return (0);
856 }
857 #endif
858 
859 /*
860  *	free:
861  *
862  *	Free a block of memory allocated by malloc.
863  *
864  *	This routine may not block.
865  */
866 void
867 free(void *addr, struct malloc_type *mtp)
868 {
869 	uma_zone_t zone;
870 	uma_slab_t slab;
871 	u_long size;
872 
873 #ifdef MALLOC_DEBUG
874 	if (free_dbg(&addr, mtp) != 0)
875 		return;
876 #endif
877 	/* free(NULL, ...) does nothing */
878 	if (addr == NULL)
879 		return;
880 
881 	vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
882 	if (slab == NULL)
883 		panic("free: address %p(%p) has not been allocated.\n",
884 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
885 
886 	if (__predict_true(!malloc_large_slab(slab))) {
887 		size = zone->uz_size;
888 #ifdef INVARIANTS
889 		free_save_type(addr, mtp, size);
890 #endif
891 		uma_zfree_arg(zone, addr, slab);
892 	} else {
893 		size = malloc_large_size(slab);
894 		free_large(addr, size);
895 	}
896 	malloc_type_freed(mtp, size);
897 }
898 
899 /*
900  *	zfree:
901  *
902  *	Zero then free a block of memory allocated by malloc.
903  *
904  *	This routine may not block.
905  */
906 void
907 zfree(void *addr, struct malloc_type *mtp)
908 {
909 	uma_zone_t zone;
910 	uma_slab_t slab;
911 	u_long size;
912 
913 #ifdef MALLOC_DEBUG
914 	if (free_dbg(&addr, mtp) != 0)
915 		return;
916 #endif
917 	/* free(NULL, ...) does nothing */
918 	if (addr == NULL)
919 		return;
920 
921 	vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
922 	if (slab == NULL)
923 		panic("free: address %p(%p) has not been allocated.\n",
924 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
925 
926 	if (__predict_true(!malloc_large_slab(slab))) {
927 		size = zone->uz_size;
928 #ifdef INVARIANTS
929 		free_save_type(addr, mtp, size);
930 #endif
931 		explicit_bzero(addr, size);
932 		uma_zfree_arg(zone, addr, slab);
933 	} else {
934 		size = malloc_large_size(slab);
935 		explicit_bzero(addr, size);
936 		free_large(addr, size);
937 	}
938 	malloc_type_freed(mtp, size);
939 }
940 
941 /*
942  *	realloc: change the size of a memory block
943  */
944 void *
945 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
946 {
947 	uma_zone_t zone;
948 	uma_slab_t slab;
949 	unsigned long alloc;
950 	void *newaddr;
951 
952 	KASSERT(mtp->ks_version == M_VERSION,
953 	    ("realloc: bad malloc type version"));
954 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
955 	    ("realloc: called with spinlock or critical section held"));
956 
957 	/* realloc(NULL, ...) is equivalent to malloc(...) */
958 	if (addr == NULL)
959 		return (malloc(size, mtp, flags));
960 
961 	/*
962 	 * XXX: Should report free of old memory and alloc of new memory to
963 	 * per-CPU stats.
964 	 */
965 
966 #ifdef DEBUG_MEMGUARD
967 	if (is_memguard_addr(addr))
968 		return (memguard_realloc(addr, size, mtp, flags));
969 #endif
970 
971 #ifdef DEBUG_REDZONE
972 	slab = NULL;
973 	zone = NULL;
974 	alloc = redzone_get_size(addr);
975 #else
976 	vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
977 
978 	/* Sanity check */
979 	KASSERT(slab != NULL,
980 	    ("realloc: address %p out of range", (void *)addr));
981 
982 	/* Get the size of the original block */
983 	if (!malloc_large_slab(slab))
984 		alloc = zone->uz_size;
985 	else
986 		alloc = malloc_large_size(slab);
987 
988 	/* Reuse the original block if appropriate */
989 	if (size <= alloc
990 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
991 		return (addr);
992 #endif /* !DEBUG_REDZONE */
993 
994 	/* Allocate a new, bigger (or smaller) block */
995 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
996 		return (NULL);
997 
998 	/* Copy over original contents */
999 	bcopy(addr, newaddr, min(size, alloc));
1000 	free(addr, mtp);
1001 	return (newaddr);
1002 }
1003 
1004 /*
1005  *	reallocf: same as realloc() but free memory on failure.
