1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 5 * Authors: Doug Rabson <dfr@rabson.org> 6 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (c) 1982, 1986, 1989, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * This code is derived from software contributed to Berkeley by 34 * Scooter Morris at Genentech Inc. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_debug_lockf.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/hash.h> 71 #include <sys/kernel.h> 72 #include <sys/limits.h> 73 #include <sys/lock.h> 74 #include <sys/mount.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/sx.h> 78 #include <sys/unistd.h> 79 #include <sys/vnode.h> 80 #include <sys/malloc.h> 81 #include <sys/fcntl.h> 82 #include <sys/lockf.h> 83 #include <sys/taskqueue.h> 84 85 #ifdef LOCKF_DEBUG 86 #include <sys/sysctl.h> 87 88 #include <ufs/ufs/extattr.h> 89 #include <ufs/ufs/quota.h> 90 #include <ufs/ufs/ufsmount.h> 91 #include <ufs/ufs/inode.h> 92 93 static int lockf_debug = 0; /* control debug output */ 94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 95 #endif 96 97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 98 99 struct owner_edge; 100 struct owner_vertex; 101 struct owner_vertex_list; 102 struct owner_graph; 103 104 #define NOLOCKF (struct lockf_entry *)0 105 #define SELF 0x1 106 #define OTHERS 0x2 107 static void lf_init(void *); 108 static int lf_hash_owner(caddr_t, struct vnode *, struct flock *, int); 109 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 110 int); 111 static struct lockf_entry * 112 lf_alloc_lock(struct lock_owner *); 113 static int lf_free_lock(struct lockf_entry *); 114 static int lf_clearlock(struct lockf *, struct lockf_entry *); 115 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 116 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 117 static void lf_free_edge(struct lockf_edge *); 118 static struct lockf_edge * 119 lf_alloc_edge(void); 120 static void lf_alloc_vertex(struct lockf_entry *); 121 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 122 static void lf_remove_edge(struct lockf_edge *); 123 static void lf_remove_outgoing(struct lockf_entry *); 124 static void lf_remove_incoming(struct lockf_entry *); 125 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 126 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 127 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 128 int); 129 static struct lockf_entry * 130 lf_getblock(struct lockf *, struct lockf_entry *); 131 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 132 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 133 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 134 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 135 int all, struct lockf_entry_list *); 136 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 137 struct lockf_entry_list*); 138 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 139 struct lockf_entry_list*); 140 static int lf_setlock(struct lockf *, struct lockf_entry *, 141 struct vnode *, void **cookiep); 142 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 143 static void lf_split(struct lockf *, struct lockf_entry *, 144 struct lockf_entry *, struct lockf_entry_list *); 145 #ifdef LOCKF_DEBUG 146 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 147 struct owner_vertex_list *path); 148 static void graph_check(struct owner_graph *g, int checkorder); 149 static void graph_print_vertices(struct owner_vertex_list *set); 150 #endif 151 static int graph_delta_forward(struct owner_graph *g, 152 struct owner_vertex *x, struct owner_vertex *y, 153 struct owner_vertex_list *delta); 154 static int graph_delta_backward(struct owner_graph *g, 155 struct owner_vertex *x, struct owner_vertex *y, 156 struct owner_vertex_list *delta); 157 static int graph_add_indices(int *indices, int n, 158 struct owner_vertex_list *set); 159 static int graph_assign_indices(struct owner_graph *g, int *indices, 160 int nextunused, struct owner_vertex_list *set); 161 static int graph_add_edge(struct owner_graph *g, 162 struct owner_vertex *x, struct owner_vertex *y); 163 static void graph_remove_edge(struct owner_graph *g, 164 struct owner_vertex *x, struct owner_vertex *y); 165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 166 struct lock_owner *lo); 167 static void graph_free_vertex(struct owner_graph *g, 168 struct owner_vertex *v); 169 static struct owner_graph * graph_init(struct owner_graph *g); 170 #ifdef LOCKF_DEBUG 171 static void lf_print(char *, struct lockf_entry *); 172 static void lf_printlist(char *, struct lockf_entry *); 173 static void lf_print_owner(struct lock_owner *); 174 #endif 175 176 /* 177 * This structure is used to keep track of both local and remote lock 178 * owners. The lf_owner field of the struct lockf_entry points back at 179 * the lock owner structure. Each possible lock owner (local proc for 180 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 181 * pair for remote locks) is represented by a unique instance of 182 * struct lock_owner. 183 * 184 * If a lock owner has a lock that blocks some other lock or a lock 185 * that is waiting for some other lock, it also has a vertex in the 186 * owner_graph below. 187 * 188 * Locks: 189 * (s) locked by state->ls_lock 190 * (S) locked by lf_lock_states_lock 191 * (g) locked by lf_owner_graph_lock 192 * (c) const until freeing 193 */ 194 #define LOCK_OWNER_HASH_SIZE 256 195 196 struct lock_owner { 197 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 198 int lo_refs; /* (l) Number of locks referring to this */ 199 int lo_flags; /* (c) Flags passwd to lf_advlock */ 200 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 201 pid_t lo_pid; /* (c) Process Id of the lock owner */ 202 int lo_sysid; /* (c) System Id of the lock owner */ 203 int lo_hash; /* (c) Used to lock the appropriate chain */ 204 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 205 }; 206 207 LIST_HEAD(lock_owner_list, lock_owner); 208 209 struct lock_owner_chain { 210 struct sx lock; 211 struct lock_owner_list list; 212 }; 213 214 static struct sx lf_lock_states_lock; 215 static struct lockf_list lf_lock_states; /* (S) */ 216 static struct lock_owner_chain lf_lock_owners[LOCK_OWNER_HASH_SIZE]; 217 218 /* 219 * Structures for deadlock detection. 220 * 221 * We have two types of directed graph, the first is the set of locks, 222 * both active and pending on a vnode. Within this graph, active locks 223 * are terminal nodes in the graph (i.e. have no out-going 224 * edges). Pending locks have out-going edges to each blocking active 225 * lock that prevents the lock from being granted and also to each 226 * older pending lock that would block them if it was active. The 227 * graph for each vnode is naturally acyclic; new edges are only ever 228 * added to or from new nodes (either new pending locks which only add 229 * out-going edges or new active locks which only add in-coming edges) 230 * therefore they cannot create loops in the lock graph. 231 * 232 * The second graph is a global graph of lock owners. Each lock owner 233 * is a vertex in that graph and an edge is added to the graph 234 * whenever an edge is added to a vnode graph, with end points 235 * corresponding to owner of the new pending lock and the owner of the 236 * lock upon which it waits. In order to prevent deadlock, we only add 237 * an edge to this graph if the new edge would not create a cycle. 238 * 239 * The lock owner graph is topologically sorted, i.e. if a node has 240 * any outgoing edges, then it has an order strictly less than any 241 * node to which it has an outgoing edge. We preserve this ordering 242 * (and detect cycles) on edge insertion using Algorithm PK from the 243 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 244 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 245 * No. 1.7) 246 */ 247 struct owner_vertex; 248 249 struct owner_edge { 250 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 251 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 252 int e_refs; /* (g) number of times added */ 253 struct owner_vertex *e_from; /* (c) out-going from here */ 254 struct owner_vertex *e_to; /* (c) in-coming to here */ 255 }; 256 LIST_HEAD(owner_edge_list, owner_edge); 257 258 struct owner_vertex { 259 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 260 uint32_t v_gen; /* (g) workspace for edge insertion */ 261 int v_order; /* (g) order of vertex in graph */ 262 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 263 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 264 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 265 }; 266 TAILQ_HEAD(owner_vertex_list, owner_vertex); 267 268 struct owner_graph { 269 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 270 int g_size; /* (g) number of vertices */ 271 int g_space; /* (g) space allocated for vertices */ 272 int *g_indexbuf; /* (g) workspace for loop detection */ 273 uint32_t g_gen; /* (g) increment when re-ordering */ 274 }; 275 276 static struct sx lf_owner_graph_lock; 277 static struct owner_graph lf_owner_graph; 278 279 /* 280 * Initialise various structures and locks. 