xref: /freebsd/sys/kern/kern_malloc.c (revision 06a31d6a6779b74405b41c8ad4579b5d81db4d4c)
1 /*
2  * Copyright (c) 1987, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_malloc.c	8.3 (Berkeley) 1/4/94
34  * $FreeBSD$
35  */
36 
37 #include "opt_vm.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/mutex.h>
46 #include <sys/vmmeter.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 #include <sys/time.h>
50 
51 #include <vm/vm.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_param.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_page.h>
58 #include <vm/uma.h>
59 #include <vm/uma_int.h>
60 #include <vm/uma_dbg.h>
61 
62 #if defined(INVARIANTS) && defined(__i386__)
63 #include <machine/cpu.h>
64 #endif
65 
66 /*
67  * When realloc() is called, if the new size is sufficiently smaller than
68  * the old size, realloc() will allocate a new, smaller block to avoid
69  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
70  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
71  */
72 #ifndef REALLOC_FRACTION
73 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
74 #endif
75 
76 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
77 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
78 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
79 
80 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
81 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
82 
83 static void kmeminit(void *);
84 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
85 
86 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
87 
88 static struct malloc_type *kmemstatistics;
89 static char *kmembase;
90 static char *kmemlimit;
91 
92 #define KMEM_ZSHIFT	4
93 #define KMEM_ZBASE	16
94 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
95 
96 #define KMEM_ZMAX	65536
97 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
98 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
99 
100 /* These won't be powers of two for long */
101 struct {
102 	int kz_size;
103 	char *kz_name;
104 	uma_zone_t kz_zone;
105 } kmemzones[] = {
106 	{16, "16", NULL},
107 	{32, "32", NULL},
108 	{64, "64", NULL},
109 	{128, "128", NULL},
110 	{256, "256", NULL},
111 	{512, "512", NULL},
112 	{1024, "1024", NULL},
113 	{2048, "2048", NULL},
114 	{4096, "4096", NULL},
115 	{8192, "8192", NULL},
116 	{16384, "16384", NULL},
117 	{32768, "32768", NULL},
118 	{65536, "65536", NULL},
119 	{0, NULL},
120 };
121 
122 u_int vm_kmem_size;
123 
124 /*
125  * The malloc_mtx protects the kmemstatistics linked list.
126  */
127 
128 struct mtx malloc_mtx;
129 
130 #ifdef MALLOC_PROFILE
131 uint64_t krequests[KMEM_ZSIZE + 1];
132 
133 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
134 #endif
135 
136 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
137 
138 /* time_uptime of last malloc(9) failure */
139 static time_t t_malloc_fail;
140 
141 #ifdef MALLOC_MAKE_FAILURES
142 /*
143  * Causes malloc failures every (n) mallocs with M_NOWAIT.  If set to 0,
144  * doesn't cause failures.
145  */
146 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
147     "Kernel malloc debugging options");
148 
149 static int malloc_failure_rate;
150 static int malloc_nowait_count;
151 static int malloc_failure_count;
152 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
153     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
154 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
155 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
156     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
157 #endif
158 
159 int
160 malloc_last_fail(void)
161 {
162 
163 	return (time_uptime - t_malloc_fail);
164 }
165 
166 /*
167  *	malloc:
168  *
169  *	Allocate a block of memory.
170  *
171  *	If M_NOWAIT is set, this routine will not block and return NULL if
172  *	the allocation fails.
173  */
174 void *
175 malloc(size, type, flags)
176 	unsigned long size;
177 	struct malloc_type *type;
178 	int flags;
179 {
180 	int indx;
181 	caddr_t va;
182 	uma_zone_t zone;
183 #ifdef DIAGNOSTIC
184 	unsigned long osize = size;
185 #endif
186 	register struct malloc_type *ksp = type;
187 
188 #ifdef INVARIANTS
189 	/*
190 	 * To make sure that WAITOK or NOWAIT is set, but not more than
191 	 * one, and check against the API botches that are common.
