xref: /freebsd/sys/kern/kern_malloc.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_vm.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/mutex.h>
46 #include <sys/vmmeter.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_kern.h>
53 #include <vm/vm_extern.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_map.h>
56 #include <vm/uma.h>
57 #include <vm/uma_int.h>
58 #include <vm/uma_dbg.h>
59 
60 #if defined(INVARIANTS) && defined(__i386__)
61 #include <machine/cpu.h>
62 #endif
63 
64 /*
65  * When realloc() is called, if the new size is sufficiently smaller than
66  * the old size, realloc() will allocate a new, smaller block to avoid
67  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
68  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
69  */
70 #ifndef REALLOC_FRACTION
71 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
72 #endif
73 
74 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
75 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
76 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
77 
78 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
79 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
80 
81 static void kmeminit(void *);
82 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
83 
84 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
85 
86 static struct malloc_type *kmemstatistics;
87 static char *kmembase;
88 static char *kmemlimit;
89 
90 #define KMEM_ZSHIFT	4
91 #define KMEM_ZBASE	16
92 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
93 
94 #define KMEM_ZMAX	65536
95 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
96 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
97 
98 /* These won't be powers of two for long */
99 struct {
100 	int kz_size;
101 	char *kz_name;
102 	uma_zone_t kz_zone;
103 } kmemzones[] = {
104 	{16, "16", NULL},
105 	{32, "32", NULL},
106 	{64, "64", NULL},
107 	{128, "128", NULL},
108 	{256, "256", NULL},
109 	{512, "512", NULL},
110 	{1024, "1024", NULL},
111 	{2048, "2048", NULL},
112 	{4096, "4096", NULL},
113 	{8192, "8192", NULL},
114 	{16384, "16384", NULL},
115 	{32768, "32768", NULL},
116 	{65536, "65536", NULL},
117 	{0, NULL},
118 };
119 
120 u_int vm_kmem_size;
121 
122 /*
123  * The malloc_mtx protects the kmemstatistics linked list as well as the
124  * mallochash.
125  */
126 
127 struct mtx malloc_mtx;
128 
129 #ifdef MALLOC_PROFILE
130 uint64_t krequests[KMEM_ZSIZE + 1];
131 
132 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
133 #endif
134 
135 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
136 
137 /*
138  *	malloc:
139  *
140  *	Allocate a block of memory.
141  *
142  *	If M_NOWAIT is set, this routine will not block and return NULL if
143  *	the allocation fails.
144  */
145 void *
146 malloc(size, type, flags)
147 	unsigned long size;
148 	struct malloc_type *type;
149 	int flags;
150 {
151 	int indx;
152 	caddr_t va;
153 	uma_zone_t zone;
154 	register struct malloc_type *ksp = type;
155 
156 #if 0
157 	if (size == 0)
158 		Debugger("zero size malloc");
159 #endif
160 	if (!(flags & M_NOWAIT))
161 		KASSERT(curthread->td_intr_nesting_level == 0,
162 		   ("malloc(M_WAITOK) in interrupt context"));
163 	if (size <= KMEM_ZMAX) {
164 		if (size & KMEM_ZMASK)
165 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
166 		indx = kmemsize[size >> KMEM_ZSHIFT];
167 		zone = kmemzones[indx].kz_zone;
168 #ifdef MALLOC_PROFILE
169 		krequests[size >> KMEM_ZSHIFT]++;
170 #endif
171 		va = uma_zalloc(zone, flags);
172 		mtx_lock(&ksp->ks_mtx);
173 		if (va == NULL)
174 			goto out;
175 
176 		ksp->ks_size |= 1 << indx;
177 		size = zone->uz_size;
178 	} else {
179 		size = roundup(size, PAGE_SIZE);
180 		zone = NULL;
181 		va = uma_large_malloc(size, flags);
182 		mtx_lock(&ksp->ks_mtx);
183 		if (va == NULL)
184 			goto out;
185 	}
186 	ksp->ks_memuse += size;
187 	ksp->ks_inuse++;
188 out:
189 	ksp->ks_calls++;
190 	if (ksp->ks_memuse > ksp->ks_maxused)
191 		ksp->ks_maxused = ksp->ks_memuse;
192 
193 	mtx_unlock(&ksp->ks_mtx);
194 	return ((void *) va);
195 }
196 
197 /*
198  *	free:
199  *
200  *	Free a block of memory allocated by malloc.