1006  */
1007 void *
1008 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
1009 {
1010 	void *mem;
1011 
1012 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
1013 		free(addr, mtp);
1014 	return (mem);
1015 }
1016 
1017 /*
1018  * 	malloc_size: returns the number of bytes allocated for a request of the
1019  * 		     specified size
1020  */
1021 size_t
1022 malloc_size(size_t size)
1023 {
1024 	int indx;
1025 
1026 	if (size > kmem_zmax)
1027 		return (0);
1028 	if (size & KMEM_ZMASK)
1029 		size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
1030 	indx = kmemsize[size >> KMEM_ZSHIFT];
1031 	return (kmemzones[indx].kz_size);
1032 }
1033 
1034 /*
1035  *	malloc_usable_size: returns the usable size of the allocation.
1036  */
1037 size_t
1038 malloc_usable_size(const void *addr)
1039 {
1040 #ifndef DEBUG_REDZONE
1041 	uma_zone_t zone;
1042 	uma_slab_t slab;
1043 #endif
1044 	u_long size;
1045 
1046 	if (addr == NULL)
1047 		return (0);
1048 
1049 #ifdef DEBUG_MEMGUARD
1050 	if (is_memguard_addr(__DECONST(void *, addr)))
1051 		return (memguard_get_req_size(addr));
1052 #endif
1053 
1054 #ifdef DEBUG_REDZONE
1055 	size = redzone_get_size(__DECONST(void *, addr));
1056 #else
1057 	vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
1058 	if (slab == NULL)
1059 		panic("malloc_usable_size: address %p(%p) is not allocated.\n",
1060 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
1061 
1062 	if (!malloc_large_slab(slab))
1063 		size = zone->uz_size;
1064 	else
1065 		size = malloc_large_size(slab);
1066 #endif
1067 	return (size);
1068 }
1069 
1070 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
1071 
1072 /*
1073  * Initialize the kernel memory (kmem) arena.
1074  */
1075 void
1076 kmeminit(void)
1077 {
1078 	u_long mem_size;
1079 	u_long tmp;
1080 
1081 #ifdef VM_KMEM_SIZE
1082 	if (vm_kmem_size == 0)
1083 		vm_kmem_size = VM_KMEM_SIZE;
1084 #endif
1085 #ifdef VM_KMEM_SIZE_MIN
1086 	if (vm_kmem_size_min == 0)
1087 		vm_kmem_size_min = VM_KMEM_SIZE_MIN;
1088 #endif
1089 #ifdef VM_KMEM_SIZE_MAX
1090 	if (vm_kmem_size_max == 0)
1091 		vm_kmem_size_max = VM_KMEM_SIZE_MAX;
1092 #endif
1093 	/*
1094 	 * Calculate the amount of kernel virtual address (KVA) space that is
1095 	 * preallocated to the kmem arena.  In order to support a wide range
1096 	 * of machines, it is a function of the physical memory size,
1097 	 * specifically,
1098 	 *
1099 	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
1100 	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
1101 	 *
1102 	 * Every architecture must define an integral value for
1103 	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
1104 	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
1105 	 * ceiling on this preallocation, are optional.  Typically,
1106 	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
1107 	 * a given architecture.
1108 	 */
1109 	mem_size = vm_cnt.v_page_count;
1110 	if (mem_size <= 32768) /* delphij XXX 128MB */
1111 		kmem_zmax = PAGE_SIZE;
1112 
1113 	if (vm_kmem_size_scale < 1)
1114 		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
1115 
1116 	/*
1117 	 * Check if we should use defaults for the "vm_kmem_size"
1118 	 * variable:
1119 	 */
1120 	if (vm_kmem_size == 0) {
1121 		vm_kmem_size = mem_size / vm_kmem_size_scale;
1122 		vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ?