192 	 */
193 	indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT);
194 	if (indx != M_NOWAIT && indx != M_WAITOK) {
195 		static	struct timeval lasterr;
196 		static	int curerr, once;
197 		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
198 			printf("Bad malloc flags: %x\n", indx);
199 			backtrace();
200 			flags |= M_WAITOK;
201 			once++;
202 		}
203 	}
204 #endif
205 #if 0
206 	if (size == 0)
207 		Debugger("zero size malloc");
208 #endif
209 #ifdef MALLOC_MAKE_FAILURES
210 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
211 		atomic_add_int(&malloc_nowait_count, 1);
212 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
213 			atomic_add_int(&malloc_failure_count, 1);
214 			t_malloc_fail = time_uptime;
215 			return (NULL);
216 		}
217 	}
218 #endif
219 	if (flags & M_WAITOK)
220 		KASSERT(curthread->td_intr_nesting_level == 0,
221 		   ("malloc(M_WAITOK) in interrupt context"));
222 	if (size <= KMEM_ZMAX) {
223 		if (size & KMEM_ZMASK)
224 			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
225 		indx = kmemsize[size >> KMEM_ZSHIFT];
226 		zone = kmemzones[indx].kz_zone;
227 #ifdef MALLOC_PROFILE
228 		krequests[size >> KMEM_ZSHIFT]++;
229 #endif
230 		va = uma_zalloc(zone, flags);
231 		mtx_lock(&ksp->ks_mtx);
232 		if (va == NULL)
233 			goto out;
234 
235 		ksp->ks_size |= 1 << indx;
236 		size = zone->uz_size;
237 	} else {
238 		size = roundup(size, PAGE_SIZE);
239 		zone = NULL;
240 		va = uma_large_malloc(size, flags);
241 		mtx_lock(&ksp->ks_mtx);
242 		if (va == NULL)
243 			goto out;
244 	}
245 	ksp->ks_memuse += size;
246 	ksp->ks_inuse++;
247 out:
248 	ksp->ks_calls++;
249 	if (ksp->ks_memuse > ksp->ks_maxused)
250 		ksp->ks_maxused = ksp->ks_memuse;
251 
252 	mtx_unlock(&ksp->ks_mtx);
253 	if (flags & M_WAITOK)
254 		KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
255 	else if (va == NULL)
256 		t_malloc_fail = time_uptime;
257 #ifdef DIAGNOSTIC
258 	if (va != NULL && !(flags & M_ZERO)) {
259 		memset(va, 0x70, osize);
260 	}
261 #endif
262 	return ((void *) va);
263 }
264 
265 /*
266  *	free:
267  *
268  *	Free a block of memory allocated by malloc.
269  *
270  *	This routine may not block.
271  */
272 void
273 free(addr, type)
274 	void *addr;
275 	struct malloc_type *type;
276 {
277 	register struct malloc_type *ksp = type;
278 	uma_slab_t slab;
279 	u_long size;
280 
281 	/* free(NULL, ...) does nothing */
282 	if (addr == NULL)
283 		return;
284 
285 	KASSERT(ksp->ks_memuse > 0,
286 		("malloc(9)/free(9) confusion.\n%s",
287 		 "Probably freeing with wrong type, but maybe not here."));
288 	size = 0;
289 
290 	slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
291 
292 	if (slab == NULL)
293 		panic("free: address %p(%p) has not been allocated.\n",
294 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
295 
296 
297 	if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
298 #ifdef INVARIANTS
299 		struct malloc_type **mtp = addr;
300 #endif
301 		size = slab->us_zone->uz_size;
302 #ifdef INVARIANTS
303 		/*
304 		 * Cache a pointer to the malloc_type that most recently freed
305 		 * this memory here.  This way we know who is most likely to
306 		 * have stepped on it later.
307 		 *
308 		 * This code assumes that size is a multiple of 8 bytes for
309 		 * 64 bit machines
310 		 */
311 		mtp = (struct malloc_type **)
312 		    ((unsigned long)mtp & ~UMA_ALIGN_PTR);
313 		mtp += (size - sizeof(struct malloc_type *)) /
314 		    sizeof(struct malloc_type *);
315 		*mtp = type;
316 #endif
317 		uma_zfree_arg(slab->us_zone, addr, slab);
318 	} else {
319 		size = slab->us_size;
320 		uma_large_free(slab);
321 	}
322 	mtx_lock(&ksp->ks_mtx);
323 	KASSERT(size <= ksp->ks_memuse,
324 		("malloc(9)/free(9) confusion.\n%s",
325 		 "Probably freeing with wrong type, but maybe not here."));
326 	ksp->ks_memuse -= size;
327 	ksp->ks_inuse--;
328 	mtx_unlock(&ksp->ks_mtx);
329 }
330 
331 /*
332  *	realloc: change the size of a memory block
333  */
334 void *
335 realloc(addr, size, type, flags)
336 	void *addr;
337 	unsigned long size;
338 	struct malloc_type *type;
339 	int flags;
340 {
341 	uma_slab_t slab;
342 	unsigned long alloc;
343 	void *newaddr;
344 
345 	/* realloc(NULL, ...) is equivalent to malloc(...) */
346 	if (addr == NULL)
347 		return (malloc(size, type, flags));
348 
349 	slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
350 
351 	/* Sanity check */
352 	KASSERT(slab != NULL,
353 	    ("realloc: address %p out of range", (void *)addr));
354 
355 	/* Get the size of the original block */
356 	if (slab->us_zone)
357 		alloc = slab->us_zone->uz_size;
358 	else
359 		alloc = slab->us_size;
360 
361 	/* Reuse the original block if appropriate */
362 	if (size <= alloc
363 	    && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
364 		return (addr);
365 
366 	/* Allocate a new, bigger (or smaller) block */
367 	if ((newaddr = malloc(size, type, flags)) == NULL)
368 		return (NULL);
369 
370 	/* Copy over original contents */
371 	bcopy(addr, newaddr, min(size, alloc));
372 	free(addr, type);
373 	return (newaddr);
374 }
375 
376 /*
377  *	reallocf: same as realloc() but free memory on failure.