201  *
202  *	This routine may not block.
203  */
204 void
205 free(addr, type)
206 	void *addr;
207 	struct malloc_type *type;
208 {
209 	uma_slab_t slab;
210 	void *mem;
211 	u_long size;
212 	register struct malloc_type *ksp = type;
213 
214 	/* free(NULL, ...) does nothing */
215 	if (addr == NULL)
216 		return;
217 
218 	size = 0;
219 
220 	mem = (void *)((u_long)addr & (~UMA_SLAB_MASK));
221 	mtx_lock(&malloc_mtx);
222 	slab = hash_sfind(mallochash, mem);
223 	mtx_unlock(&malloc_mtx);
224 
225 	if (slab == NULL)
226 		panic("free: address %p(%p) has not been allocated.\n",
227 		    addr, mem);
228 
229 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
230 #ifdef INVARIANTS
231 		struct malloc_type **mtp = addr;
232 #endif
233 		size = slab->us_zone->uz_size;
234 #ifdef INVARIANTS
235 		/*
236 		 * Cache a pointer to the malloc_type that most recently freed
237 		 * this memory here.  This way we know who is most likely to
238 		 * have stepped on it later.
239 		 *
240 		 * This code assumes that size is a multiple of 8 bytes for
241 		 * 64 bit machines
242 		 */
243 		mtp = (struct malloc_type **)
244 		    ((unsigned long)mtp & ~UMA_ALIGN_PTR);
245 		mtp += (size - sizeof(struct malloc_type *)) /
246 		    sizeof(struct malloc_type *);
247 		*mtp = type;
248 #endif
249 		uma_zfree_arg(slab->us_zone, addr, slab);
250 	} else {
251 		size = slab->us_size;
252 		uma_large_free(slab);
253 	}
254 	mtx_lock(&ksp->ks_mtx);
255 	ksp->ks_memuse -= size;
256 	ksp->ks_inuse--;
257 	mtx_unlock(&ksp->ks_mtx);
258 }
259 
260 /*
261  *	realloc: change the size of a memory block
262  */
263 void *
264 realloc(addr, size, type, flags)
265 	void *addr;
266 	unsigned long size;
267 	struct malloc_type *type;
268 	int flags;
269 {
270 	uma_slab_t slab;
271 	unsigned long alloc;
272 	void *newaddr;
273 
274 	/* realloc(NULL, ...) is equivalent to malloc(...) */
275 	if (addr == NULL)
276 		return (malloc(size, type, flags));
277 
278 	mtx_lock(&malloc_mtx);
279 	slab = hash_sfind(mallochash,
280 	    (void *)((u_long)addr & ~(UMA_SLAB_MASK)));
281 	mtx_unlock(&malloc_mtx);
282 
283 	/* Sanity check */
284 	KASSERT(slab != NULL,
285 	    ("realloc: address %p out of range", (void *)addr));
286 
287 	/* Get the size of the original block */
288 	if (slab->us_zone)
289 		alloc = slab->us_zone->uz_size;
290 	else
291 		alloc = slab->us_size;
292 
293 	/* Reuse the original block if appropriate */
294 	if (size <= alloc
295 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
296 		return (addr);
297 
298 	/* Allocate a new, bigger (or smaller) block */
299 	if ((newaddr = malloc(size, type, flags)) == NULL)
300 		return (NULL);
301 
302 	/* Copy over original contents */
303 	bcopy(addr, newaddr, min(size, alloc));
304 	free(addr, type);
305 	return (newaddr);
306 }
307 
308 /*
309  *	reallocf: same as realloc() but free memory on failure.
310  */
311 void *
312 reallocf(addr, size, type, flags)
313 	void *addr;
314 	unsigned long size;
315 	struct malloc_type *type;
316 	int flags;
317 {
318 	void *mem;
319 
320 	if ((mem = realloc(addr, size, type, flags)) == NULL)
321 		free(addr, type);
322 	return (mem);
323 }
324 
325 /*
326  * Initialize the kernel memory allocator
327  */
328 /* ARGSUSED*/
329 static void
330 kmeminit(dummy)
331 	void *dummy;
332 {
333 	u_int8_t indx;
334 	u_long npg;
335 	u_long mem_size;
336 	void *hashmem;
337 	u_long hashsize;
338 	int highbit;
339 	int bits;
340 	int i;
341 
342 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
343 
344 	/*
345 	 * Try to auto-tune the kernel memory size, so that it is
346 	 * more applicable for a wider range of machine sizes.
