1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1987, 1991, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005-2009 Robert N. M. Watson 7 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray) 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 35 */ 36 37 /* 38 * Kernel malloc(9) implementation -- general purpose kernel memory allocator 39 * based on memory types. Back end is implemented using the UMA(9) zone 40 * allocator. A set of fixed-size buckets are used for smaller allocations, 41 * and a special UMA allocation interface is used for larger allocations. 42 * Callers declare memory types, and statistics are maintained independently 43 * for each memory type. Statistics are maintained per-CPU for performance 44 * reasons. See malloc(9) and comments in malloc.h for a detailed 45 * description. 46 */ 47 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include "opt_ddb.h" 52 #include "opt_vm.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/asan.h> 57 #include <sys/kdb.h> 58 #include <sys/kernel.h> 59 #include <sys/lock.h> 60 #include <sys/malloc.h> 61 #include <sys/mutex.h> 62 #include <sys/vmmeter.h> 63 #include <sys/proc.h> 64 #include <sys/queue.h> 65 #include <sys/sbuf.h> 66 #include <sys/smp.h> 67 #include <sys/sysctl.h> 68 #include <sys/time.h> 69 #include <sys/vmem.h> 70 #ifdef EPOCH_TRACE 71 #include <sys/epoch.h> 72 #endif 73 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #include <vm/vm_domainset.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_param.h> 79 #include <vm/vm_kern.h> 80 #include <vm/vm_extern.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_phys.h> 84 #include <vm/vm_pagequeue.h> 85 #include <vm/uma.h> 86 #include <vm/uma_int.h> 87 #include <vm/uma_dbg.h> 88 89 #ifdef DEBUG_MEMGUARD 90 #include <vm/memguard.h> 91 #endif 92 #ifdef DEBUG_REDZONE 93 #include <vm/redzone.h> 94 #endif 95 96 #if defined(INVARIANTS) && defined(__i386__) 97 #include <machine/cpu.h> 98 #endif 99 100 #include <ddb/ddb.h> 101 102 #ifdef KDTRACE_HOOKS 103 #include <sys/dtrace_bsd.h> 104 105 bool __read_frequently dtrace_malloc_enabled; 106 dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; 107 #endif 108 109 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ 110 defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) 111 #define MALLOC_DEBUG 1 112 #endif 113 114 #if defined(KASAN) || defined(DEBUG_REDZONE) 115 #define DEBUG_REDZONE_ARG_DEF , unsigned long osize 116 #define DEBUG_REDZONE_ARG , osize 117 #else 118 #define DEBUG_REDZONE_ARG_DEF 119 #define DEBUG_REDZONE_ARG 120 #endif 121 122 /* 123 * When realloc() is called, if the new size is sufficiently smaller than 124 * the old size, realloc() will allocate a new, smaller block to avoid 125 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 126 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 127 */ 128 #ifndef REALLOC_FRACTION 129 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 130 #endif 131 132 /* 133 * Centrally define some common malloc types. 134 */ 135 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 136 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 137 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 138 139 static struct malloc_type *kmemstatistics; 140 static int kmemcount; 141 142 #define KMEM_ZSHIFT 4 143 #define KMEM_ZBASE 16 144 #define KMEM_ZMASK (KMEM_ZBASE - 1) 145 146 #define KMEM_ZMAX 65536 147 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 148 static uint8_t kmemsize[KMEM_ZSIZE + 1]; 149 150 #ifndef MALLOC_DEBUG_MAXZONES 151 #define MALLOC_DEBUG_MAXZONES 1 152 #endif 153 static int numzones = MALLOC_DEBUG_MAXZONES; 154 155 /* 156 * Small malloc(9) memory allocations are allocated from a set of UMA buckets 157 * of various sizes. 158 * 159 * Warning: the layout of the struct is duplicated in libmemstat for KVM support. 160 * 161 * XXX: The comment here used to read "These won't be powers of two for 162 * long." It's possible that a significant amount of wasted memory could be 163 * recovered by tuning the sizes of these buckets. 164 */ 165 struct { 166 int kz_size; 167 const char *kz_name; 168 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; 169 } kmemzones[] = { 170 {16, "malloc-16", }, 171 {32, "malloc-32", }, 172 {64, "malloc-64", }, 173 {128, "malloc-128", }, 174 {256, "malloc-256", }, 175 {384, "malloc-384", }, 176 {512, "malloc-512", }, 177 {1024, "malloc-1024", }, 178 {2048, "malloc-2048", }, 179 {4096, "malloc-4096", }, 180 {8192, "malloc-8192", }, 181 {16384, "malloc-16384", }, 182 {32768, "malloc-32768", }, 183 {65536, "malloc-65536", }, 184 {0, NULL}, 185 }; 186 187 u_long vm_kmem_size; 188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, 189 "Size of kernel memory"); 190 191 static u_long kmem_zmax = KMEM_ZMAX; 192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, 193 "Maximum allocation size that malloc(9) would use UMA as backend"); 194 195 static u_long vm_kmem_size_min; 196 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, 197 "Minimum size of kernel memory"); 198 199 static u_long vm_kmem_size_max; 200 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, 201 "Maximum size of kernel memory"); 202 203 static u_int vm_kmem_size_scale; 204 