1 /*- 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 32 */ 33 34 /* 35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 36 * based on memory types. Back end is implemented using the UMA(9) zone 37 * allocator. A set of fixed-size buckets are used for smaller allocations, 38 * and a special UMA allocation interface is used for larger allocations. 39 * Callers declare memory types, and statistics are maintained independently 40 * for each memory type. Statistics are maintained per-CPU for performance 41 * reasons. See malloc(9) and comments in malloc.h for a detailed 42 * description. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_ddb.h" 49 #include "opt_vm.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/mutex.h> 59 #include <sys/vmmeter.h> 60 #include <sys/proc.h> 61 #include <sys/sbuf.h> 62 #include <sys/sysctl.h> 63 #include <sys/time.h> 64 65 #include <vm/vm.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_param.h> 68 #include <vm/vm_kern.h> 69 #include <vm/vm_extern.h> 70 #include <vm/vm_map.h> 71 #include <vm/vm_page.h> 72 #include <vm/uma.h> 73 #include <vm/uma_int.h> 74 #include <vm/uma_dbg.h> 75 76 #ifdef DEBUG_MEMGUARD 77 #include <vm/memguard.h> 78 #endif 79 #ifdef DEBUG_REDZONE 80 #include <vm/redzone.h> 81 #endif 82 83 #if defined(INVARIANTS) && defined(__i386__) 84 #include <machine/cpu.h> 85 #endif 86 87 #include <ddb/ddb.h> 88 89 /* 90 * When realloc() is called, if the new size is sufficiently smaller than 91 * the old size, realloc() will allocate a new, smaller block to avoid 92 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 93 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 94 */ 95 #ifndef REALLOC_FRACTION 96 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 97 #endif 98 99 /* 100 * Centrally define some common malloc types. 101 */ 102 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 103 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 104 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 105 106 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 107 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 108 109 static void kmeminit(void *); 110 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 111 112 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 113 114 static struct malloc_type *kmemstatistics; 115 static vm_offset_t kmembase; 116 static vm_offset_t kmemlimit; 117 static int kmemcount; 118 119 #define KMEM_ZSHIFT 4 120 #define KMEM_ZBASE 16 121 #define KMEM_ZMASK (KMEM_ZBASE - 1) 122 123 #define KMEM_ZMAX PAGE_SIZE 124 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 125 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 126 127 /* 128 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 129 * of various sizes. 130 * 131 * XXX: The comment here used to read "These won't be powers of two for 132 * long." It's possible that a significant amount of wasted memory could be 133 * recovered by tuning the sizes of these buckets. 134 */ 135 struct { 136 int kz_size; 137 char *kz_name; 138 uma_zone_t kz_zone; 139 } kmemzones[] = { 140 {16, "16", NULL}, 141 {32, "32", NULL}, 142 {64, "64", NULL}, 143 {128, "128", NULL}, 144 {256, "256", NULL}, 145 {512, "512", NULL}, 146 {1024, "1024", NULL}, 147 {2048, "2048", NULL}, 148 {4096, "4096", NULL}, 149 #if PAGE_SIZE > 4096 150 {8192, "8192", NULL}, 151 #if PAGE_SIZE > 8192 152 {16384, "16384", NULL}, 153 #if PAGE_SIZE > 16384 154 {32768, "32768", NULL}, 155 #if PAGE_SIZE > 32768 156 {65536, "65536", NULL}, 157 #if PAGE_SIZE > 65536 158 #error "Unsupported PAGE_SIZE" 159 #endif /* 65536 */ 160 #endif /* 32768 */ 161 #endif /* 16384 */ 162 #endif /* 8192 */ 163 #endif /* 4096 */ 164 {0, NULL}, 165 }; 166 167 /* 168 * Zone to allocate malloc type descriptions from. For ABI reasons, memory 169 * types are described by a data structure passed by the declaring code, but 170 * the malloc(9) implementation has its own data structure describing the 171 * type and statistics. This permits the malloc(9)-internal data structures 172 * to be modified without breaking binary-compiled kernel modules that 173 * declare malloc types. 