1123 		    vm_kmem_size_max : vm_kmem_size * PAGE_SIZE;
1124 		if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
1125 			vm_kmem_size = vm_kmem_size_min;
1126 		if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
1127 			vm_kmem_size = vm_kmem_size_max;
1128 	}
1129 	if (vm_kmem_size == 0)
1130 		panic("Tune VM_KMEM_SIZE_* for the platform");
1131 
1132 	/*
1133 	 * The amount of KVA space that is preallocated to the
1134 	 * kmem arena can be set statically at compile-time or manually
1135 	 * through the kernel environment.  However, it is still limited to
1136 	 * twice the physical memory size, which has been sufficient to handle
1137 	 * the most severe cases of external fragmentation in the kmem arena.
1138 	 */
1139 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
1140 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
1141 
1142 	vm_kmem_size = round_page(vm_kmem_size);
1143 #ifdef DEBUG_MEMGUARD
1144 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
1145 #else
1146 	tmp = vm_kmem_size;
1147 #endif
1148 	uma_set_limit(tmp);
1149 
1150 #ifdef DEBUG_MEMGUARD
1151 	/*
1152 	 * Initialize MemGuard if support compiled in.  MemGuard is a
1153 	 * replacement allocator used for detecting tamper-after-free
1154 	 * scenarios as they occur.  It is only used for debugging.
1155 	 */
1156 	memguard_init(kernel_arena);
1157 #endif
1158 }
1159 
1160 /*
1161  * Initialize the kernel memory allocator
1162  */
1163 /* ARGSUSED*/
1164 static void
1165 mallocinit(void *dummy)
1166 {
1167 	int i;
1168 	uint8_t indx;
1169 
1170 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
1171 
1172 	kmeminit();
1173 
1174 	if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
1175 		kmem_zmax = KMEM_ZMAX;
1176 
1177 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
1178 		int size = kmemzones[indx].kz_size;
1179 		const char *name = kmemzones[indx].kz_name;
1180 		size_t align;
1181 		int subzone;
1182 
1183 		align = UMA_ALIGN_PTR;
1184 		if (powerof2(size) && size > sizeof(void *))
1185 			align = MIN(size, PAGE_SIZE) - 1;
1186 		for (subzone = 0; subzone < numzones; subzone++) {
1187 			kmemzones[indx].kz_zone[subzone] =
1188 			    uma_zcreate(name, size,
1189 #ifdef INVARIANTS
1190 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
1191 #else
1192 			    NULL, NULL, NULL, NULL,
1193 #endif
1194 			    align, UMA_ZONE_MALLOC);
1195 		}
1196 		for (;i <= size; i+= KMEM_ZBASE)
1197 			kmemsize[i >> KMEM_ZSHIFT] = indx;
1198 	}
1199 }
1200 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
1201 
1202 void
1203 malloc_init(void *data)
1204 {
1205 	struct malloc_type_internal *mtip;
1206 	struct malloc_type *mtp;
1207 
1208 	KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
1209 
1210 	mtp = data;
1211 	if (mtp->ks_version != M_VERSION)
1212 		panic("malloc_init: type %s with unsupported version %lu",
1213 		    mtp->ks_shortdesc, mtp->ks_version);
1214 
1215 	mtip = &mtp->ks_mti;
1216 	mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO);
1217 	mtp_set_subzone(mtp);
1218 
1219 	mtx_lock(&malloc_mtx);
1220 	mtp->ks_next = kmemstatistics;
1221 	kmemstatistics = mtp;
1222 	kmemcount++;
1223 	mtx_unlock(&malloc_mtx);
1224 }
1225 
1226 void
1227 malloc_uninit(void *data)
1228 {
1229 	struct malloc_type_internal *mtip;
1230 	struct malloc_type_stats *mtsp;
1231 	struct malloc_type *mtp, *temp;
1232 	long temp_allocs, temp_bytes;
1233 	int i;
1234 
1235 	mtp = data;
1236 	KASSERT(mtp->ks_version == M_VERSION,
1237 	    ("malloc_uninit: bad malloc type version"));
1238 
1239 	mtx_lock(&malloc_mtx);
1240 	mtip = &mtp->ks_mti;
1241 	if (mtp != kmemstatistics) {
1242 		for (temp = kmemstatistics; temp != NULL;
1243 		    temp = temp->ks_next) {
1244 			if (temp->ks_next == mtp) {
1245 				temp->ks_next = mtp->ks_next;
1246 				break;
1247 			}
1248 		}
1249 		KASSERT(temp,
1250 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
1251 	} else
1252 		kmemstatistics = mtp->ks_next;
1253 	kmemcount--;
1254 	mtx_unlock(&malloc_mtx);
1255 
1256 	/*
1257 	 * Look for memory leaks.