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, 205 "Scale factor for kernel memory size"); 206 207 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); 208 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, 209 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 210 sysctl_kmem_map_size, "LU", "Current kmem allocation size"); 211 212 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); 213 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, 214 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, 215 sysctl_kmem_map_free, "LU", "Free space in kmem"); 216 217 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 218 "Malloc information"); 219 220 static u_int vm_malloc_zone_count = nitems(kmemzones); 221 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, 222 CTLFLAG_RD, &vm_malloc_zone_count, 0, 223 "Number of malloc zones"); 224 225 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); 226 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, 227 CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, 228 sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); 229 230 /* 231 * The malloc_mtx protects the kmemstatistics linked list. 232 */ 233 struct mtx malloc_mtx; 234 235 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); 236 237 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) 238 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 239 "Kernel malloc debugging options"); 240 #endif 241 242 /* 243 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when 244 * the caller specifies M_NOWAIT. If set to 0, no failures are caused. 245 */ 246 #ifdef MALLOC_MAKE_FAILURES 247 static int malloc_failure_rate; 248 static int malloc_nowait_count; 249 static int malloc_failure_count; 250 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, 251 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 252 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 253 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 254 #endif 255 256 static int 257 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) 258 { 259 u_long size; 260 261 size = uma_size(); 262 return (sysctl_handle_long(oidp, &size, 0, req)); 263 } 264 265 static int 266 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) 267 { 268 u_long size, limit; 269 270 /* The sysctl is unsigned, implement as a saturation value. */ 271 size = uma_size(); 272 limit = uma_limit(); 273 if (size > limit) 274 size = 0; 275 else 276 size = limit - size; 277 return (sysctl_handle_long(oidp, &size, 0, req)); 278 } 279 280 static int 281 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) 282 { 283 int sizes[nitems(kmemzones)]; 284 int i; 285 286 for (i = 0; i < nitems(kmemzones); i++) { 287 sizes[i] = kmemzones[i].kz_size; 288 } 289 290 return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); 291 } 292 293 /* 294 * malloc(9) uma zone separation -- sub-page buffer overruns in one 295 * malloc type will affect only a subset of other malloc types. 296 */ 297 #if MALLOC_DEBUG_MAXZONES > 1 298 static void 299 tunable_set_numzones(void) 300 { 301 302 TUNABLE_INT_FETCH("debug.malloc.numzones", 303 &numzones); 304 305 /* Sanity check the number of malloc uma zones. */ 306 if (numzones <= 0) 307 numzones = 1; 308 if (numzones > MALLOC_DEBUG_MAXZONES) 309 numzones = MALLOC_DEBUG_MAXZONES; 310 } 311 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); 312 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 313 &numzones, 0, "Number of malloc uma subzones"); 314 315 /* 316 * Any number that changes regularly is an okay choice for the 317 * offset. Build numbers are pretty good of you have them. 318 */ 319 static u_int zone_offset = __FreeBSD_version; 320 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); 321 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, 322 &zone_offset, 0, "Separate malloc types by examining the " 323 "Nth character in the malloc type short description."); 324 325 static void 326 mtp_set_subzone(struct malloc_type *mtp) 327 { 328 struct malloc_type_internal *mtip; 329 const char *desc; 330 size_t len; 331 u_int val; 332 333 mtip = &mtp->ks_mti; 334 desc = mtp->ks_shortdesc; 335 if (desc == NULL || (len = strlen(desc)) == 0) 336 val = 0; 337 else 338 val = desc[zone_offset % len]; 339 mtip->mti_zone = (val % numzones); 340 } 341 342 static inline u_int 343 mtp_get_subzone(struct malloc_type *mtp) 344 { 345 struct malloc_type_internal *mtip; 346 347 mtip = &mtp->ks_mti; 348 349 KASSERT(mtip->mti_zone < numzones, 350 ("mti_zone %u out of range %d", 351 mtip->mti_zone, numzones)); 352 return (mtip->mti_zone); 353 } 354 #elif MALLOC_DEBUG_MAXZONES == 0 355 #error "MALLOC_DEBUG_MAXZONES must be positive." 356 #else 357 static void 358 mtp_set_subzone(struct malloc_type *mtp) 359 { 360 struct malloc_type_internal *mtip; 361 362 mtip = &mtp->ks_mti; 363 mtip->mti_zone = 0; 364 } 365 366 static inline u_int 367 mtp_get_subzone(struct malloc_type *mtp) 368 { 369 370 return (0); 371 } 372 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 373 374 /* 375 * An allocation has succeeded -- update malloc type statistics for the 376 * amount of bucket size. Occurs within a critical section so that the 377 * thread isn't preempted and doesn't migrate while updating per-PCU 378 * statistics. 