174 */ 175 static uma_zone_t mt_zone; 176 177 u_int vm_kmem_size; 178 SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0, 179 "Size of kernel memory"); 180 181 u_int vm_kmem_size_min; 182 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RD, &vm_kmem_size_min, 0, 183 "Minimum size of kernel memory"); 184 185 u_int vm_kmem_size_max; 186 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0, 187 "Maximum size of kernel memory"); 188 189 u_int vm_kmem_size_scale; 190 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0, 191 "Scale factor for kernel memory size"); 192 193 /* 194 * The malloc_mtx protects the kmemstatistics linked list. 195 */ 196 struct mtx malloc_mtx; 197 198 #ifdef MALLOC_PROFILE 199 uint64_t krequests[KMEM_ZSIZE + 1]; 200 201 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 202 #endif 203 204 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 205 206 /* 207 * time_uptime of the last malloc(9) failure (induced or real). 208 */ 209 static time_t t_malloc_fail; 210 211 /* 212 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 213 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 214 */ 215 #ifdef MALLOC_MAKE_FAILURES 216 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 217 "Kernel malloc debugging options"); 218 219 static int malloc_failure_rate; 220 static int malloc_nowait_count; 221 static int malloc_failure_count; 222 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 223 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 224 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 225 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 226 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 227 #endif 228 229 int 230 malloc_last_fail(void) 231 { 232 233 return (time_uptime - t_malloc_fail); 234 } 235 236 /* 237 * An allocation has succeeded -- update malloc type statistics for the 238 * amount of bucket size. Occurs within a critical section so that the 239 * thread isn't preempted and doesn't migrate while updating per-PCU 240 * statistics. 241 */ 242 static void 243 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 244 int zindx) 245 { 246 struct malloc_type_internal *mtip; 247 struct malloc_type_stats *mtsp; 248 249 critical_enter(); 250 mtip = mtp->ks_handle; 251 mtsp = &mtip->mti_stats[curcpu]; 252 if (size > 0) { 253 mtsp->mts_memalloced += size; 254 mtsp->mts_numallocs++; 255 } 256 if (zindx != -1) 257 mtsp->mts_size |= 1 << zindx; 258 critical_exit(); 259 } 260 261 void 262 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 263 { 264 265 if (size > 0) 266 malloc_type_zone_allocated(mtp, size, -1); 267 } 268 269 /* 270 * A free operation has occurred -- update malloc type statistics for the 271 * amount of the bucket size. Occurs within a critical section so that the 272 * thread isn't preempted and doesn't migrate while updating per-CPU 273 * statistics. 274 */ 275 void 276 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 277 { 278 struct malloc_type_internal *mtip; 279 struct malloc_type_stats *mtsp; 280 281 critical_enter(); 282 mtip = mtp->ks_handle; 283 mtsp = &mtip->mti_stats[curcpu]; 284 mtsp->mts_memfreed += size; 285 mtsp->mts_numfrees++; 286 critical_exit(); 287 } 288 289 /* 290 * malloc: 291 * 292 * Allocate a block of memory. 293 * 294 * If M_NOWAIT is set, this routine will not block and return NULL if 295 * the allocation fails. 