1 /*- 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_vm.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kdb.h> 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/vmmeter.h> 49 #include <sys/proc.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysctl.h> 52 #include <sys/time.h> 53 54 #include <vm/vm.h> 55 #include <vm/pmap.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_kern.h> 58 #include <vm/vm_extern.h> 59 #include <vm/vm_map.h> 60 #include <vm/vm_page.h> 61 #include <vm/uma.h> 62 #include <vm/uma_int.h> 63 #include <vm/uma_dbg.h> 64 65 #ifdef DEBUG_MEMGUARD 66 #include <vm/memguard.h> 67 #endif 68 69 #if defined(INVARIANTS) && defined(__i386__) 70 #include <machine/cpu.h> 71 #endif 72 73 #include <ddb/ddb.h> 74 75 /* 76 * When realloc() is called, if the new size is sufficiently smaller than 77 * the old size, realloc() will allocate a new, smaller block to avoid 78 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 79 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 80 */ 81 #ifndef REALLOC_FRACTION 82 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 83 #endif 84 85 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 86 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 87 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 88 89 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 90 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 91 92 static void kmeminit(void *); 93 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 94 95 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 96 97 static struct malloc_type *kmemstatistics; 98 static char *kmembase; 99 static char *kmemlimit; 100 static int kmemcount; 101 102 #define KMEM_ZSHIFT 4 103 #define KMEM_ZBASE 16 104 #define KMEM_ZMASK (KMEM_ZBASE - 1) 105 106 #define KMEM_ZMAX PAGE_SIZE 107 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 108 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 109 110 /* These won't be powers of two for long */ 111 struct { 112 int kz_size; 113 char *kz_name; 114 uma_zone_t kz_zone; 115 } kmemzones[] = { 116 {16, "16", NULL}, 117 {32, "32", NULL}, 118 {64, "64", NULL}, 119 {128, "128", NULL}, 120 {256, "256", NULL}, 121 {512, "512", NULL}, 122 {1024, "1024", NULL}, 123 {2048, "2048", NULL}, 124 {4096, "4096", NULL}, 125 #if PAGE_SIZE > 4096 126 {8192, "8192", NULL}, 127 #if PAGE_SIZE > 8192 128 {16384, "16384", NULL}, 129 #if PAGE_SIZE > 16384 130 {32768, "32768", NULL}, 131 #if PAGE_SIZE > 32768 132 {65536, "65536", NULL}, 133 #if PAGE_SIZE > 65536 134 #error "Unsupported PAGE_SIZE" 135 #endif /* 65536 */ 136 #endif /* 32768 */ 137 #endif /* 16384 */ 138 #endif /* 8192 */ 139 #endif /* 4096 */ 140 {0, NULL}, 141 }; 142 143 static uma_zone_t mt_zone; 144 145 u_int vm_kmem_size; 146 SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0, 147 "Size of kernel memory"); 148 149 u_int vm_kmem_size_max; 150 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0, 151 "Maximum size of kernel memory"); 152 153 u_int vm_kmem_size_scale; 154 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0, 155 "Scale factor for kernel memory size"); 156 157 /* 158 * The malloc_mtx protects the kmemstatistics linked list. 159 */ 160 161 struct mtx malloc_mtx; 162 163 #ifdef MALLOC_PROFILE 164 uint64_t krequests[KMEM_ZSIZE + 1]; 165 166 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 167 #endif 168 169 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS); 170 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 171 172 /* time_uptime of last malloc(9) failure */ 173 static time_t t_malloc_fail; 174 175 #ifdef MALLOC_MAKE_FAILURES 176 /* 177 * Causes malloc failures every (n) mallocs with M_NOWAIT. If set to 0, 178 * doesn't cause failures. 