379 */ 380 static void 381 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, 382 int zindx) 383 { 384 struct malloc_type_internal *mtip; 385 struct malloc_type_stats *mtsp; 386 387 critical_enter(); 388 mtip = &mtp->ks_mti; 389 mtsp = zpcpu_get(mtip->mti_stats); 390 if (size > 0) { 391 mtsp->mts_memalloced += size; 392 mtsp->mts_numallocs++; 393 } 394 if (zindx != -1) 395 mtsp->mts_size |= 1 << zindx; 396 397 #ifdef KDTRACE_HOOKS 398 if (__predict_false(dtrace_malloc_enabled)) { 399 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; 400 if (probe_id != 0) 401 (dtrace_malloc_probe)(probe_id, 402 (uintptr_t) mtp, (uintptr_t) mtip, 403 (uintptr_t) mtsp, size, zindx); 404 } 405 #endif 406 407 critical_exit(); 408 } 409 410 void 411 malloc_type_allocated(struct malloc_type *mtp, unsigned long size) 412 { 413 414 if (size > 0) 415 malloc_type_zone_allocated(mtp, size, -1); 416 } 417 418 /* 419 * A free operation has occurred -- update malloc type statistics for the 420 * amount of the bucket size. Occurs within a critical section so that the 421 * thread isn't preempted and doesn't migrate while updating per-CPU 422 * statistics. 423 */ 424 void 425 malloc_type_freed(struct malloc_type *mtp, unsigned long size) 426 { 427 struct malloc_type_internal *mtip; 428 struct malloc_type_stats *mtsp; 429 430 critical_enter(); 431 mtip = &mtp->ks_mti; 432 mtsp = zpcpu_get(mtip->mti_stats); 433 mtsp->mts_memfreed += size; 434 mtsp->mts_numfrees++; 435 436 #ifdef KDTRACE_HOOKS 437 if (__predict_false(dtrace_malloc_enabled)) { 438 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; 439 if (probe_id != 0) 440 (dtrace_malloc_probe)(probe_id, 441 (uintptr_t) mtp, (uintptr_t) mtip, 442 (uintptr_t) mtsp, size, 0); 443 } 444 #endif 445 446 critical_exit(); 447 } 448 449 /* 450 * contigmalloc: 451 * 452 * Allocate a block of physically contiguous memory. 453 * 454 * If M_NOWAIT is set, this routine will not block and return NULL if 455 * the allocation fails. 456 */ 457 void * 458 contigmalloc(unsigned long size, struct malloc_type *type, int flags, 459 vm_paddr_t low, vm_paddr_t high, unsigned long alignment, 460 vm_paddr_t boundary) 461 { 462 void *ret; 463 464 ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, 465 boundary, VM_MEMATTR_DEFAULT); 466 if (ret != NULL) 467 malloc_type_allocated(type, round_page(size)); 468 return (ret); 469 } 470 471 void * 472 contigmalloc_domainset(unsigned long size, struct malloc_type *type, 473 struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, 474 unsigned long alignment, vm_paddr_t boundary) 475 { 476 void *ret; 477 478 ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, 479 alignment, boundary, VM_MEMATTR_DEFAULT); 480 if (ret != NULL) 481 malloc_type_allocated(type, round_page(size)); 482 return (ret); 483 } 484 485 /* 486 * contigfree: 487 * 488 * Free a block of memory allocated by contigmalloc. 489 * 490 * This routine may not block. 491 */ 492 void 493 contigfree(void *addr, unsigned long size, struct malloc_type *type) 494 { 495 496 kmem_free((vm_offset_t)addr, size); 497 malloc_type_freed(type, round_page(size)); 498 } 499 500 #ifdef MALLOC_DEBUG 501 static int 502 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, 503 int flags) 504 { 505 #ifdef INVARIANTS 506 int indx; 507 508 KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); 509 /* 510 * Check that exactly one of M_WAITOK or M_NOWAIT is specified. 511 */ 512 indx = flags & (M_WAITOK | M_NOWAIT); 513 if (indx != M_NOWAIT && indx != M_WAITOK) { 514 static struct timeval lasterr; 515 static int curerr, once; 516 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 517 printf("Bad malloc flags: %x\n", indx); 518 kdb_backtrace(); 519 flags |= M_WAITOK; 520 once++; 521 } 522 } 523 #endif 524 #ifdef MALLOC_MAKE_FAILURES 525 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 526 atomic_add_int(&malloc_nowait_count, 1); 527 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 528 atomic_add_int(&malloc_failure_count, 1); 529 *vap = NULL; 530 return (EJUSTRETURN); 531 } 532 } 533 #endif 534 if (flags & M_WAITOK) { 535 KASSERT(curthread->td_intr_nesting_level == 0, 536 ("malloc(M_WAITOK) in interrupt context")); 537 if (__predict_false(!THREAD_CAN_SLEEP())) { 538 #ifdef EPOCH_TRACE 539 epoch_trace_list(curthread); 540 #endif 541 KASSERT(0, 542 ("malloc(M_WAITOK) with sleeping prohibited")); 543 } 544 } 545 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 546 ("malloc: called with spinlock or critical section held")); 547 548 #ifdef DEBUG_MEMGUARD 549 if (memguard_cmp_mtp(mtp, *sizep)) { 550 *vap = memguard_alloc(*sizep, flags); 551 if (*vap != NULL) 552 return (EJUSTRETURN); 553 /* This is unfortunate but should not be fatal. */ 554 } 555 #endif 556 557 #ifdef DEBUG_REDZONE 558 *sizep = redzone_size_ntor(*sizep); 559 #endif 560 561 return (0); 562 } 563 #endif 564 565 /* 566 * Handle large allocations and frees by using kmem_malloc directly. 