296 */ 297 void * 298 malloc(unsigned long size, struct malloc_type *mtp, int flags) 299 { 300 int indx; 301 caddr_t va; 302 uma_zone_t zone; 303 uma_keg_t keg; 304 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE) 305 unsigned long osize = size; 306 #endif 307 308 #ifdef INVARIANTS 309 /* 310 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 311 */ 312 indx = flags & (M_WAITOK | M_NOWAIT); 313 if (indx != M_NOWAIT && indx != M_WAITOK) { 314 static struct timeval lasterr; 315 static int curerr, once; 316 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 317 printf("Bad malloc flags: %x\n", indx); 318 kdb_backtrace(); 319 flags |= M_WAITOK; 320 once++; 321 } 322 } 323 #endif 324 #ifdef MALLOC_MAKE_FAILURES 325 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 326 atomic_add_int(&malloc_nowait_count, 1); 327 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 328 atomic_add_int(&malloc_failure_count, 1); 329 t_malloc_fail = time_uptime; 330 return (NULL); 331 } 332 } 333 #endif 334 if (flags & M_WAITOK) 335 KASSERT(curthread->td_intr_nesting_level == 0, 336 ("malloc(M_WAITOK) in interrupt context")); 337 338 #ifdef DEBUG_MEMGUARD 339 if (memguard_cmp(mtp)) 340 return memguard_alloc(size, flags); 341 #endif 342 343 #ifdef DEBUG_REDZONE 344 size = redzone_size_ntor(size); 345 #endif 346 347 if (size <= KMEM_ZMAX) { 348 if (size & KMEM_ZMASK) 349 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 350 indx = kmemsize[size >> KMEM_ZSHIFT]; 351 zone = kmemzones[indx].kz_zone; 352 keg = zone->uz_keg; 353 #ifdef MALLOC_PROFILE 354 krequests[size >> KMEM_ZSHIFT]++; 355 #endif 356 va = uma_zalloc(zone, flags); 357 if (va != NULL) 358 size = keg->uk_size; 359 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 360 } else { 361 size = roundup(size, PAGE_SIZE); 362 zone = NULL; 363 keg = NULL; 364 va = uma_large_malloc(size, flags); 365 malloc_type_allocated(mtp, va == NULL ? 0 : size); 366 } 367 if (flags & M_WAITOK) 368 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 369 else if (va == NULL) 370 t_malloc_fail = time_uptime; 371 #ifdef DIAGNOSTIC 372 if (va != NULL && !(flags & M_ZERO)) { 373 memset(va, 0x70, osize); 374 } 375 #endif 376 #ifdef DEBUG_REDZONE 377 if (va != NULL) 378 va = redzone_setup(va, osize); 379 #endif 380 return ((void *) va); 381 } 382 383 /* 384 * free: 385 * 386 * Free a block of memory allocated by malloc. 387 * 388 * This routine may not block. 389 */ 390 void 391 free(void *addr, struct malloc_type *mtp) 392 { 393 uma_slab_t slab; 394 u_long size; 395 396 /* free(NULL, ...) does nothing */ 397 if (addr == NULL) 398 return; 399 400 #ifdef DEBUG_MEMGUARD 401 if (memguard_cmp(mtp)) { 402 memguard_free(addr); 403 return; 404 } 405 #endif 406 407 #ifdef DEBUG_REDZONE 408 redzone_check(addr); 409 addr = redzone_addr_ntor(addr); 410 #endif 411 412 size = 0; 413 414 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 415 416 if (slab == NULL) 417 panic("free: address %p(%p) has not been allocated.\n", 418 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 419 420 421 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 422 #ifdef INVARIANTS 423 struct malloc_type **mtpp = addr; 424 #endif 425 size = slab->us_keg->uk_size; 426 #ifdef INVARIANTS 427 /* 428 * Cache a pointer to the malloc_type that most recently freed 429 * this memory here. This way we know who is most likely to 430 * have stepped on it later. 431 * 432 * This code assumes that size is a multiple of 8 bytes for 433 * 64 bit machines 434 */ 435 mtpp = (struct malloc_type **) 436 ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 437 mtpp += (size - sizeof(struct malloc_type *)) / 438 sizeof(struct malloc_type *); 439 *mtpp = mtp; 440 #endif 441 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); 442 } else { 443 size = slab->us_size; 444 uma_large_free(slab); 445 } 446 malloc_type_freed(mtp, size); 447 } 448 449 /* 450 * realloc: change the size of a memory block 451 */ 452 void * 453 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 454 { 455 uma_slab_t slab; 456 unsigned long alloc; 457 void *newaddr; 458 459 /* realloc(NULL, ...) is equivalent to malloc(...) */ 460 if (addr == NULL) 461 return (malloc(size, mtp, flags)); 462 463 /* 464 * XXX: Should report free of old memory and alloc of new memory to 465 * per-CPU stats. 