179 */ 180 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 181 "Kernel malloc debugging options"); 182 183 static int malloc_failure_rate; 184 static int malloc_nowait_count; 185 static int malloc_failure_count; 186 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 187 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 188 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 189 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 190 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 191 #endif 192 193 int 194 malloc_last_fail(void) 195 { 196 197 return (time_uptime - t_malloc_fail); 198 } 199 200 /* 201 * Add this to the informational malloc_type bucket. 202 */ 203 static void 204 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 205 int zindx) 206 { 207 struct malloc_type_internal *mtip; 208 struct malloc_type_stats *mtsp; 209 210 critical_enter(); 211 mtip = mtp->ks_handle; 212 mtsp = &mtip->mti_stats[curcpu]; 213 if (size > 0) { 214 mtsp->mts_memalloced += size; 215 mtsp->mts_numallocs++; 216 } 217 if (zindx != -1) 218 mtsp->mts_size |= 1 << zindx; 219 critical_exit(); 220 } 221 222 void 223 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 224 { 225 226 if (size > 0) 227 malloc_type_zone_allocated(mtp, size, -1); 228 } 229 230 /* 231 * Remove this allocation from the informational malloc_type bucket. 232 */ 233 void 234 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 235 { 236 struct malloc_type_internal *mtip; 237 struct malloc_type_stats *mtsp; 238 239 critical_enter(); 240 mtip = mtp->ks_handle; 241 mtsp = &mtip->mti_stats[curcpu]; 242 mtsp->mts_memfreed += size; 243 mtsp->mts_numfrees++; 244 critical_exit(); 245 } 246 247 /* 248 * malloc: 249 * 250 * Allocate a block of memory. 251 * 252 * If M_NOWAIT is set, this routine will not block and return NULL if 253 * the allocation fails. 254 */ 255 void * 256 malloc(unsigned long size, struct malloc_type *mtp, int flags) 257 { 258 int indx; 259 caddr_t va; 260 uma_zone_t zone; 261 uma_keg_t keg; 262 #ifdef DIAGNOSTIC 263 unsigned long osize = size; 264 #endif 265 266 #ifdef INVARIANTS 267 /* 268 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 269 */ 270 indx = flags & (M_WAITOK | M_NOWAIT); 271 if (indx != M_NOWAIT && indx != M_WAITOK) { 272 static struct timeval lasterr; 273 static int curerr, once; 274 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 275 printf("Bad malloc flags: %x\n", indx); 276 kdb_backtrace(); 277 flags |= M_WAITOK; 278 once++; 279 } 280 } 281 #endif 282 #if 0 283 if (size == 0) 284 kdb_enter("zero size malloc"); 285 #endif 286 #ifdef MALLOC_MAKE_FAILURES 287 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 288 atomic_add_int(&malloc_nowait_count, 1); 289 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 290 atomic_add_int(&malloc_failure_count, 1); 291 t_malloc_fail = time_uptime; 292 return (NULL); 293 } 294 } 295 #endif 296 if (flags & M_WAITOK) 297 KASSERT(curthread->td_intr_nesting_level == 0, 298 ("malloc(M_WAITOK) in interrupt context")); 299 300 #ifdef DEBUG_MEMGUARD 301 if (memguard_cmp(mtp)) 302 return memguard_alloc(size, flags); 303 #endif 304 305 if (size <= KMEM_ZMAX) { 306 if (size & KMEM_ZMASK) 307 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 308 indx = kmemsize[size >> KMEM_ZSHIFT]; 309 zone = kmemzones[indx].kz_zone; 310 keg = zone->uz_keg; 311 #ifdef MALLOC_PROFILE 312 krequests[size >> KMEM_ZSHIFT]++; 313 #endif 314 va = uma_zalloc(zone, flags); 315 if (va != NULL) 316 size = keg->uk_size; 317 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 318 } else { 319 size = roundup(size, PAGE_SIZE); 320 zone = NULL; 321 keg = NULL; 322 va = uma_large_malloc(size, flags); 323 malloc_type_allocated(mtp, va == NULL ? 0 : size); 324 } 325 if (flags & M_WAITOK) 326 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 327 else if (va == NULL) 328 t_malloc_fail = time_uptime; 329 #ifdef DIAGNOSTIC 330 if (va != NULL && !(flags & M_ZERO)) { 331 memset(va, 0x70, osize); 332 } 333 #endif 334 return ((void *) va); 335 } 336 337 /* 338 * free: 339 * 340 * Free a block of memory allocated by malloc. 341 * 342 * This routine may not block. 