567 */ 568 static inline bool 569 malloc_large_slab(uma_slab_t slab) 570 { 571 uintptr_t va; 572 573 va = (uintptr_t)slab; 574 return ((va & 1) != 0); 575 } 576 577 static inline size_t 578 malloc_large_size(uma_slab_t slab) 579 { 580 uintptr_t va; 581 582 va = (uintptr_t)slab; 583 return (va >> 1); 584 } 585 586 static caddr_t __noinline 587 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy, 588 int flags DEBUG_REDZONE_ARG_DEF) 589 { 590 vm_offset_t kva; 591 caddr_t va; 592 593 size = roundup(size, PAGE_SIZE); 594 kva = kmem_malloc_domainset(policy, size, flags); 595 if (kva != 0) { 596 /* The low bit is unused for slab pointers. */ 597 vsetzoneslab(kva, NULL, (void *)((size << 1) | 1)); 598 uma_total_inc(size); 599 } 600 va = (caddr_t)kva; 601 malloc_type_allocated(mtp, va == NULL ? 0 : size); 602 if (__predict_false(va == NULL)) { 603 KASSERT((flags & M_WAITOK) == 0, 604 ("malloc(M_WAITOK) returned NULL")); 605 } else { 606 #ifdef DEBUG_REDZONE 607 va = redzone_setup(va, osize); 608 #endif 609 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 610 } 611 return (va); 612 } 613 614 static void 615 free_large(void *addr, size_t size) 616 { 617 618 kmem_free((vm_offset_t)addr, size); 619 uma_total_dec(size); 620 } 621 622 /* 623 * malloc: 624 * 625 * Allocate a block of memory. 626 * 627 * If M_NOWAIT is set, this routine will not block and return NULL if 628 * the allocation fails. 629 */ 630 void * 631 (malloc)(size_t size, struct malloc_type *mtp, int flags) 632 { 633 int indx; 634 caddr_t va; 635 uma_zone_t zone; 636 #if defined(DEBUG_REDZONE) || defined(KASAN) 637 unsigned long osize = size; 638 #endif 639 640 MPASS((flags & M_EXEC) == 0); 641 642 #ifdef MALLOC_DEBUG 643 va = NULL; 644 if (malloc_dbg(&va, &size, mtp, flags) != 0) 645 return (va); 646 #endif 647 648 if (__predict_false(size > kmem_zmax)) 649 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 650 DEBUG_REDZONE_ARG)); 651 652 if (size & KMEM_ZMASK) 653 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 654 indx = kmemsize[size >> KMEM_ZSHIFT]; 655 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 656 va = uma_zalloc(zone, flags); 657 if (va != NULL) 658 size = zone->uz_size; 659 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 660 if (__predict_false(va == NULL)) { 661 KASSERT((flags & M_WAITOK) == 0, 662 ("malloc(M_WAITOK) returned NULL")); 663 } 664 #ifdef DEBUG_REDZONE 665 if (va != NULL) 666 va = redzone_setup(va, osize); 667 #endif 668 #ifdef KASAN 669 if (va != NULL) 670 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 671 #endif 672 return ((void *) va); 673 } 674 675 static void * 676 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, 677 int flags) 678 { 679 uma_zone_t zone; 680 caddr_t va; 681 size_t size; 682 int indx; 683 684 size = *sizep; 685 KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, 686 ("malloc_domain: Called with bad flag / size combination.")); 687 if (size & KMEM_ZMASK) 688 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 689 indx = kmemsize[size >> KMEM_ZSHIFT]; 690 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; 691 va = uma_zalloc_domain(zone, NULL, domain, flags); 692 if (va != NULL) 693 *sizep = zone->uz_size; 694 *indxp = indx; 695 return ((void *)va); 696 } 697 698 void * 699 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, 700 int flags) 701 { 702 struct vm_domainset_iter di; 703 caddr_t va; 704 int domain; 705 int indx; 706 #if defined(KASAN) || defined(DEBUG_REDZONE) 707 unsigned long osize = size; 708 #endif 709 710 MPASS((flags & M_EXEC) == 0); 711 712 #ifdef MALLOC_DEBUG 713 va = NULL; 714 if (malloc_dbg(&va, &size, mtp, flags) != 0) 715 return (va); 716 #endif 717 718 if (__predict_false(size > kmem_zmax)) 719 return (malloc_large(size, mtp, DOMAINSET_RR(), flags 720 DEBUG_REDZONE_ARG)); 721 722 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 723 do { 724 va = malloc_domain(&size, &indx, mtp, domain, flags); 725 } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); 726 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); 727 if (__predict_false(va == NULL)) { 728 KASSERT((flags & M_WAITOK) == 0, 729 ("malloc(M_WAITOK) returned NULL")); 730 } 731 #ifdef DEBUG_REDZONE 732 if (va != NULL) 733 va = redzone_setup(va, osize); 734 #endif 735 #ifdef KASAN 736 if (va != NULL) 737 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE); 738 #endif 739 return (va); 740 } 741 742 /* 743 * Allocate an executable area. 744 */ 745 void * 746 malloc_exec(size_t size, struct malloc_type *mtp, int flags) 747 { 748 749 return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); 750 } 751 752 void * 753 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, 754 int flags) 755 { 756 #if defined(DEBUG_REDZONE) || defined(KASAN) 757 unsigned long osize = size; 758 #endif 759 #ifdef MALLOC_DEBUG 760 caddr_t va; 761 #endif 762 763 flags |= M_EXEC; 764 765 #ifdef MALLOC_DEBUG 766 va = NULL; 767 if (malloc_dbg(&va, &size, mtp, flags) != 0) 768 return (va); 769 #endif 770 771 return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG)); 772 } 773 774 void * 775 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags) 776 { 777 return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(), 778 flags)); 779 } 780 781 void * 782 malloc_domainset_aligned(size_t size, size_t align, 783 struct malloc_type *mtp, struct domainset *ds, int flags) 784 { 785 void *res; 786 size_t asize; 787 788 KASSERT(align != 0 && powerof2(align), 789 ("malloc_domainset_aligned: wrong align %#zx size %#zx", 790 align, size)); 791 KASSERT(align <= PAGE_SIZE, 792 ("malloc_domainset_aligned: align %#zx (size %#zx) too large", 793 align, size)); 794 795 /* 796 * Round the allocation size up to the next power of 2, 797 * because we can only guarantee alignment for 798 * power-of-2-sized allocations. Further increase the 799 * allocation size to align if the rounded size is less than 800 * align, since malloc zones provide alignment equal to their 801 * size. 802 */ 803 asize = size <= align ? align : 1UL << flsl(size - 1); 804 805 res = malloc_domainset(asize, mtp, ds, flags); 806 KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, 807 ("malloc_domainset_aligned: result not aligned %p size %#zx " 808 "allocsize %#zx align %#zx", res, size, asize, align)); 809 return (res); 810 } 811 812 void * 813 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) 814 { 815 816 if (WOULD_OVERFLOW(nmemb, size)) 817 panic("mallocarray: %zu * %zu overflowed", nmemb, size); 818 819 return (malloc(size * nmemb, type, flags)); 820 } 821 822 void * 823 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, 824 struct domainset *ds, int flags) 825 { 826 827 if (WOULD_OVERFLOW(nmemb, size)) 828 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); 829 830 return (malloc_domainset(size * nmemb, type, ds, flags)); 831 } 832 833 #if defined(INVARIANTS) && !defined(KASAN) 834 static void 835 free_save_type(void *addr, struct malloc_type *mtp, u_long size) 836 { 837 struct malloc_type **mtpp = addr; 838 839 /* 840 * Cache a pointer to the malloc_type that most recently freed 841 * this memory here. This way we know who is most likely to 842 * have stepped on it later. 843 * 844 * This code assumes that size is a multiple of 8 bytes for 845 * 64 bit machines 846 */ 847 mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); 848 mtpp += (size - sizeof(struct malloc_type *)) / 849 sizeof(struct malloc_type *); 850 *mtpp = mtp; 851 } 852 #endif 853 854 #ifdef MALLOC_DEBUG 855 static int 856 free_dbg(void **addrp, struct malloc_type *mtp) 857 { 858 void *addr; 859 860 addr = *addrp; 861 KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); 862 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 863 ("free: called with spinlock or critical section held")); 864 865 /* free(NULL, ...) does nothing */ 866 if (addr == NULL) 867 return (EJUSTRETURN); 868 869 #ifdef DEBUG_MEMGUARD 870 if (is_memguard_addr(addr)) { 871 memguard_free(addr); 872 return (EJUSTRETURN); 873 } 874 #endif 875 876 #ifdef DEBUG_REDZONE 877 redzone_check(addr); 878 *addrp = redzone_addr_ntor(addr); 879 #endif 880 881 return (0); 882 } 883 #endif 884 885 /* 886 * free: 887 * 888 * Free a block of memory allocated by malloc. 889 * 890 * This routine may not block. 891 */ 892 void 893 free(void *addr, struct malloc_type *mtp) 894 { 895 uma_zone_t zone; 896 uma_slab_t slab; 897 u_long size; 898 899 #ifdef MALLOC_DEBUG 900 if (free_dbg(&addr, mtp) != 0) 901 return; 902 #endif 903 /* free(NULL, ...) does nothing */ 904 if (addr == NULL) 905 return; 906 907 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 908 if (slab == NULL) 909 panic("free: address %p(%p) has not been allocated.\n", 910 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 911 912 if (__predict_true(!malloc_large_slab(slab))) { 913 size = zone->uz_size; 914 #if defined(INVARIANTS) && !defined(KASAN) 915 free_save_type(addr, mtp, size); 916 #endif 917 uma_zfree_arg(zone, addr, slab); 918 } else { 919 size = malloc_large_size(slab); 920 free_large(addr, size); 921 } 922 malloc_type_freed(mtp, size); 923 } 924 925 /* 926 * zfree: 927 * 928 * Zero then free a block of memory allocated by malloc. 929 * 930 * This routine may not block. 931 */ 932 void 933 zfree(void *addr, struct malloc_type *mtp) 934 { 935 uma_zone_t zone; 936 uma_slab_t slab; 937 u_long size; 938 939 #ifdef MALLOC_DEBUG 940 if (free_dbg(&addr, mtp) != 0) 941 return; 942 #endif 943 /* free(NULL, ...) does nothing */ 944 if (addr == NULL) 945 return; 946 947 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 948 if (slab == NULL) 949 panic("free: address %p(%p) has not been allocated.\n", 950 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 951 952 if (__predict_true(!malloc_large_slab(slab))) { 953 size = zone->uz_size; 954 #if defined(INVARIANTS) && !defined(KASAN) 955 free_save_type(addr, mtp, size); 956 #endif 957 kasan_mark(addr, size, size, 0); 958 explicit_bzero(addr, size); 959 uma_zfree_arg(zone, addr, slab); 960 } else { 961 size = malloc_large_size(slab); 962 kasan_mark(addr, size, size, 0); 963 explicit_bzero(addr, size); 964 free_large(addr, size); 965 } 966 malloc_type_freed(mtp, size); 967 } 968 969 /* 970 * realloc: change the size of a memory block 971 */ 972 void * 973 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) 974 { 975 uma_zone_t zone; 976 uma_slab_t slab; 977 unsigned long alloc; 978 void *newaddr; 979 980 KASSERT(mtp->ks_version == M_VERSION, 981 ("realloc: bad malloc type version")); 982 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 983 ("realloc: called with spinlock or critical section held")); 984 985 /* realloc(NULL, ...) is equivalent to malloc(...) */ 986 if (addr == NULL) 987 return (malloc(size, mtp, flags)); 988 989 /* 990 * XXX: Should report free of old memory and alloc of new memory to 991 * per-CPU stats. 