1 /* 2 * Copyright (c) 1987, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 34 * $FreeBSD$ 35 */ 36 37 #include "opt_vm.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/mutex.h> 46 #include <sys/vmmeter.h> 47 #include <sys/proc.h> 48 #include <sys/sysctl.h> 49 #include <sys/time.h> 50 51 #include <vm/vm.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_param.h> 54 #include <vm/vm_kern.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_page.h> 58 #include <vm/uma.h> 59 #include <vm/uma_int.h> 60 #include <vm/uma_dbg.h> 61 62 #if defined(INVARIANTS) && defined(__i386__) 63 #include <machine/cpu.h> 64 #endif 65 66 /* 67 * When realloc() is called, if the new size is sufficiently smaller than 68 * the old size, realloc() will allocate a new, smaller block to avoid 69 * wasting memory. 'Sufficiently smaller' is defined as: newsize <= 70 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. 71 */ 72 #ifndef REALLOC_FRACTION 73 #define REALLOC_FRACTION 1 /* new block if <= half the size */ 74 #endif 75 76 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 77 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 78 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 79 80 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 81 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 82 83 static void kmeminit(void *); 84 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 85 86 static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); 87 88 static struct malloc_type *kmemstatistics; 89 static char *kmembase; 90 static char *kmemlimit; 91 92 #define KMEM_ZSHIFT 4 93 #define KMEM_ZBASE 16 94 #define KMEM_ZMASK (KMEM_ZBASE - 1) 95 96 #define KMEM_ZMAX 65536 97 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) 98 static u_int8_t kmemsize[KMEM_ZSIZE + 1]; 99 100 /* These won't be powers of two for long */ 101 struct { 102 int kz_size; 103 char *kz_name; 104 uma_zone_t kz_zone; 105 } kmemzones[] = { 106 {16, "16", NULL}, 107 {32, "32", NULL}, 108 {64, "64", NULL}, 109 {128, "128", NULL}, 110 {256, "256", NULL}, 111 {512, "512", NULL}, 112 {1024, "1024", NULL}, 113 {2048, "2048", NULL}, 114 {4096, "4096", NULL}, 115 {8192, "8192", NULL}, 116 {16384, "16384", NULL}, 117 {32768, "32768", NULL}, 118 {65536, "65536", NULL}, 119 {0, NULL}, 120 }; 121 122 u_int vm_kmem_size; 123 124 /* 125 * The malloc_mtx protects the kmemstatistics linked list. 126 */ 127 128 struct mtx malloc_mtx; 129 130 #ifdef MALLOC_PROFILE 131 uint64_t krequests[KMEM_ZSIZE + 1]; 132 133 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); 134 #endif 135 136 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS); 137 138 /* time_uptime of last malloc(9) failure */ 139 static time_t t_malloc_fail; 140 141 #ifdef MALLOC_MAKE_FAILURES 142 /* 143 * Causes malloc failures every (n) mallocs with M_NOWAIT. If set to 0, 144 * doesn't cause failures. 145 */ 146 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, 147 "Kernel malloc debugging options"); 148 149 static int malloc_failure_rate; 150 static int malloc_nowait_count; 151 static int malloc_failure_count; 152 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, 153 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); 154 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); 155 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, 156 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); 157 #endif 158 159 int 160 malloc_last_fail(void) 161 { 162 163 return (time_uptime - t_malloc_fail); 164 } 165 166 /* 167 * malloc: 168 * 169 * Allocate a block of memory. 170 * 171 * If M_NOWAIT is set, this routine will not block and return NULL if 172 * the allocation fails. 173 */ 174 void * 175 malloc(size, type, flags) 176 unsigned long size; 177 struct malloc_type *type; 178 int flags; 179 { 180 int indx; 181 caddr_t va; 182 uma_zone_t zone; 183 #ifdef DIAGNOSTIC 184 unsigned long osize = size; 185 #endif 186 register struct malloc_type *ksp = type; 187 188 #ifdef INVARIANTS 189 /* 190 * To make sure that WAITOK or NOWAIT is set, but not more than 191 * one, and check against the API botches that are common. 