347 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
348 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
349 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
350 	 * available, and on an X86 with a total KVA space of 256MB,
351 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
352 	 *
353 	 * Note that the kmem_map is also used by the zone allocator,
354 	 * so make sure that there is enough space.
355 	 */
356 	vm_kmem_size = VM_KMEM_SIZE;
357 	mem_size = cnt.v_page_count * PAGE_SIZE;
358 
359 #if defined(VM_KMEM_SIZE_SCALE)
360 	if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
361 		vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
362 #endif
363 
364 #if defined(VM_KMEM_SIZE_MAX)
365 	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
366 		vm_kmem_size = VM_KMEM_SIZE_MAX;
367 #endif
368 
369 	/* Allow final override from the kernel environment */
370 	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
371 
372 	/*
373 	 * Limit kmem virtual size to twice the physical memory.
374 	 * This allows for kmem map sparseness, but limits the size
375 	 * to something sane. Be careful to not overflow the 32bit
376 	 * ints while doing the check.
377 	 */
378 	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
379 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
380 
381 	/*
382 	 * In mbuf_init(), we set up submaps for mbufs and clusters, in which
383 	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
384 	 * respectively. Mathematically, this means that what we do here may
385 	 * amount to slightly more address space than we need for the submaps,
386 	 * but it never hurts to have an extra page in kmem_map.
387 	 */
388 	npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + nmbcnt *
389 	    sizeof(u_int) + vm_kmem_size) / PAGE_SIZE;
390 
391 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
392 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
393 	kmem_map->system_map = 1;
394 
395 	hashsize = npg * sizeof(void *);
396 
397 	highbit = 0;
398 	bits = 0;
399 	/* The hash size must be a power of two */
400 	for (i = 0; i < 8 * sizeof(hashsize); i++)
401 		if (hashsize & (1 << i)) {
402 			highbit = i;
403 			bits++;
404 		}
405 	if (bits > 1)
406 		hashsize = 1 << (highbit);
407 
408 	hashmem = (void *)kmem_alloc(kernel_map, (vm_size_t)hashsize);
409 	uma_startup2(hashmem, hashsize / sizeof(void *));
410 
411 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
412 		int size = kmemzones[indx].kz_size;
413 		char *name = kmemzones[indx].kz_name;
414 
415 		kmemzones[indx].kz_zone = uma_zcreate(name, size,
416 #ifdef INVARIANTS
417 		    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
418 #else
419 		    NULL, NULL, NULL, NULL,
420 #endif
421 		    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
422 
423 		for (;i <= size; i+= KMEM_ZBASE)
424 			kmemsize[i >> KMEM_ZSHIFT] = indx;
425 
426 	}
427 }
428 
429 void
430 malloc_init(data)
431 	void *data;
432 {
433 	struct malloc_type *type = (struct malloc_type *)data;
434 
435 	mtx_lock(&malloc_mtx);
436 	if (type->ks_magic != M_MAGIC)
437 		panic("malloc type lacks magic");
438 
439 	if (cnt.v_page_count == 0)
440 		panic("malloc_init not allowed before vm init");
441 
442 	if (type->ks_next != NULL)
443 		return;
444 
445 	type->ks_next = kmemstatistics;
446 	kmemstatistics = type;
447 	mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
448 	mtx_unlock(&malloc_mtx);
449 }
450 
451 void
452 malloc_uninit(data)
453 	void *data;
454 {
455 	struct malloc_type *type = (struct malloc_type *)data;
456 	struct malloc_type *t;
457 
458 	mtx_lock(&malloc_mtx);
459 	mtx_lock(&type->ks_mtx);
460 	if (type->ks_magic != M_MAGIC)
461 		panic("malloc type lacks magic");
462 
463 	if (cnt.v_page_count == 0)
464 		panic("malloc_uninit not allowed before vm init");
465 
466 	if (type == kmemstatistics)