343 */ 344 void 345 free(void *addr, struct malloc_type *mtp) 346 { 347 uma_slab_t slab; 348 u_long size; 349 350 /* free(NULL, ...) does nothing */ 351 if (addr == NULL) 352 return; 353 354 #ifdef DEBUG_MEMGUARD 355 if (memguard_cmp(mtp)) { 356 memguard_free(addr); 357 return; 358 } 359 #endif 360 361 size = 0; 362 363 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 364 365 if (slab == NULL) 366 panic("free: address %p(%p) has not been allocated.\n", 367 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 368 369 370 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 371 #ifdef INVARIANTS 372 struct malloc_type **mtpp = addr; 373 #endif 374 size = slab->us_keg->uk_size; 375 #ifdef INVARIANTS 376 /* 377 * Cache a pointer to the malloc_type that most recently freed 378 * this memory here. This way we know who is most likely to 379 * have stepped on it later. 380 * 381 * This code assumes that size is a multiple of 8 bytes for 382 * 64 bit machines 383 */ 384 mtpp = (struct malloc_type **) 385 ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 386 mtpp += (size - sizeof(struct malloc_type *)) / 387 sizeof(struct malloc_type *); 388 *mtpp = mtp; 389 #endif 390 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 391 } else { 392 size = slab->us_size; 393 uma_large_free(slab); 394 } 395 malloc_type_freed(mtp, size); 396 } 397 398 /* 399 * realloc: change the size of a memory block 400 */ 401 void * 402 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 403 { 404 uma_slab_t slab; 405 unsigned long alloc; 406 void *newaddr; 407 408 /* realloc(NULL, ...) is equivalent to malloc(...) */ 409 if (addr == NULL) 410 return (malloc(size, mtp, flags)); 411 412 /* 413 * XXX: Should report free of old memory and alloc of new memory to 414 * per-CPU stats. 415 */ 416 417 #ifdef DEBUG_MEMGUARD 418 if (memguard_cmp(mtp)) { 419 slab = NULL; 420 alloc = size; 421 } else { 422 #endif 423 424 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 425 426 /* Sanity check */ 427 KASSERT(slab != NULL, 428 ("realloc: address %p out of range", (void *)addr)); 429 430 /* Get the size of the original block */ 431 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 432 alloc = slab->us_keg->uk_size; 433 else 434 alloc = slab->us_size; 435 436 /* Reuse the original block if appropriate */ 437 if (size <= alloc 438 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 439 return (addr); 440 441 #ifdef DEBUG_MEMGUARD 442 } 443 #endif 444 445 /* Allocate a new, bigger (or smaller) block */ 446 if ((newaddr = malloc(size, mtp, flags)) == NULL) 447 return (NULL); 448 449 /* Copy over original contents */ 450 bcopy(addr, newaddr, min(size, alloc)); 451 free(addr, mtp); 452 return (newaddr); 453 } 454 455 /* 456 * reallocf: same as realloc() but free memory on failure. 457 */ 458 void * 459 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 460 { 461 void *mem; 462 463 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 464 free(addr, mtp); 465 return (mem); 466 } 467 468 /* 469 * Initialize the kernel memory allocator 470 */ 471 /* ARGSUSED*/ 472 static void 473 kmeminit(void *dummy) 474 { 475 u_int8_t indx; 476 u_long mem_size; 477 int i; 478 479 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 480 481 /* 482 * Try to auto-tune the kernel memory size, so that it is 483 * more applicable for a wider range of machine sizes. 484 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 485 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 486 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 487 * available, and on an X86 with a total KVA space of 256MB, 488 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 489 * 490 * Note that the kmem_map is also used by the zone allocator, 491 * so make sure that there is enough space. 