1258 	 */
1259 	temp_allocs = temp_bytes = 0;
1260 	for (i = 0; i <= mp_maxid; i++) {
1261 		mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1262 		temp_allocs += mtsp->mts_numallocs;
1263 		temp_allocs -= mtsp->mts_numfrees;
1264 		temp_bytes += mtsp->mts_memalloced;
1265 		temp_bytes -= mtsp->mts_memfreed;
1266 	}
1267 	if (temp_allocs > 0 || temp_bytes > 0) {
1268 		printf("Warning: memory type %s leaked memory on destroy "
1269 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
1270 		    temp_allocs, temp_bytes);
1271 	}
1272 
1273 	uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats);
1274 }
1275 
1276 struct malloc_type *
1277 malloc_desc2type(const char *desc)
1278 {
1279 	struct malloc_type *mtp;
1280 
1281 	mtx_assert(&malloc_mtx, MA_OWNED);
1282 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1283 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
1284 			return (mtp);
1285 	}
1286 	return (NULL);
1287 }
1288 
1289 static int
1290 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
1291 {
1292 	struct malloc_type_stream_header mtsh;
1293 	struct malloc_type_internal *mtip;
1294 	struct malloc_type_stats *mtsp, zeromts;
1295 	struct malloc_type_header mth;
1296 	struct malloc_type *mtp;
1297 	int error, i;
1298 	struct sbuf sbuf;
1299 
1300 	error = sysctl_wire_old_buffer(req, 0);
1301 	if (error != 0)
1302 		return (error);
1303 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1304 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
1305 	mtx_lock(&malloc_mtx);
1306 
1307 	bzero(&zeromts, sizeof(zeromts));
1308 
1309 	/*
1310 	 * Insert stream header.
1311 	 */
1312 	bzero(&mtsh, sizeof(mtsh));
1313 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
1314 	mtsh.mtsh_maxcpus = MAXCPU;
1315 	mtsh.mtsh_count = kmemcount;
1316 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
1317 
1318 	/*
1319 	 * Insert alternating sequence of type headers and type statistics.
1320 	 */
1321 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1322 		mtip = &mtp->ks_mti;
1323 
1324 		/*
1325 		 * Insert type header.
1326 		 */
1327 		bzero(&mth, sizeof(mth));
1328 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
1329 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
1330 
1331 		/*
1332 		 * Insert type statistics for each CPU.
1333 		 */
1334 		for (i = 0; i <= mp_maxid; i++) {
1335 			mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1336 			(void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
1337 		}
1338 		/*
1339 		 * Fill in the missing CPUs.
1340 		 */
1341 		for (; i < MAXCPU; i++) {
1342 			(void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
1343 		}
1344 	}
1345 	mtx_unlock(&malloc_mtx);
1346 	error = sbuf_finish(&sbuf);
1347 	sbuf_delete(&sbuf);
1348 	return (error);
1349 }
1350 
1351 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats,
1352     CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0,
1353     sysctl_kern_malloc_stats, "s,malloc_type_ustats",
1354     "Return malloc types");
1355 
1356 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
1357     "Count of kernel malloc types");
1358 
1359 void
1360 malloc_type_list(malloc_type_list_func_t *func, void *arg)
1361 {
1362 	struct malloc_type *mtp, **bufmtp;
1363 	int count, i;
1364 	size_t buflen;
1365 
1366 	mtx_lock(&malloc_mtx);
1367 restart:
1368 	mtx_assert(&malloc_mtx, MA_OWNED);
1369 	count = kmemcount;
1370 	mtx_unlock(&malloc_mtx);
1371 
1372 	buflen = sizeof(struct malloc_type *) * count;
1373 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
1374 
1375 	mtx_lock(&malloc_mtx);
1376 
1377 	if (count < kmemcount) {