992 */ 993 994 #ifdef DEBUG_MEMGUARD 995 if (is_memguard_addr(addr)) 996 return (memguard_realloc(addr, size, mtp, flags)); 997 #endif 998 999 #ifdef DEBUG_REDZONE 1000 slab = NULL; 1001 zone = NULL; 1002 alloc = redzone_get_size(addr); 1003 #else 1004 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1005 1006 /* Sanity check */ 1007 KASSERT(slab != NULL, 1008 ("realloc: address %p out of range", (void *)addr)); 1009 1010 /* Get the size of the original block */ 1011 if (!malloc_large_slab(slab)) 1012 alloc = zone->uz_size; 1013 else 1014 alloc = malloc_large_size(slab); 1015 1016 /* Reuse the original block if appropriate */ 1017 if (size <= alloc && 1018 (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) { 1019 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE); 1020 return (addr); 1021 } 1022 #endif /* !DEBUG_REDZONE */ 1023 1024 /* Allocate a new, bigger (or smaller) block */ 1025 if ((newaddr = malloc(size, mtp, flags)) == NULL) 1026 return (NULL); 1027 1028 /* 1029 * Copy over original contents. For KASAN, the redzone must be marked 1030 * valid before performing the copy. 1031 */ 1032 kasan_mark(addr, alloc, alloc, 0); 1033 bcopy(addr, newaddr, min(size, alloc)); 1034 free(addr, mtp); 1035 return (newaddr); 1036 } 1037 1038 /* 1039 * reallocf: same as realloc() but free memory on failure. 1040 */ 1041 void * 1042 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) 1043 { 1044 void *mem; 1045 1046 if ((mem = realloc(addr, size, mtp, flags)) == NULL) 1047 free(addr, mtp); 1048 return (mem); 1049 } 1050 1051 /* 1052 * malloc_size: returns the number of bytes allocated for a request of the 1053 * specified size 1054 */ 1055 size_t 1056 malloc_size(size_t size) 1057 { 1058 int indx; 1059 1060 if (size > kmem_zmax) 1061 return (0); 1062 if (size & KMEM_ZMASK) 1063 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 1064 indx = kmemsize[size >> KMEM_ZSHIFT]; 1065 return (kmemzones[indx].kz_size); 1066 } 1067 1068 /* 1069 * malloc_usable_size: returns the usable size of the allocation. 1070 */ 1071 size_t 1072 malloc_usable_size(const void *addr) 1073 { 1074 #ifndef DEBUG_REDZONE 1075 uma_zone_t zone; 1076 uma_slab_t slab; 1077 #endif 1078 u_long size; 1079 1080 if (addr == NULL) 1081 return (0); 1082 1083 #ifdef DEBUG_MEMGUARD 1084 if (is_memguard_addr(__DECONST(void *, addr))) 1085 return (memguard_get_req_size(addr)); 1086 #endif 1087 1088 #ifdef DEBUG_REDZONE 1089 size = redzone_get_size(__DECONST(void *, addr)); 1090 #else 1091 vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); 1092 if (slab == NULL) 1093 panic("malloc_usable_size: address %p(%p) is not allocated.\n", 1094 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 1095 1096 if (!malloc_large_slab(slab)) 1097 size = zone->uz_size; 1098 else 1099 size = malloc_large_size(slab); 1100 #endif 1101 return (size); 1102 } 1103 1104 CTASSERT(VM_KMEM_SIZE_SCALE >= 1); 1105 1106 /* 1107 * Initialize the kernel memory (kmem) arena. 1108 */ 1109 void 1110 kmeminit(void) 1111 { 1112 u_long mem_size; 1113 u_long tmp; 1114 1115 #ifdef VM_KMEM_SIZE 1116 if (vm_kmem_size == 0) 1117 vm_kmem_size = VM_KMEM_SIZE; 1118 #endif 1119 #ifdef VM_KMEM_SIZE_MIN 1120 if (vm_kmem_size_min == 0) 1121 vm_kmem_size_min = VM_KMEM_SIZE_MIN; 1122 #endif 1123 #ifdef VM_KMEM_SIZE_MAX 1124 if (vm_kmem_size_max == 0) 1125 vm_kmem_size_max = VM_KMEM_SIZE_MAX; 1126 #endif 1127 /* 1128 * Calculate the amount of kernel virtual address (KVA) space that is 1129 * preallocated to the kmem arena. In order to support a wide range 1130 * of machines, it is a function of the physical memory size, 1131 * specifically, 1132 * 1133 * min(max(physical memory size / VM_KMEM_SIZE_SCALE, 1134 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) 1135 * 1136 * Every architecture must define an integral value for 1137 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN 1138 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and 1139 * ceiling on this preallocation, are optional. Typically, 1140 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on 1141 * a given architecture. 1142 */ 1143 mem_size = vm_cnt.v_page_count; 1144 if (mem_size <= 32768) /* delphij XXX 128MB */ 1145 kmem_zmax = PAGE_SIZE; 1146 1147 if (vm_kmem_size_scale < 1) 1148 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; 1149 1150 /* 1151 * Check if we should use defaults for the "vm_kmem_size" 1152 * variable: 1153 */ 1154 if (vm_kmem_size == 0) { 1155 vm_kmem_size = mem_size / vm_kmem_size_scale; 1156 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? 1157 vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; 1158 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) 1159 vm_kmem_size = vm_kmem_size_min; 1160 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) 1161 vm_kmem_size = vm_kmem_size_max; 1162 } 1163 if (vm_kmem_size == 0) 1164 panic("Tune VM_KMEM_SIZE_* for the platform"); 1165 1166 /* 1167 * The amount of KVA space that is preallocated to the 1168 * kmem arena can be set statically at compile-time or manually 1169 * through the kernel environment. However, it is still limited to 1170 * twice the physical memory size, which has been sufficient to handle 1171 * the most severe cases of external fragmentation in the kmem arena. 