492 */ 493 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; 494 mem_size = cnt.v_page_count; 495 496 #if defined(VM_KMEM_SIZE_SCALE) 497 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 498 #endif 499 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); 500 if (vm_kmem_size_scale > 0 && 501 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) 502 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 503 504 #if defined(VM_KMEM_SIZE_MAX) 505 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 506 #endif 507 TUNABLE_INT_FETCH("vm.kmem_size_max", &vm_kmem_size_max); 508 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 509 vm_kmem_size = vm_kmem_size_max; 510 511 /* Allow final override from the kernel environment */ 512 #ifndef BURN_BRIDGES 513 if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0) 514 printf("kern.vm.kmem.size is now called vm.kmem_size!\n"); 515 #endif 516 TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size); 517 518 /* 519 * Limit kmem virtual size to twice the physical memory. 520 * This allows for kmem map sparseness, but limits the size 521 * to something sane. Be careful to not overflow the 32bit 522 * ints while doing the check. 523 */ 524 if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count) 525 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 526 527 /* 528 * Tune settings based on the kernel map's size at this time. 529 */ 530 init_param3(vm_kmem_size / PAGE_SIZE); 531 532 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 533 (vm_offset_t *)&kmemlimit, vm_kmem_size); 534 kmem_map->system_map = 1; 535 536 #ifdef DEBUG_MEMGUARD 537 /* 538 * Initialize MemGuard if support compiled in. MemGuard is a 539 * replacement allocator used for detecting tamper-after-free 540 * scenarios as they occur. It is only used for debugging. 541 */ 542 vm_memguard_divisor = 10; 543 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor); 544 545 /* Pick a conservative value if provided value sucks. */ 546 if ((vm_memguard_divisor <= 0) || 547 ((vm_kmem_size / vm_memguard_divisor) == 0)) 548 vm_memguard_divisor = 10; 549 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor); 550 #endif 551 552 uma_startup2(); 553 554 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 555 #ifdef INVARIANTS 556 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 557 #else 558 NULL, NULL, NULL, NULL, 559 #endif 560 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 561 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 562 int size = kmemzones[indx].kz_size; 563 char *name = kmemzones[indx].kz_name; 564 565 kmemzones[indx].kz_zone = uma_zcreate(name, size, 566 #ifdef INVARIANTS 567 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 568 #else 569 NULL, NULL, NULL, NULL, 570 #endif 571 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 572 573 for (;i <= size; i+= KMEM_ZBASE) 574 kmemsize[i >> KMEM_ZSHIFT] = indx; 575 576 } 577 } 578 579 void 580 malloc_init(void *data) 581 { 582 struct malloc_type_internal *mtip; 583 struct malloc_type *mtp; 584 585 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init")); 586 587 mtp = data; 588 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 589 mtp->ks_handle = mtip; 590 591 mtx_lock(&malloc_mtx); 592 mtp->ks_next = kmemstatistics; 593 kmemstatistics = mtp; 594 kmemcount++; 595 mtx_unlock(&malloc_mtx); 596 } 597 598 void 599 malloc_uninit(void *data) 600 { 601 struct malloc_type_internal *mtip; 602 struct malloc_type_stats *mtsp; 603 struct malloc_type *mtp, *temp; 604 long temp_allocs, temp_bytes; 605 int i; 606 607 mtp = data; 608 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 609 mtx_lock(&malloc_mtx); 610 mtip = mtp->ks_handle; 611 mtp->ks_handle = NULL; 612 if (mtp != kmemstatistics) { 613 for (temp = kmemstatistics; temp != NULL; 614 temp = temp->ks_next) { 615 if (temp->ks_next == mtp) 616 temp->ks_next = mtp->ks_next; 617 } 618 } else 619 kmemstatistics = mtp->ks_next; 620 kmemcount--; 621 mtx_unlock(&malloc_mtx); 622 623 /* 624 * Look for memory leaks. 