378  */
379 void *
380 reallocf(addr, size, type, flags)
381 	void *addr;
382 	unsigned long size;
383 	struct malloc_type *type;
384 	int flags;
385 {
386 	void *mem;
387 
388 	if ((mem = realloc(addr, size, type, flags)) == NULL)
389 		free(addr, type);
390 	return (mem);
391 }
392 
393 /*
394  * Initialize the kernel memory allocator
395  */
396 /* ARGSUSED*/
397 static void
398 kmeminit(dummy)
399 	void *dummy;
400 {
401 	u_int8_t indx;
402 	u_long npg;
403 	u_long mem_size;
404 	int i;
405 
406 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
407 
408 	/*
409 	 * Try to auto-tune the kernel memory size, so that it is
410 	 * more applicable for a wider range of machine sizes.
411 	 * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
412 	 * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
413 	 * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
414 	 * available, and on an X86 with a total KVA space of 256MB,
415 	 * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
416 	 *
417 	 * Note that the kmem_map is also used by the zone allocator,
418 	 * so make sure that there is enough space.
419 	 */
420 	vm_kmem_size = VM_KMEM_SIZE;
421 	mem_size = cnt.v_page_count * PAGE_SIZE;
422 
423 #if defined(VM_KMEM_SIZE_SCALE)
424 	if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
425 		vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
426 #endif
427 
428 #if defined(VM_KMEM_SIZE_MAX)
429 	if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
430 		vm_kmem_size = VM_KMEM_SIZE_MAX;
431 #endif
432 
433 	/* Allow final override from the kernel environment */
434 	TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
435 
436 	/*
437 	 * Limit kmem virtual size to twice the physical memory.
438 	 * This allows for kmem map sparseness, but limits the size
439 	 * to something sane. Be careful to not overflow the 32bit
440 	 * ints while doing the check.
441 	 */
442 	if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
443 		vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
444 
445 	/*
446 	 * In mbuf_init(), we set up submaps for mbufs and clusters, in which
447 	 * case we rounddown() (nmbufs * MSIZE) and (nmbclusters * MCLBYTES),
448 	 * respectively. Mathematically, this means that what we do here may
449 	 * amount to slightly more address space than we need for the submaps,
450 	 * but it never hurts to have an extra page in kmem_map.
451 	 */
452 	npg = (nmbufs*MSIZE + nmbclusters*MCLBYTES + vm_kmem_size) / PAGE_SIZE;
453 
454 	kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
455 		(vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
456 	kmem_map->system_map = 1;
457 
458 	uma_startup2();
459 
460 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
461 		int size = kmemzones[indx].kz_size;
462 		char *name = kmemzones[indx].kz_name;
463 
464 		kmemzones[indx].kz_zone = uma_zcreate(name, size,
465 #ifdef INVARIANTS
466 		    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
467 #else
468 		    NULL, NULL, NULL, NULL,
469 #endif
470 		    UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
471 
472 		for (;i <= size; i+= KMEM_ZBASE)
473 			kmemsize[i >> KMEM_ZSHIFT] = indx;
474 
475 	}
476 }
477 
478 void
479 malloc_init(data)
480 	void *data;
481 {
482 	struct malloc_type *type = (struct malloc_type *)data;
483 
484 	mtx_lock(&malloc_mtx);
485 	if (type->ks_magic != M_MAGIC)
486 		panic("malloc type lacks magic");
487 
488 	if (cnt.v_page_count == 0)
489 		panic("malloc_init not allowed before vm init");
490 
491 	if (type->ks_next != NULL)
492 		return;
493 
494 	type->ks_next = kmemstatistics;
495 	kmemstatistics = type;
496 	mtx_init(&type->ks_mtx, type->ks_shortdesc, "Malloc Stats", MTX_DEF);
497 	mtx_unlock(&malloc_mtx);
498 }
499 
500 void
501 malloc_uninit(data)
502 	void *data;
503 {
504 	struct malloc_type *type = (struct malloc_type *)data;
505 	struct malloc_type *t;
506 
507 	mtx_lock(&malloc_mtx);
508 	mtx_lock(&type->ks_mtx);
509 	if (type->ks_magic != M_MAGIC)
510 		panic("malloc type lacks magic");