1378 		free(bufmtp, M_TEMP);
1379 		goto restart;
1380 	}
1381 
1382 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
1383 		bufmtp[i] = mtp;
1384 
1385 	mtx_unlock(&malloc_mtx);
1386 
1387 	for (i = 0; i < count; i++)
1388 		(func)(bufmtp[i], arg);
1389 
1390 	free(bufmtp, M_TEMP);
1391 }
1392 
1393 #ifdef DDB
1394 static int64_t
1395 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs,
1396     uint64_t *inuse)
1397 {
1398 	const struct malloc_type_stats *mtsp;
1399 	uint64_t frees, alloced, freed;
1400 	int i;
1401 
1402 	*allocs = 0;
1403 	frees = 0;
1404 	alloced = 0;
1405 	freed = 0;
1406 	for (i = 0; i <= mp_maxid; i++) {
1407 		mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1408 
1409 		*allocs += mtsp->mts_numallocs;
1410 		frees += mtsp->mts_numfrees;
1411 		alloced += mtsp->mts_memalloced;
1412 		freed += mtsp->mts_memfreed;
1413 	}
1414 	*inuse = *allocs - frees;
1415 	return (alloced - freed);
1416 }
1417 
1418 DB_SHOW_COMMAND(malloc, db_show_malloc)
1419 {
1420 	const char *fmt_hdr, *fmt_entry;
1421 	struct malloc_type *mtp;
1422 	uint64_t allocs, inuse;
1423 	int64_t size;
1424 	/* variables for sorting */
1425 	struct malloc_type *last_mtype, *cur_mtype;
1426 	int64_t cur_size, last_size;
1427 	int ties;
1428 
1429 	if (modif[0] == 'i') {
1430 		fmt_hdr = "%s,%s,%s,%s\n";
1431 		fmt_entry = "\"%s\",%ju,%jdK,%ju\n";
1432 	} else {
1433 		fmt_hdr = "%18s %12s  %12s %12s\n";
1434 		fmt_entry = "%18s %12ju %12jdK %12ju\n";
1435 	}
1436 
1437 	db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests");
1438 
1439 	/* Select sort, largest size first. */
1440 	last_mtype = NULL;
1441 	last_size = INT64_MAX;
1442 	for (;;) {
1443 		cur_mtype = NULL;
1444 		cur_size = -1;
1445 		ties = 0;
1446 
1447 		for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1448 			/*
1449 			 * In the case of size ties, print out mtypes
1450 			 * in the order they are encountered.  That is,
1451 			 * when we encounter the most recently output
1452 			 * mtype, we have already printed all preceding
1453 			 * ties, and we must print all following ties.
1454 			 */
1455 			if (mtp == last_mtype) {
1456 				ties = 1;
1457 				continue;
1458 			}
1459 			size = get_malloc_stats(&mtp->ks_mti, &allocs,
1460 			    &inuse);
1461 			if (size > cur_size && size < last_size + ties) {
1462 				cur_size = size;
1463 				cur_mtype = mtp;
1464 			}
1465 		}
1466 		if (cur_mtype == NULL)
1467 			break;
1468 
1469 		size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse);
1470 		db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse,
1471 		    howmany(size, 1024), allocs);
1472 
1473 		if (db_pager_quit)
1474 			break;
1475 
1476 		last_mtype = cur_mtype;
1477 		last_size = cur_size;
1478 	}
1479 }
1480 
1481 #if MALLOC_DEBUG_MAXZONES > 1
1482 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1483 {
1484 	struct malloc_type_internal *mtip;
1485 	struct malloc_type *mtp;
1486 	u_int subzone;
1487 
1488 	if (!have_addr) {
1489 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1490 		return;
1491 	}
1492 	mtp = (void *)addr;
1493 	if (mtp->ks_version != M_VERSION) {
1494 		db_printf("Version %lx does not match expected %x\n",
1495 		    mtp->ks_version, M_VERSION);
1496 		return;
1497 	}
1498 
1499 	mtip = &mtp->ks_mti;
1500 	subzone = mtip->mti_zone;
1501 
1502 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1503 		mtip = &mtp->ks_mti;
1504 		if (mtip->mti_zone != subzone)
1505 			continue;
1506 		db_printf("%s\n", mtp->ks_shortdesc);
1507 		if (db_pager_quit)
1508 			break;
1509 	}
1510 }
1511 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1512 #endif /* DDB */
1513