625 */ 626 temp_allocs = temp_bytes = 0; 627 for (i = 0; i < MAXCPU; i++) { 628 mtsp = &mtip->mti_stats[i]; 629 temp_allocs += mtsp->mts_numallocs; 630 temp_allocs -= mtsp->mts_numfrees; 631 temp_bytes += mtsp->mts_memalloced; 632 temp_bytes -= mtsp->mts_memfreed; 633 } 634 if (temp_allocs > 0 || temp_bytes > 0) { 635 printf("Warning: memory type %s leaked memory on destroy " 636 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 637 temp_allocs, temp_bytes); 638 } 639 640 uma_zfree(mt_zone, mtip); 641 } 642 643 struct malloc_type * 644 malloc_desc2type(const char *desc) 645 { 646 struct malloc_type *mtp; 647 648 mtx_assert(&malloc_mtx, MA_OWNED); 649 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 650 if (strcmp(mtp->ks_shortdesc, desc) == 0) 651 return (mtp); 652 } 653 return (NULL); 654 } 655 656 static int 657 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS) 658 { 659 struct malloc_type_stats mts_local, *mtsp; 660 struct malloc_type_internal *mtip; 661 struct malloc_type *mtp; 662 struct sbuf sbuf; 663 long temp_allocs, temp_bytes; 664 int linesize = 128; 665 int bufsize; 666 int first; 667 int error; 668 char *buf; 669 int cnt; 670 int i; 671 672 cnt = 0; 673 674 /* Guess at how much room is needed. */ 675 mtx_lock(&malloc_mtx); 676 cnt = kmemcount; 677 mtx_unlock(&malloc_mtx); 678 679 bufsize = linesize * (cnt + 1); 680 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 681 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 682 683 mtx_lock(&malloc_mtx); 684 sbuf_printf(&sbuf, 685 "\n Type InUse MemUse HighUse Requests Size(s)\n"); 686 for (mtp = kmemstatistics; cnt != 0 && mtp != NULL; 687 mtp = mtp->ks_next, cnt--) { 688 mtip = mtp->ks_handle; 689 bzero(&mts_local, sizeof(mts_local)); 690 for (i = 0; i < MAXCPU; i++) { 691 mtsp = &mtip->mti_stats[i]; 692 mts_local.mts_memalloced += mtsp->mts_memalloced; 693 mts_local.mts_memfreed += mtsp->mts_memfreed; 694 mts_local.mts_numallocs += mtsp->mts_numallocs; 695 mts_local.mts_numfrees += mtsp->mts_numfrees; 696 mts_local.mts_size |= mtsp->mts_size; 697 } 698 if (mts_local.mts_numallocs == 0) 699 continue; 700 701 /* 702 * Due to races in per-CPU statistics gather, it's possible to 703 * get a slightly negative number here. If we do, approximate 704 * with 0. 705 */ 706 if (mts_local.mts_numallocs > mts_local.mts_numfrees) 707 temp_allocs = mts_local.mts_numallocs - 708 mts_local.mts_numfrees; 709 else 710 temp_allocs = 0; 711 712 /* 713 * Ditto for bytes allocated. 714 */ 715 if (mts_local.mts_memalloced > mts_local.mts_memfreed) 716 temp_bytes = mts_local.mts_memalloced - 717 mts_local.mts_memfreed; 718 else 719 temp_bytes = 0; 720 721 /* 722 * High-waterwark is no longer easily available, so we just 723 * print '-' for that column. 724 */ 725 sbuf_printf(&sbuf, "%13s%6lu%6luK -%9llu", 726 mtp->ks_shortdesc, 727 temp_allocs, 728 (temp_bytes + 1023) / 1024, 729 (unsigned long long)mts_local.mts_numallocs); 730 731 first = 1; 732 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1; 733 i++) { 734 if (mts_local.mts_size & (1 << i)) { 735 if (first) 736 sbuf_printf(&sbuf, " "); 737 else 738 sbuf_printf(&sbuf, ","); 739 sbuf_printf(&sbuf, "%s", 740 kmemzones[i].kz_name); 741 first = 0; 742 } 743 } 744 sbuf_printf(&sbuf, "\n"); 745 } 746 sbuf_finish(&sbuf); 747 mtx_unlock(&malloc_mtx); 748 749 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 750 751 sbuf_delete(&sbuf); 752 free(buf, M_TEMP); 753 return (error); 754 } 755 756 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD, 757 NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats"); 758 759 static int 760 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 761 { 762 struct malloc_type_stream_header mtsh; 763 struct malloc_type_internal *mtip; 764 struct malloc_type_header mth; 765 struct malloc_type *mtp; 766 int buflen, count, error, i; 767 struct sbuf sbuf; 768 char *buffer; 769 770 mtx_lock(&malloc_mtx); 771 restart: 772 mtx_assert(&malloc_mtx, MA_OWNED); 773 count = kmemcount; 774 mtx_unlock(&malloc_mtx); 775 buflen = sizeof(mtsh) + count * (sizeof(mth) + 776 sizeof(struct malloc_type_stats) * MAXCPU) + 1; 777 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 778 mtx_lock(&malloc_mtx); 779 if (count < kmemcount) { 780 free(buffer, M_TEMP); 781 goto restart; 782 } 783 784 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 785 786 /* 787 * Insert stream header. 