511 
512 	if (cnt.v_page_count == 0)
513 		panic("malloc_uninit not allowed before vm init");
514 
515 	if (type == kmemstatistics)
516 		kmemstatistics = type->ks_next;
517 	else {
518 		for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
519 			if (t->ks_next == type) {
520 				t->ks_next = type->ks_next;
521 				break;
522 			}
523 		}
524 	}
525 	type->ks_next = NULL;
526 	mtx_destroy(&type->ks_mtx);
527 	mtx_unlock(&malloc_mtx);
528 }
529 
530 static int
531 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
532 {
533 	struct malloc_type *type;
534 	int linesize = 128;
535 	int curline;
536 	int bufsize;
537 	int first;
538 	int error;
539 	char *buf;
540 	char *p;
541 	int cnt;
542 	int len;
543 	int i;
544 
545 	cnt = 0;
546 
547 	mtx_lock(&malloc_mtx);
548 	for (type = kmemstatistics; type != NULL; type = type->ks_next)
549 		cnt++;
550 
551 	mtx_unlock(&malloc_mtx);
552 	bufsize = linesize * (cnt + 1);
553 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
554 	mtx_lock(&malloc_mtx);
555 
556 	len = snprintf(p, linesize,
557 	    "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
558 	p += len;
559 
560 	for (type = kmemstatistics; cnt != 0 && type != NULL;
561 	    type = type->ks_next, cnt--) {
562 		if (type->ks_calls == 0)
563 			continue;
564 
565 		curline = linesize - 2;	/* Leave room for the \n */
566 		len = snprintf(p, curline, "%13s%6lu%6luK%7luK%9llu",
567 			type->ks_shortdesc,
568 			type->ks_inuse,
569 			(type->ks_memuse + 1023) / 1024,
570 			(type->ks_maxused + 1023) / 1024,
571 			(long long unsigned)type->ks_calls);
572 		curline -= len;
573 		p += len;
574 
575 		first = 1;
576 		for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
577 		    i++) {
578 			if (type->ks_size & (1 << i)) {
579 				if (first)
580 					len = snprintf(p, curline, "  ");
581 				else
582 					len = snprintf(p, curline, ",");
583 				curline -= len;
584 				p += len;
585 
586 				len = snprintf(p, curline,
587 				    "%s", kmemzones[i].kz_name);
588 				curline -= len;
589 				p += len;
590 
591 				first = 0;
592 			}
593 		}
594 
595 		len = snprintf(p, 2, "\n");
596 		p += len;
597 	}
598 
599 	mtx_unlock(&malloc_mtx);
600 	error = SYSCTL_OUT(req, buf, p - buf);
601 
602 	free(buf, M_TEMP);
603 	return (error);
604 }
605 
606 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
607     NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
608 
609 #ifdef MALLOC_PROFILE
610 
611 static int
612 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
613 {
614 	int linesize = 64;
615 	uint64_t count;
616 	uint64_t waste;
617 	uint64_t mem;
618 	int bufsize;
619 	int error;
620 	char *buf;
621 	int rsize;
622 	int size;
623 	char *p;
624 	int len;
625 	int i;
626 
627 	bufsize = linesize * (KMEM_ZSIZE + 1);
628 	bufsize += 128; 	/* For the stats line */
629 	bufsize += 128; 	/* For the banner line */
630 	waste = 0;
631 	mem = 0;
632 
633 	p = buf = (char *)malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
634 	len = snprintf(p, bufsize,
635 	    "\n  Size                    Requests  Real Size\n");
636 	bufsize -= len;
637 	p += len;
638 
639 	for (i = 0; i < KMEM_ZSIZE; i++) {
640 		size = i << KMEM_ZSHIFT;
641 		rsize = kmemzones[kmemsize[i]].kz_size;
642 		count = (long long unsigned)krequests[i];
643 
644 		len = snprintf(p, bufsize, "%6d%28llu%11d\n",
645 		    size, (unsigned long long)count, rsize);
646 		bufsize -= len;
647 		p += len;
648 
649 		if ((rsize * count) > (size * count))
650 			waste += (rsize * count) - (size * count);
651 		mem += (rsize * count);
652 	}
653 
654 	len = snprintf(p, bufsize,
655 	    "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
656 	    (unsigned long long)mem, (unsigned long long)waste);
657 	p += len;
658 
659 	error = SYSCTL_OUT(req, buf, p - buf);
660 
661 	free(buf, M_TEMP);
662 	return (error);
663 }
664 
665 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
666     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
667 #endif /* MALLOC_PROFILE */
668