1172 */ 1173 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) 1174 vm_kmem_size = 2 * mem_size * PAGE_SIZE; 1175 1176 vm_kmem_size = round_page(vm_kmem_size); 1177 1178 #ifdef KASAN 1179 /* 1180 * With KASAN enabled, dynamically allocated kernel memory is shadowed. 1181 * Account for this when setting the UMA limit. 1182 */ 1183 vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) / 1184 (KASAN_SHADOW_SCALE + 1); 1185 #endif 1186 1187 #ifdef DEBUG_MEMGUARD 1188 tmp = memguard_fudge(vm_kmem_size, kernel_map); 1189 #else 1190 tmp = vm_kmem_size; 1191 #endif 1192 uma_set_limit(tmp); 1193 1194 #ifdef DEBUG_MEMGUARD 1195 /* 1196 * Initialize MemGuard if support compiled in. MemGuard is a 1197 * replacement allocator used for detecting tamper-after-free 1198 * scenarios as they occur. It is only used for debugging. 1199 */ 1200 memguard_init(kernel_arena); 1201 #endif 1202 } 1203 1204 /* 1205 * Initialize the kernel memory allocator 1206 */ 1207 /* ARGSUSED*/ 1208 static void 1209 mallocinit(void *dummy) 1210 { 1211 int i; 1212 uint8_t indx; 1213 1214 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 1215 1216 kmeminit(); 1217 1218 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) 1219 kmem_zmax = KMEM_ZMAX; 1220 1221 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 1222 int size = kmemzones[indx].kz_size; 1223 const char *name = kmemzones[indx].kz_name; 1224 size_t align; 1225 int subzone; 1226 1227 align = UMA_ALIGN_PTR; 1228 if (powerof2(size) && size > sizeof(void *)) 1229 align = MIN(size, PAGE_SIZE) - 1; 1230 for (subzone = 0; subzone < numzones; subzone++) { 1231 kmemzones[indx].kz_zone[subzone] = 1232 uma_zcreate(name, size, 1233 #if defined(INVARIANTS) && !defined(KASAN) 1234 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 1235 #else 1236 NULL, NULL, NULL, NULL, 1237 #endif 1238 align, UMA_ZONE_MALLOC); 1239 } 1240 for (;i <= size; i+= KMEM_ZBASE) 1241 kmemsize[i >> KMEM_ZSHIFT] = indx; 1242 } 1243 } 1244 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); 1245 1246 void 1247 malloc_init(void *data) 1248 { 1249 struct malloc_type_internal *mtip; 1250 struct malloc_type *mtp; 1251 1252 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); 1253 1254 mtp = data; 1255 if (mtp->ks_version != M_VERSION) 1256 panic("malloc_init: type %s with unsupported version %lu", 1257 mtp->ks_shortdesc, mtp->ks_version); 1258 1259 mtip = &mtp->ks_mti; 1260 mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); 1261 mtp_set_subzone(mtp); 1262 1263 mtx_lock(&malloc_mtx); 1264 mtp->ks_next = kmemstatistics; 1265 kmemstatistics = mtp; 1266 kmemcount++; 1267 mtx_unlock(&malloc_mtx); 1268 } 1269 1270 void 1271 malloc_uninit(void *data) 1272 { 1273 struct malloc_type_internal *mtip; 1274 struct malloc_type_stats *mtsp; 1275 struct malloc_type *mtp, *temp; 1276 long temp_allocs, temp_bytes; 1277 int i; 1278 1279 mtp = data; 1280 KASSERT(mtp->ks_version == M_VERSION, 1281 ("malloc_uninit: bad malloc type version")); 1282 1283 mtx_lock(&malloc_mtx); 1284 mtip = &mtp->ks_mti; 1285 if (mtp != kmemstatistics) { 1286 for (temp = kmemstatistics; temp != NULL; 1287 temp = temp->ks_next) { 1288 if (temp->ks_next == mtp) { 1289 temp->ks_next = mtp->ks_next; 1290 break; 1291 } 1292 } 1293 KASSERT(temp, 1294 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); 1295 } else 1296 kmemstatistics = mtp->ks_next; 1297 kmemcount--; 1298 mtx_unlock(&malloc_mtx); 1299 1300 /* 1301 * Look for memory leaks. 1302 */ 1303 temp_allocs = temp_bytes = 0; 1304 for (i = 0; i <= mp_maxid; i++) { 1305 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1306 temp_allocs += mtsp->mts_numallocs; 1307 temp_allocs -= mtsp->mts_numfrees; 1308 temp_bytes += mtsp->mts_memalloced; 1309 temp_bytes -= mtsp->mts_memfreed; 1310 } 1311 if (temp_allocs > 0 || temp_bytes > 0) { 1312 printf("Warning: memory type %s leaked memory on destroy " 1313 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, 1314 temp_allocs, temp_bytes); 1315 } 1316 1317 uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); 1318 } 1319 1320 struct malloc_type * 1321 malloc_desc2type(const char *desc) 1322 { 1323 struct malloc_type *mtp; 1324 1325 mtx_assert(&malloc_mtx, MA_OWNED); 1326 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1327 if (strcmp(mtp->ks_shortdesc, desc) == 0) 1328 return (mtp); 1329 } 1330 return (NULL); 1331 } 1332 1333 static int 1334 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) 1335 { 1336 struct malloc_type_stream_header mtsh; 1337 struct malloc_type_internal *mtip; 1338 struct malloc_type_stats *mtsp, zeromts; 1339 struct malloc_type_header mth; 1340 struct malloc_type *mtp; 1341 int error, i; 1342 struct sbuf sbuf; 1343 1344 error = sysctl_wire_old_buffer(req, 0); 1345 if (error != 0) 1346 return (error); 1347 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 1348 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 1349 mtx_lock(&malloc_mtx); 1350 1351 bzero(&zeromts, sizeof(zeromts)); 1352 1353 /* 1354 * Insert stream header. 