467 		kmemstatistics = type->ks_next;
468 	else {
469 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
470 			if (t->ks_next == type) {
471 				t->ks_next = type->ks_next;
472 				break;
473 			}
474 		}
475 	}
476 	type->ks_next = NULL;
477 	mtx_destroy(&type->ks_mtx);
478 	mtx_unlock(&malloc_mtx);
479 }
480 
481 static int
482 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
483 {
484 	struct malloc_type *type;
485 	int linesize = 128;
486 	int curline;
487 	int bufsize;
488 	int first;
489 	int error;
490 	char *buf;
491 	char *p;
492 	int cnt;
493 	int len;
494 	int i;
495 
496 	cnt = 0;
497 
498 	mtx_lock(&malloc_mtx);
499 	for (type = kmemstatistics; type != NULL; type = type->ks_next)
500 		cnt++;
501 
502 	mtx_unlock(&malloc_mtx);
503 	bufsize = linesize * (cnt + 1);
504 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
505 	mtx_lock(&malloc_mtx);
506 
507 	len = snprintf(p, linesize,
508 	    "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
509 	p += len;
510 
511 	for (type = kmemstatistics; cnt != 0 && type != NULL;
512 	    type = type->ks_next, cnt--) {
513 		if (type->ks_calls == 0)
514 			continue;
515 
516 		curline = linesize - 2;	/* Leave room for the \n */
517 		len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
518 			type->ks_shortdesc,
519 			type->ks_inuse,
520 			(type->ks_memuse + 1023) / 1024,
521 			(type->ks_maxused + 1023) / 1024,
522 			(long long unsigned)type->ks_calls);
523 		curline -= len;
524 		p += len;
525 
526 		first = 1;
527 		for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
528 		    i++) {
529 			if (type->ks_size & (1 << i)) {
530 				if (first)
531 					len = snprintf(p, curline, "  ");
532 				else
533 					len = snprintf(p, curline, ",");
534 				curline -= len;
535 				p += len;
536 
537 				len = snprintf(p, curline,
538 				    "%s", kmemzones[i].kz_name);
539 				curline -= len;
540 				p += len;
541 
542 				first = 0;
543 			}
544 		}
545 
546 		len = snprintf(p, 2, "\n");
547 		p += len;
548 	}
549 
550 	mtx_unlock(&malloc_mtx);
551 	error = SYSCTL_OUT(req, buf, p - buf);
552 
553 	free(buf, M_TEMP);
554 	return (error);
555 }
556 
557 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
558     NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
559 
560 #ifdef MALLOC_PROFILE
561 
562 static int
563 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
564 {
565 	int linesize = 64;
566 	uint64_t count;
567 	uint64_t waste;
568 	uint64_t mem;
569 	int bufsize;
570 	int error;
571 	char *buf;
572 	int rsize;
573 	int size;
574 	char *p;
575 	int len;
576 	int i;
577 
578 	bufsize = linesize * (KMEM_ZSIZE + 1);
579 	bufsize += 128; 	/* For the stats line */
580 	bufsize += 128; 	/* For the banner line */
581 	waste = 0;
582 	mem = 0;
583 
584 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
585 	len = snprintf(p, bufsize,
586 	    "\n  Size                    Requests  Real Size\n");
587 	bufsize -= len;
588 	p += len;
589 
590 	for (i = 0; i < KMEM_ZSIZE; i++) {
591 		size = i << KMEM_ZSHIFT;
592 		rsize = kmemzones[kmemsize[i]].kz_size;
593 		count = (long long unsigned)krequests[i];
594 
595 		len = snprintf(p, bufsize, "%6d%28llu%11d\n",
596 		    size, (unsigned long long)count, rsize);
597 		bufsize -= len;
598 		p += len;
599 
600 		if ((rsize * count) > (size * count))
601 			waste += (rsize * count) - (size * count);
602 		mem += (rsize * count);
603 	}
604 
605 	len = snprintf(p, bufsize,
606 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
607 	    (unsigned long long)mem, (unsigned long long)waste);
608 	p += len;
609 
610 	error = SYSCTL_OUT(req, buf, p - buf);
611 
612 	free(buf, M_TEMP);
613 	return (error);
614 }
615 
616 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
617     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
618 #endif /* MALLOC_PROFILE */
619