466 */ 467 468 #ifdef DEBUG_MEMGUARD 469 if (memguard_cmp(mtp)) { 470 slab = NULL; 471 alloc = size; 472 } else { 473 #endif 474 475 #ifdef DEBUG_REDZONE 476 slab = NULL; 477 alloc = redzone_get_size(addr); 478 #else 479 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 480 481 /* Sanity check */ 482 KASSERT(slab != NULL, 483 ("realloc: address %p out of range", (void *)addr)); 484 485 /* Get the size of the original block */ 486 if (!(slab->us_flags & UMA_SLAB_MALLOC)) 487 alloc = slab->us_keg->uk_size; 488 else 489 alloc = slab->us_size; 490 491 /* Reuse the original block if appropriate */ 492 if (size <= alloc 493 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 494 return (addr); 495 #endif /* !DEBUG_REDZONE */ 496 497 #ifdef DEBUG_MEMGUARD 498 } 499 #endif 500 501 /* Allocate a new, bigger (or smaller) block */ 502 if ((newaddr = malloc(size, mtp, flags)) == NULL) 503 return (NULL); 504 505 /* Copy over original contents */ 506 bcopy(addr, newaddr, min(size, alloc)); 507 free(addr, mtp); 508 return (newaddr); 509 } 510 511 /* 512 * reallocf: same as realloc() but free memory on failure. 513 */ 514 void * 515 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) 516 { 517 void *mem; 518 519 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 520 free(addr, mtp); 521 return (mem); 522 } 523 524 /* 525 * Initialize the kernel memory allocator 526 */ 527 /* ARGSUSED*/ 528 static void 529 kmeminit(void *dummy) 530 { 531 u_int8_t indx; 532 u_long mem_size; 533 int i; 534 535 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 536 537 /* 538 * Try to auto-tune the kernel memory size, so that it is 539 * more applicable for a wider range of machine sizes. 540 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 541 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 542 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 543 * available, and on an X86 with a total KVA space of 256MB, 544 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 545 * 546 * Note that the kmem_map is also used by the zone allocator, 547 * so make sure that there is enough space. 548 */ 549 vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; 550 mem_size = cnt.v_page_count; 551 552 #if defined(VM_KMEM_SIZE_SCALE) 553 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 554 #endif 555 TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); 556 if (vm_kmem_size_scale > 0 && 557 (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) 558 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; 559 560 #if defined(VM_KMEM_SIZE_MIN) 561 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 562 #endif 563 TUNABLE_INT_FETCH("vm.kmem_size_min", &vm_kmem_size_min); 564 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) { 565 vm_kmem_size = vm_kmem_size_min; 566 } 567 568 #if defined(VM_KMEM_SIZE_MAX) 569 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 570 #endif 571 TUNABLE_INT_FETCH("vm.kmem_size_max", &vm_kmem_size_max); 572 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 573 vm_kmem_size = vm_kmem_size_max; 574 575 /* Allow final override from the kernel environment */ 576 #ifndef BURN_BRIDGES 577 if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0) 578 printf("kern.vm.kmem.size is now called vm.kmem_size!\n"); 579 #endif 580 TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size); 581 582 /* 583 * Limit kmem virtual size to twice the physical memory. 584 * This allows for kmem map sparseness, but limits the size 585 * to something sane. Be careful to not overflow the 32bit 586 * ints while doing the check. 587 */ 588 if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count) 589 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 590 591 /* 592 * Tune settings based on the kernel map's size at this time. 593 */ 594 init_param3(vm_kmem_size / PAGE_SIZE); 595 596 kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit, 597 vm_kmem_size); 598 kmem_map->system_map = 1; 599 600 #ifdef DEBUG_MEMGUARD 601 /* 602 * Initialize MemGuard if support compiled in. MemGuard is a 603 * replacement allocator used for detecting tamper-after-free 604 * scenarios as they occur. It is only used for debugging. 