788 */ 789 bzero(&mtsh, sizeof(mtsh)); 790 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 791 mtsh.mtsh_maxcpus = MAXCPU; 792 mtsh.mtsh_count = kmemcount; 793 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) { 794 mtx_unlock(&malloc_mtx); 795 error = ENOMEM; 796 goto out; 797 } 798 799 /* 800 * Insert alternating sequence of type headers and type statistics. 801 */ 802 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 803 mtip = (struct malloc_type_internal *)mtp->ks_handle; 804 805 /* 806 * Insert type header. 807 */ 808 bzero(&mth, sizeof(mth)); 809 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 810 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) { 811 mtx_unlock(&malloc_mtx); 812 error = ENOMEM; 813 goto out; 814 } 815 816 /* 817 * Insert type statistics for each CPU. 818 */ 819 for (i = 0; i < MAXCPU; i++) { 820 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i], 821 sizeof(mtip->mti_stats[i])) < 0) { 822 mtx_unlock(&malloc_mtx); 823 error = ENOMEM; 824 goto out; 825 } 826 } 827 } 828 mtx_unlock(&malloc_mtx); 829 sbuf_finish(&sbuf); 830 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 831 out: 832 sbuf_delete(&sbuf); 833 free(buffer, M_TEMP); 834 return (error); 835 } 836 837 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 838 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 839 "Return malloc types"); 840 841 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 842 "Count of kernel malloc types"); 843 844 #ifdef DDB 845 DB_SHOW_COMMAND(malloc, db_show_malloc) 846 { 847 struct malloc_type_internal *mtip; 848 struct malloc_type *mtp; 849 u_int64_t allocs, frees; 850 int i; 851 852 db_printf("%18s %12s %12s %12s\n", "Type", "Allocs", "Frees", 853 "Used"); 854 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 855 mtip = (struct malloc_type_internal *)mtp->ks_handle; 856 allocs = 0; 857 frees = 0; 858 for (i = 0; i < MAXCPU; i++) { 859 allocs += mtip->mti_stats[i].mts_numallocs; 860 frees += mtip->mti_stats[i].mts_numfrees; 861 } 862 db_printf("%18s %12ju %12ju %12ju\n", mtp->ks_shortdesc, 863 allocs, frees, allocs - frees); 864 } 865 } 866 #endif 867 868 #ifdef MALLOC_PROFILE 869 870 static int 871 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 872 { 873 int linesize = 64; 874 struct sbuf sbuf; 875 uint64_t count; 876 uint64_t waste; 877 uint64_t mem; 878 int bufsize; 879 int error; 880 char *buf; 881 int rsize; 882 int size; 883 int i; 884 885 bufsize = linesize * (KMEM_ZSIZE + 1); 886 bufsize += 128; /* For the stats line */ 887 bufsize += 128; /* For the banner line */ 888 waste = 0; 889 mem = 0; 890 891 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 892 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 893 sbuf_printf(&sbuf, 894 "\n Size Requests Real Size\n"); 895 for (i = 0; i < KMEM_ZSIZE; i++) { 896 size = i << KMEM_ZSHIFT; 897 rsize = kmemzones[kmemsize[i]].kz_size; 898 count = (long long unsigned)krequests[i]; 899 900 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 901 (unsigned long long)count, rsize); 902 903 if ((rsize * count) > (size * count)) 904 waste += (rsize * count) - (size * count); 905 mem += (rsize * count); 906 } 907 sbuf_printf(&sbuf, 908 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 909 (unsigned long long)mem, (unsigned long long)waste); 910 sbuf_finish(&sbuf); 911 912 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 913 914 sbuf_delete(&sbuf); 915 free(buf, M_TEMP); 916 return (error); 917 } 918 919 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 920 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 921 #endif /* MALLOC_PROFILE */ 922