192 */ 193 indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT); 194 if (indx != M_NOWAIT && indx != M_WAITOK) { 195 static struct timeval lasterr; 196 static int curerr, once; 197 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { 198 printf("Bad malloc flags: %x\n", indx); 199 backtrace(); 200 flags |= M_WAITOK; 201 once++; 202 } 203 } 204 #endif 205 #if 0 206 if (size == 0) 207 Debugger("zero size malloc"); 208 #endif 209 #ifdef MALLOC_MAKE_FAILURES 210 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { 211 atomic_add_int(&malloc_nowait_count, 1); 212 if ((malloc_nowait_count % malloc_failure_rate) == 0) { 213 atomic_add_int(&malloc_failure_count, 1); 214 t_malloc_fail = time_uptime; 215 return (NULL); 216 } 217 } 218 #endif 219 if (flags & M_WAITOK) 220 KASSERT(curthread->td_intr_nesting_level == 0, 221 ("malloc(M_WAITOK) in interrupt context")); 222 if (size <= KMEM_ZMAX) { 223 if (size & KMEM_ZMASK) 224 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; 225 indx = kmemsize[size >> KMEM_ZSHIFT]; 226 zone = kmemzones[indx].kz_zone; 227 #ifdef MALLOC_PROFILE 228 krequests[size >> KMEM_ZSHIFT]++; 229 #endif 230 va = uma_zalloc(zone, flags); 231 mtx_lock(&ksp->ks_mtx); 232 if (va == NULL) 233 goto out; 234 235 ksp->ks_size |= 1 << indx; 236 size = zone->uz_size; 237 } else { 238 size = roundup(size, PAGE_SIZE); 239 zone = NULL; 240 va = uma_large_malloc(size, flags); 241 mtx_lock(&ksp->ks_mtx); 242 if (va == NULL) 243 goto out; 244 } 245 ksp->ks_memuse += size; 246 ksp->ks_inuse++; 247 out: 248 ksp->ks_calls++; 249 if (ksp->ks_memuse > ksp->ks_maxused) 250 ksp->ks_maxused = ksp->ks_memuse; 251 252 mtx_unlock(&ksp->ks_mtx); 253 if (flags & M_WAITOK) 254 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); 255 else if (va == NULL) 256 t_malloc_fail = time_uptime; 257 #ifdef DIAGNOSTIC 258 if (va != NULL && !(flags & M_ZERO)) { 259 memset(va, 0x70, osize); 260 } 261 #endif 262 return ((void *) va); 263 } 264 265 /* 266 * free: 267 * 268 * Free a block of memory allocated by malloc. 269 * 270 * This routine may not block. 271 */ 272 void 273 free(addr, type) 274 void *addr; 275 struct malloc_type *type; 276 { 277 register struct malloc_type *ksp = type; 278 uma_slab_t slab; 279 u_long size; 280 281 /* free(NULL, ...) does nothing */ 282 if (addr == NULL) 283 return; 284 285 KASSERT(ksp->ks_memuse > 0, 286 ("malloc(9)/free(9) confusion.\n%s", 287 "Probably freeing with wrong type, but maybe not here.")); 288 size = 0; 289 290 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); 291 292 if (slab == NULL) 293 panic("free: address %p(%p) has not been allocated.\n", 294 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); 295 296 297 if (!(slab->us_flags & UMA_SLAB_MALLOC)) { 298 #ifdef INVARIANTS 299 struct malloc_type **mtp = addr; 300 #endif 301 size = slab->us_zone->uz_size; 302 #ifdef INVARIANTS 303 /* 304 * Cache a pointer to the malloc_type that most recently freed 305 * this memory here. This way we know who is most likely to 306 * have stepped on it later. 307 * 308 * This code assumes that size is a multiple of 8 bytes for 309 * 64 bit machines 310 */ 311 mtp = (struct malloc_type **) 312 ((unsigned long)mtp & ~UMA_ALIGN_PTR); 313 mtp += (size - sizeof(struct malloc_type *)) / 314 sizeof(struct malloc_type *); 315 *mtp = type; 316 #endif 317 uma_zfree_arg(slab->us_zone, addr, slab); 318 } else { 319 size = slab->us_size; 320 uma_large_free(slab); 321 } 322 mtx_lock(&ksp->ks_mtx); 323 KASSERT(size <= ksp->ks_memuse, 324 ("malloc(9)/free(9) confusion.\n%s", 325 "Probably freeing with wrong type, but maybe not here.")); 326 ksp->ks_memuse -= size; 327 ksp->ks_inuse--; 328 mtx_unlock(&ksp->ks_mtx); 329 } 330 331 /* 332 * realloc: change the size of a memory block 333 */ 334 void * 335 realloc(addr, size, type, flags) 336 void *addr; 337 unsigned long size; 338 struct malloc_type *type; 339 int flags; 340 { 341 uma_slab_t slab; 342 unsigned long alloc; 343 void *newaddr; 344 345 /* realloc(NULL, ...) is equivalent to malloc(...) */ 346 if (addr == NULL) 347 return (malloc(size, type, flags)); 348 349 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); 350 351 /* Sanity check */ 352 KASSERT(slab != NULL, 353 ("realloc: address %p out of range", (void *)addr)); 354 355 /* Get the size of the original block */ 356 if (slab->us_zone) 357 alloc = slab->us_zone->uz_size; 358 else 359 alloc = slab->us_size; 360 361 /* Reuse the original block if appropriate */ 362 if (size <= alloc 363 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) 364 return (addr); 365 366 /* Allocate a new, bigger (or smaller) block */ 367 if ((newaddr = malloc(size, type, flags)) == NULL) 368 return (NULL); 369 370 /* Copy over original contents */ 371 bcopy(addr, newaddr, min(size, alloc)); 372 free(addr, type); 373 return (newaddr); 374 } 375 376 /* 377 * reallocf: same as realloc() but free memory on failure. 378 */ 379 void * 380 reallocf(addr, size, type, flags) 381 void *addr; 382 unsigned long size; 383 struct malloc_type *type; 384 int flags; 385 { 386 void *mem; 387 388 if ((mem = realloc(addr, size, type, flags)) == NULL) 389 free(addr, type); 390 return (mem); 391 } 392 393 /* 394 * Initialize the kernel memory allocator 395 */ 396 /* ARGSUSED*/ 397 static void 398 kmeminit(dummy) 399 void *dummy; 400 { 401 u_int8_t indx; 402 u_long npg; 403 u_long mem_size; 404 int i; 405 406 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); 407 408 /* 409 * Try to auto-tune the kernel memory size, so that it is 410 * more applicable for a wider range of machine sizes. 411 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while 412 * a VM_KMEM_SIZE of 12MB is a fair compromise. The 413 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space 414 * available, and on an X86 with a total KVA space of 256MB, 415 * try to keep VM_KMEM_SIZE_MAX at 80MB or below. 416 * 417 * Note that the kmem_map is also used by the zone allocator, 418 * so make sure that there is enough space. 419 */ 420 vm_kmem_size = VM_KMEM_SIZE; 421 mem_size = cnt.v_page_count * PAGE_SIZE; 422 423 #if defined(VM_KMEM_SIZE_SCALE) 424 if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size) 425 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; 426 #endif 427 428 #if defined(VM_KMEM_SIZE_MAX) 429 if (vm_kmem_size >= VM_KMEM_SIZE_MAX) 430 vm_kmem_size = VM_KMEM_SIZE_MAX; 431 #endif 432 433 /* Allow final override from the kernel environment */ 434 TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size); 435 436 /* 437 * Limit kmem virtual size to twice the physical memory. 438 * This allows for kmem map sparseness, but limits the size 439 * to something sane. Be careful to not overflow the 32bit 440 * ints while doing the check. 441 */ 442 if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE)) 443 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; 444 445 /* 446 * In mbuf_init(), we set up submaps for mbufs and clusters, in which 447 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES), 448 * respectively. Mathematically, this means that what we do here may 449 * amount to slightly more address space than we need for the submaps, 450 * but it never hurts to have an extra page in kmem_map. 451 */ 452 npg = (nmbufs*MSIZE + nmbclusters*MCLBYTES + vm_kmem_size) / PAGE_SIZE; 453 454 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, 455 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); 456 kmem_map->system_map = 1; 457 458 uma_startup2(); 459 460 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { 461 int size = kmemzones[indx].kz_size; 462 char *name = kmemzones[indx].kz_name; 463 464 kmemzones[indx].kz_zone = uma_zcreate(name, size, 465 #ifdef INVARIANTS 466 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, 467 #else 468 NULL, NULL, NULL, NULL, 469 #endif 470 UMA_ALIGN_PTR, UMA_ZONE_MALLOC); 471 472 for (;i <= size; i+= KMEM_ZBASE) 473 kmemsize[i >> KMEM_ZSHIFT] = indx; 474 475 } 476 } 477 478 void 479 malloc_init(data) 480 void *data; 481 { 482 struct malloc_type *type = (struct malloc_type *)data; 483 484 mtx_lock(&malloc_mtx); 485 if (type->ks_magic != M_MAGIC) 486 panic("malloc type lacks magic"); 487 488 if (cnt.v_page_count == 0) 489 panic("malloc_init not allowed before vm init"); 490 491 if (type->ks_next != NULL) 492 return; 493 494 type->ks_next = kmemstatistics; 495 kmemstatistics = type; 496 mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF); 497 mtx_unlock(&malloc_mtx); 498 } 499 500 void 501 malloc_uninit(data) 502 void *data; 503 { 504 struct malloc_type *type = (struct malloc_type *)data; 505 struct malloc_type *t; 506 507 mtx_lock(&malloc_mtx); 508 mtx_lock(&type->ks_mtx); 509 if (type->ks_magic != M_MAGIC) 510 panic("malloc type lacks magic"); 511 512 if (cnt.v_page_count == 0) 513 panic("malloc_uninit not allowed before vm init"); 514 515 if (type == kmemstatistics) 516 kmemstatistics = type->ks_next; 517 else { 518 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 519 if (t->ks_next == type) { 520 t->ks_next = type->ks_next; 521 break; 522 } 523 } 524 } 525 type->ks_next = NULL; 526 mtx_destroy(&type->ks_mtx); 527 mtx_unlock(&malloc_mtx); 528 } 529 530 static int 531 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS) 532 { 533 struct malloc_type *type; 534 int linesize = 128; 535 int curline; 536 int bufsize; 537 int first; 538 int error; 539 char *buf; 540 char *p; 541 int cnt; 542 int len; 543 int i; 544 545 cnt = 0; 546 547 mtx_lock(&malloc_mtx); 548 for (type = kmemstatistics; type != NULL; type = type->ks_next) 549 cnt++; 550 551 mtx_unlock(&malloc_mtx); 552 bufsize = linesize * (cnt + 1); 553 p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 554 mtx_lock(&malloc_mtx); 555 556 len = snprintf(p, linesize, 557 "\n Type InUse MemUse HighUse Requests Size(s)\n"); 558 p += len; 559 560 for (type = kmemstatistics; cnt != 0 && type != NULL; 561 type = type->ks_next, cnt--) { 562 if (type->ks_calls == 0) 563 continue; 564 565 curline = linesize - 2; /* Leave room for the \n */ 566 len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu", 567 type->ks_shortdesc, 568 type->ks_inuse, 569 (type->ks_memuse + 1023) / 1024, 570 (type->ks_maxused + 1023) / 1024, 571 (long long unsigned)type->ks_calls); 572 curline -= len; 573 p += len; 574 575 first = 1; 576 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1; 577 i++) { 578 if (type->ks_size & (1 << i)) { 579 if (first) 580 len = snprintf(p, curline, " "); 581 else 582 len = snprintf(p, curline, ","); 583 curline -= len; 584 p += len; 585 586 len = snprintf(p, curline, 587 "%s", kmemzones[i].kz_name); 588 curline -= len; 589 p += len; 590 591 first = 0; 592 } 593 } 594 595 len = snprintf(p, 2, "\n"); 596 p += len; 597 } 598 599 mtx_unlock(&malloc_mtx); 600 error = SYSCTL_OUT(req, buf, p - buf); 601 602 free(buf, M_TEMP); 603 return (error); 604 } 605 606 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD, 607 NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats"); 608 609 #ifdef MALLOC_PROFILE 610 611 static int 612 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) 613 { 614 int linesize = 64; 615 uint64_t count; 616 uint64_t waste; 617 uint64_t mem; 618 int bufsize; 619 int error; 620 char *buf; 621 int rsize; 622 int size; 623 char *p; 624 int len; 625 int i; 626 627 bufsize = linesize * (KMEM_ZSIZE + 1); 628 bufsize += 128; /* For the stats line */ 629 bufsize += 128; /* For the banner line */ 630 waste = 0; 631 mem = 0; 632 633 p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); 634 len = snprintf(p, bufsize, 635 "\n Size Requests Real Size\n"); 636 bufsize -= len; 637 p += len; 638 639 for (i = 0; i < KMEM_ZSIZE; i++) { 640 size = i << KMEM_ZSHIFT; 641 rsize = kmemzones[kmemsize[i]].kz_size; 642 count = (long long unsigned)krequests[i]; 643 644 len = snprintf(p, bufsize, "%6d%28llu%11d\n", 645 size, (unsigned long long)count, rsize); 646 bufsize -= len; 647 p += len; 648 649 if ((rsize * count) > (size * count)) 650 waste += (rsize * count) - (size * count); 651 mem += (rsize * count); 652 } 653 654 len = snprintf(p, bufsize, 655 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", 656 (unsigned long long)mem, (unsigned long long)waste); 657 p += len; 658 659 error = SYSCTL_OUT(req, buf, p - buf); 660 661 free(buf, M_TEMP); 662 return (error); 663 } 664 665 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, 666 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); 667 #endif /* MALLOC_PROFILE */ 668