605 */ 606 vm_memguard_divisor = 10; 607 TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor); 608 609 /* Pick a conservative value if provided value sucks. */ 610 if ((vm_memguard_divisor <= 0) || 611 ((vm_kmem_size / vm_memguard_divisor) == 0)) 612 vm_memguard_divisor = 10; 613 memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor); 614 #endif 615 616 uma_startup2(); 617 618 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), 619 #ifdef INVARIANTS 620 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 621 #else 622 NULL, NULL, NULL, NULL, 623 #endif 624 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 625 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 626 int size = kmemzones[indx].kz_size; 627 char *name = kmemzones[indx].kz_name; 628 629 kmemzones[indx].kz_zone = uma_zcreate(name, size, 630 #ifdef INVARIANTS 631 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 632 #else 633 NULL, NULL, NULL, NULL, 634 #endif 635 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 636 637 for (;i <= size; i+= KMEM_ZBASE) 638 kmemsize[i >> KMEM_ZSHIFT] = indx; 639 640 } 641 } 642 643 void 644 malloc_init(void *data) 645 { 646 struct malloc_type_internal *mtip; 647 struct malloc_type *mtp; 648 649 KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init")); 650 651 mtp = data; 652 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); 653 mtp->ks_handle = mtip; 654 655 mtx_lock(&malloc_mtx); 656 mtp->ks_next = kmemstatistics; 657 kmemstatistics = mtp; 658 kmemcount++; 659 mtx_unlock(&malloc_mtx); 660 } 661 662 void 663 malloc_uninit(void *data) 664 { 665 struct malloc_type_internal *mtip; 666 struct malloc_type_stats *mtsp; 667 struct malloc_type *mtp, *temp; 668 uma_slab_t slab; 669 long temp_allocs, temp_bytes; 670 int i; 671 672 mtp = data; 673 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); 674 mtx_lock(&malloc_mtx); 675 mtip = mtp->ks_handle; 676 mtp->ks_handle = NULL; 677 if (mtp != kmemstatistics) { 678 for (temp = kmemstatistics; temp != NULL; 679 temp = temp->ks_next) { 680 if (temp->ks_next == mtp) 681 temp->ks_next = mtp->ks_next; 682 } 683 } else 684 kmemstatistics = mtp->ks_next; 685 kmemcount--; 686 mtx_unlock(&malloc_mtx); 687 688 /* 689 * Look for memory leaks. 690 */ 691 temp_allocs = temp_bytes = 0; 692 for (i = 0; i < MAXCPU; i++) { 693 mtsp = &mtip->mti_stats[i]; 694 temp_allocs += mtsp->mts_numallocs; 695 temp_allocs -= mtsp->mts_numfrees; 696 temp_bytes += mtsp->mts_memalloced; 697 temp_bytes -= mtsp->mts_memfreed; 698 } 699 if (temp_allocs > 0 || temp_bytes > 0) { 700 printf("Warning: memory type %s leaked memory on destroy " 701 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 702 temp_allocs, temp_bytes); 703 } 704 705 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); 706 uma_zfree_arg(mt_zone, mtip, slab); 707 } 708 709 struct malloc_type * 710 malloc_desc2type(const char *desc) 711 { 712 struct malloc_type *mtp; 713 714 mtx_assert(&malloc_mtx, MA_OWNED); 715 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 716 if (strcmp(mtp->ks_shortdesc, desc) == 0) 717 return (mtp); 718 } 719 return (NULL); 720 } 721 722 static int 723 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 724 { 725 struct malloc_type_stream_header mtsh; 726 struct malloc_type_internal *mtip; 727 struct malloc_type_header mth; 728 struct malloc_type *mtp; 729 int buflen, count, error, i; 730 struct sbuf sbuf; 731 char *buffer; 732 733 mtx_lock(&malloc_mtx); 734 restart: 735 mtx_assert(&malloc_mtx, MA_OWNED); 736 count = kmemcount; 737 mtx_unlock(&malloc_mtx); 738 buflen = sizeof(mtsh) + count * (sizeof(mth) + 739 sizeof(struct malloc_type_stats) * MAXCPU) + 1; 740 buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); 741 mtx_lock(&malloc_mtx); 742 if (count < kmemcount) { 743 free(buffer, M_TEMP); 744 goto restart; 745 } 746 747 sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); 748 749 /* 750 * Insert stream header. 