1355 */ 1356 bzero(&mtsh, sizeof(mtsh)); 1357 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; 1358 mtsh.mtsh_maxcpus = MAXCPU; 1359 mtsh.mtsh_count = kmemcount; 1360 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); 1361 1362 /* 1363 * Insert alternating sequence of type headers and type statistics. 1364 */ 1365 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1366 mtip = &mtp->ks_mti; 1367 1368 /* 1369 * Insert type header. 1370 */ 1371 bzero(&mth, sizeof(mth)); 1372 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); 1373 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); 1374 1375 /* 1376 * Insert type statistics for each CPU. 1377 */ 1378 for (i = 0; i <= mp_maxid; i++) { 1379 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1380 (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); 1381 } 1382 /* 1383 * Fill in the missing CPUs. 1384 */ 1385 for (; i < MAXCPU; i++) { 1386 (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); 1387 } 1388 } 1389 mtx_unlock(&malloc_mtx); 1390 error = sbuf_finish(&sbuf); 1391 sbuf_delete(&sbuf); 1392 return (error); 1393 } 1394 1395 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, 1396 CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, 1397 sysctl_kern_malloc_stats, "s,malloc_type_ustats", 1398 "Return malloc types"); 1399 1400 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, 1401 "Count of kernel malloc types"); 1402 1403 void 1404 malloc_type_list(malloc_type_list_func_t *func, void *arg) 1405 { 1406 struct malloc_type *mtp, **bufmtp; 1407 int count, i; 1408 size_t buflen; 1409 1410 mtx_lock(&malloc_mtx); 1411 restart: 1412 mtx_assert(&malloc_mtx, MA_OWNED); 1413 count = kmemcount; 1414 mtx_unlock(&malloc_mtx); 1415 1416 buflen = sizeof(struct malloc_type *) * count; 1417 bufmtp = malloc(buflen, M_TEMP, M_WAITOK); 1418 1419 mtx_lock(&malloc_mtx); 1420 1421 if (count < kmemcount) { 1422 free(bufmtp, M_TEMP); 1423 goto restart; 1424 } 1425 1426 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) 1427 bufmtp[i] = mtp; 1428 1429 mtx_unlock(&malloc_mtx); 1430 1431 for (i = 0; i < count; i++) 1432 (func)(bufmtp[i], arg); 1433 1434 free(bufmtp, M_TEMP); 1435 } 1436 1437 #ifdef DDB 1438 static int64_t 1439 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, 1440 uint64_t *inuse) 1441 { 1442 const struct malloc_type_stats *mtsp; 1443 uint64_t frees, alloced, freed; 1444 int i; 1445 1446 *allocs = 0; 1447 frees = 0; 1448 alloced = 0; 1449 freed = 0; 1450 for (i = 0; i <= mp_maxid; i++) { 1451 mtsp = zpcpu_get_cpu(mtip->mti_stats, i); 1452 1453 *allocs += mtsp->mts_numallocs; 1454 frees += mtsp->mts_numfrees; 1455 alloced += mtsp->mts_memalloced; 1456 freed += mtsp->mts_memfreed; 1457 } 1458 *inuse = *allocs - frees; 1459 return (alloced - freed); 1460 } 1461 1462 DB_SHOW_COMMAND(malloc, db_show_malloc) 1463 { 1464 const char *fmt_hdr, *fmt_entry; 1465 struct malloc_type *mtp; 1466 uint64_t allocs, inuse; 1467 int64_t size; 1468 /* variables for sorting */ 1469 struct malloc_type *last_mtype, *cur_mtype; 1470 int64_t cur_size, last_size; 1471 int ties; 1472 1473 if (modif[0] == 'i') { 1474 fmt_hdr = "%s,%s,%s,%s\n"; 1475 fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; 1476 } else { 1477 fmt_hdr = "%18s %12s %12s %12s\n"; 1478 fmt_entry = "%18s %12ju %12jdK %12ju\n"; 1479 } 1480 1481 db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); 1482 1483 /* Select sort, largest size first. */ 1484 last_mtype = NULL; 1485 last_size = INT64_MAX; 1486 for (;;) { 1487 cur_mtype = NULL; 1488 cur_size = -1; 1489 ties = 0; 1490 1491 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1492 /* 1493 * In the case of size ties, print out mtypes 1494 * in the order they are encountered. That is, 1495 * when we encounter the most recently output 1496 * mtype, we have already printed all preceding 1497 * ties, and we must print all following ties. 1498 */ 1499 if (mtp == last_mtype) { 1500 ties = 1; 1501 continue; 1502 } 1503 size = get_malloc_stats(&mtp->ks_mti, &allocs, 1504 &inuse); 1505 if (size > cur_size && size < last_size + ties) { 1506 cur_size = size; 1507 cur_mtype = mtp; 1508 } 1509 } 1510 if (cur_mtype == NULL) 1511 break; 1512 1513 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); 1514 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, 1515 howmany(size, 1024), allocs); 1516 1517 if (db_pager_quit) 1518 break; 1519 1520 last_mtype = cur_mtype; 1521 last_size = cur_size; 1522 } 1523 } 1524 1525 #if MALLOC_DEBUG_MAXZONES > 1 1526 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) 1527 { 1528 struct malloc_type_internal *mtip; 1529 struct malloc_type *mtp; 1530 u_int subzone; 1531 1532 if (!have_addr) { 1533 db_printf("Usage: show multizone_matches <malloc type/addr>\n"); 1534 return; 1535 } 1536 mtp = (void *)addr; 1537 if (mtp->ks_version != M_VERSION) { 1538 db_printf("Version %lx does not match expected %x\n", 1539 mtp->ks_version, M_VERSION); 1540 return; 1541 } 1542 1543 mtip = &mtp->ks_mti; 1544 subzone = mtip->mti_zone; 1545 1546 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { 1547 mtip = &mtp->ks_mti; 1548 if (mtip->mti_zone != subzone) 1549 continue; 1550 db_printf("%s\n", mtp->ks_shortdesc); 1551 if (db_pager_quit) 1552 break; 1553 } 1554 } 1555 #endif /* MALLOC_DEBUG_MAXZONES > 1 */ 1556 #endif /* DDB */ 1557