751 */ 752 bzero(&mtsh, sizeof(mtsh)); 753 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 754 mtsh.mtsh_maxcpus = MAXCPU; 755 mtsh.mtsh_count = kmemcount; 756 if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) { 757 mtx_unlock(&malloc_mtx); 758 error = ENOMEM; 759 goto out; 760 } 761 762 /* 763 * Insert alternating sequence of type headers and type statistics. 764 */ 765 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 766 mtip = (struct malloc_type_internal *)mtp->ks_handle; 767 768 /* 769 * Insert type header. 770 */ 771 bzero(&mth, sizeof(mth)); 772 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 773 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) { 774 mtx_unlock(&malloc_mtx); 775 error = ENOMEM; 776 goto out; 777 } 778 779 /* 780 * Insert type statistics for each CPU. 781 */ 782 for (i = 0; i < MAXCPU; i++) { 783 if (sbuf_bcat(&sbuf, &mtip->mti_stats[i], 784 sizeof(mtip->mti_stats[i])) < 0) { 785 mtx_unlock(&malloc_mtx); 786 error = ENOMEM; 787 goto out; 788 } 789 } 790 } 791 mtx_unlock(&malloc_mtx); 792 sbuf_finish(&sbuf); 793 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 794 out: 795 sbuf_delete(&sbuf); 796 free(buffer, M_TEMP); 797 return (error); 798 } 799 800 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 801 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", 802 "Return malloc types"); 803 804 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 805 "Count of kernel malloc types"); 806 807 #ifdef DDB 808 DB_SHOW_COMMAND(malloc, db_show_malloc) 809 { 810 struct malloc_type_internal *mtip; 811 struct malloc_type *mtp; 812 u_int64_t allocs, frees; 813 u_int64_t alloced, freed; 814 int i; 815 816 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse", 817 "Requests"); 818 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 819 mtip = (struct malloc_type_internal *)mtp->ks_handle; 820 allocs = 0; 821 frees = 0; 822 alloced = 0; 823 freed = 0; 824 for (i = 0; i < MAXCPU; i++) { 825 allocs += mtip->mti_stats[i].mts_numallocs; 826 frees += mtip->mti_stats[i].mts_numfrees; 827 alloced += mtip->mti_stats[i].mts_memalloced; 828 freed += mtip->mti_stats[i].mts_memfreed; 829 } 830 db_printf("%18s %12ju %12juK %12ju\n", 831 mtp->ks_shortdesc, allocs - frees, 832 (alloced - freed + 1023) / 1024, allocs); 833 } 834 } 835 #endif 836 837 #ifdef MALLOC_PROFILE 838 839 static int 840 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 841 { 842 int linesize = 64; 843 struct sbuf sbuf; 844 uint64_t count; 845 uint64_t waste; 846 uint64_t mem; 847 int bufsize; 848 int error; 849 char *buf; 850 int rsize; 851 int size; 852 int i; 853 854 bufsize = linesize * (KMEM_ZSIZE + 1); 855 bufsize += 128; /* For the stats line */ 856 bufsize += 128; /* For the banner line */ 857 waste = 0; 858 mem = 0; 859 860 buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 861 sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); 862 sbuf_printf(&sbuf, 863 "\n Size Requests Real Size\n"); 864 for (i = 0; i < KMEM_ZSIZE; i++) { 865 size = i << KMEM_ZSHIFT; 866 rsize = kmemzones[kmemsize[i]].kz_size; 867 count = (long long unsigned)krequests[i]; 868 869 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, 870 (unsigned long long)count, rsize); 871 872 if ((rsize * count) > (size * count)) 873 waste += (rsize * count) - (size * count); 874 mem += (rsize * count); 875 } 876 sbuf_printf(&sbuf, 877 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 878 (unsigned long long)mem, (unsigned long long)waste); 879 sbuf_finish(&sbuf); 880 881 error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); 882 883 sbuf_delete(&sbuf); 884 free(buf, M_TEMP); 885 return (error); 886 } 887 888 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 889 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 890 #endif /* MALLOC_PROFILE */ 891