281 */ 282 static void 283 lf_init(void *dummy) 284 { 285 int i; 286 287 sx_init(&lf_lock_states_lock, "lock states lock"); 288 LIST_INIT(&lf_lock_states); 289 290 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 291 sx_init(&lf_lock_owners[i].lock, "lock owners lock"); 292 LIST_INIT(&lf_lock_owners[i].list); 293 } 294 295 sx_init(&lf_owner_graph_lock, "owner graph lock"); 296 graph_init(&lf_owner_graph); 297 } 298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 299 300 /* 301 * Generate a hash value for a lock owner. 302 */ 303 static int 304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags) 305 { 306 uint32_t h; 307 308 if (flags & F_REMOTE) { 309 h = HASHSTEP(0, fl->l_pid); 310 h = HASHSTEP(h, fl->l_sysid); 311 } else if (flags & F_FLOCK) { 312 h = ((uintptr_t) id) >> 7; 313 } else { 314 h = ((uintptr_t) vp) >> 7; 315 } 316 317 return (h % LOCK_OWNER_HASH_SIZE); 318 } 319 320 /* 321 * Return true if a lock owner matches the details passed to 322 * lf_advlock. 323 */ 324 static int 325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 326 int flags) 327 { 328 if (flags & F_REMOTE) { 329 return lo->lo_pid == fl->l_pid 330 && lo->lo_sysid == fl->l_sysid; 331 } else { 332 return lo->lo_id == id; 333 } 334 } 335 336 static struct lockf_entry * 337 lf_alloc_lock(struct lock_owner *lo) 338 { 339 struct lockf_entry *lf; 340 341 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 342 343 #ifdef LOCKF_DEBUG 344 if (lockf_debug & 4) 345 printf("Allocated lock %p\n", lf); 346 #endif 347 if (lo) { 348 sx_xlock(&lf_lock_owners[lo->lo_hash].lock); 349 lo->lo_refs++; 350 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock); 351 lf->lf_owner = lo; 352 } 353 354 return (lf); 355 } 356 357 static int 358 lf_free_lock(struct lockf_entry *lock) 359 { 360 struct sx *chainlock; 361 362 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 363 if (--lock->lf_refs > 0) 364 return (0); 365 /* 366 * Adjust the lock_owner reference count and 367 * reclaim the entry if this is the last lock 368 * for that owner. 369 */ 370 struct lock_owner *lo = lock->lf_owner; 371 if (lo) { 372 KASSERT(LIST_EMPTY(&lock->lf_outedges), 373 ("freeing lock with dependencies")); 374 KASSERT(LIST_EMPTY(&lock->lf_inedges), 375 ("freeing lock with dependants")); 376 chainlock = &lf_lock_owners[lo->lo_hash].lock; 377 sx_xlock(chainlock); 378 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 379 lo->lo_refs--; 380 if (lo->lo_refs == 0) { 381 #ifdef LOCKF_DEBUG 382 if (lockf_debug & 1) 383 printf("lf_free_lock: freeing lock owner %p\n", 384 lo); 385 #endif 386 if (lo->lo_vertex) { 387 sx_xlock(&lf_owner_graph_lock); 388 graph_free_vertex(&lf_owner_graph, 389 lo->lo_vertex); 390 sx_xunlock(&lf_owner_graph_lock); 391 } 392 LIST_REMOVE(lo, lo_link); 393 free(lo, M_LOCKF); 394 #ifdef LOCKF_DEBUG 395 if (lockf_debug & 4) 396 printf("Freed lock owner %p\n", lo); 397 #endif 398 } 399 sx_unlock(chainlock); 400 } 401 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 402 vrele(lock->lf_vnode); 403 lock->lf_vnode = NULL; 404 } 405 #ifdef LOCKF_DEBUG 406 if (lockf_debug & 4) 407 printf("Freed lock %p\n", lock); 408 #endif 409 free(lock, M_LOCKF); 410 return (1); 411 } 412 413 /* 414 * Advisory record locking support 415 */ 416 int 417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 418 u_quad_t size) 419 { 420 struct lockf *state; 421 struct flock *fl = ap->a_fl; 422 struct lockf_entry *lock; 423 struct vnode *vp = ap->a_vp; 424 caddr_t id = ap->a_id; 425 int flags = ap->a_flags; 426 int hash; 427 struct lock_owner *lo; 428 off_t start, end, oadd; 429 int error; 430 431 /* 432 * Handle the F_UNLKSYS case first - no need to mess about 433 * creating a lock owner for this one. 434 */ 435 if (ap->a_op == F_UNLCKSYS) { 436 lf_clearremotesys(fl->l_sysid); 437 return (0); 438 } 439 440 /* 441 * Convert the flock structure into a start and end. 442 */ 443 switch (fl->l_whence) { 444 445 case SEEK_SET: 446 case SEEK_CUR: 447 /* 448 * Caller is responsible for adding any necessary offset 449 * when SEEK_CUR is used. 450 */ 451 start = fl->l_start; 452 break; 453 454 case SEEK_END: 455 if (size > OFF_MAX || 456 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 457 return (EOVERFLOW); 458 start = size + fl->l_start; 459 break; 460 461 default: 462 return (EINVAL); 463 } 464 if (start < 0) 465 return (EINVAL); 466 if (fl->l_len < 0) { 467 if (start == 0) 468 return (EINVAL); 469 end = start - 1; 470 start += fl->l_len; 471 if (start < 0) 472 return (EINVAL); 473 } else if (fl->l_len == 0) { 474 end = OFF_MAX; 475 } else { 476 oadd = fl->l_len - 1; 477 if (oadd > OFF_MAX - start) 478 return (EOVERFLOW); 479 end = start + oadd; 480 } 481 482 retry_setlock: 483 484 /* 485 * Avoid the common case of unlocking when inode has no locks. 486 */ 487 if (ap->a_op != F_SETLK && (*statep) == NULL) { 488 VI_LOCK(vp); 489 if ((*statep) == NULL) { 490 fl->l_type = F_UNLCK; 491 VI_UNLOCK(vp); 492 return (0); 493 } 494 VI_UNLOCK(vp); 495 } 496 497 /* 498 * Map our arguments to an existing lock owner or create one 499 * if this is the first time we have seen this owner. 500 */ 501 hash = lf_hash_owner(id, vp, fl, flags); 502 sx_xlock(&lf_lock_owners[hash].lock); 503 LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link) 504 if (lf_owner_matches(lo, id, fl, flags)) 505 break; 506 if (!lo) { 507 /* 508 * We initialise the lock with a reference 509 * count which matches the new lockf_entry 510 * structure created below. 511 */ 512 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 513 M_WAITOK|M_ZERO); 514 #ifdef LOCKF_DEBUG 515 if (lockf_debug & 4) 516 printf("Allocated lock owner %p\n", lo); 517 #endif 518 519 lo->lo_refs = 1; 520 lo->lo_flags = flags; 521 lo->lo_id = id; 522 lo->lo_hash = hash; 523 if (flags & F_REMOTE) { 524 lo->lo_pid = fl->l_pid; 525 lo->lo_sysid = fl->l_sysid; 526 } else if (flags & F_FLOCK) { 527 lo->lo_pid = -1; 528 lo->lo_sysid = 0; 529 } else { 530 struct proc *p = (struct proc *) id; 531 lo->lo_pid = p->p_pid; 532 lo->lo_sysid = 0; 533 } 534 lo->lo_vertex = NULL; 535 536 #ifdef LOCKF_DEBUG 537 if (lockf_debug & 1) { 538 printf("lf_advlockasync: new lock owner %p ", lo); 539 lf_print_owner(lo); 540 printf("\n"); 541 } 542 #endif 543 544 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link); 545 } else { 546 /* 547 * We have seen this lock owner before, increase its 548 * reference count to account for the new lockf_entry 549 * structure we create below. 550 */ 551 lo->lo_refs++; 552 } 553 sx_xunlock(&lf_lock_owners[hash].lock); 554 555 /* 556 * Create the lockf structure. We initialise the lf_owner 557 * field here instead of in lf_alloc_lock() to avoid paying 558 * the lf_lock_owners_lock tax twice. 559 */ 560 lock = lf_alloc_lock(NULL); 561 lock->lf_refs = 1; 562 lock->lf_start = start; 563 lock->lf_end = end; 564 lock->lf_owner = lo; 565 lock->lf_vnode = vp; 566 if (flags & F_REMOTE) { 567 /* 568 * For remote locks, the caller may release its ref to 569 * the vnode at any time - we have to ref it here to 570 * prevent it from being recycled unexpectedly. 571 */ 572 vref(vp); 573 } 574 575 /* 576 * XXX The problem is that VTOI is ufs specific, so it will 577 * break LOCKF_DEBUG for all other FS's other than UFS because 578 * it casts the vnode->data ptr to struct inode *. 579 */ 580 /* lock->lf_inode = VTOI(ap->a_vp); */ 581 lock->lf_inode = (struct inode *)0; 582 lock->lf_type = fl->l_type; 583 LIST_INIT(&lock->lf_outedges); 584 LIST_INIT(&lock->lf_inedges); 585 lock->lf_async_task = ap->a_task; 586 lock->lf_flags = ap->a_flags; 587 588 /* 589 * Do the requested operation. First find our state structure 590 * and create a new one if necessary - the caller's *statep 591 * variable and the state's ls_threads count is protected by 592 * the vnode interlock. 593 */ 594 VI_LOCK(vp); 595 if (VN_IS_DOOMED(vp)) { 596 VI_UNLOCK(vp); 597 lf_free_lock(lock); 598 return (ENOENT); 599 } 600 601 /* 602 * Allocate a state structure if necessary. 603 */ 604 state = *statep; 605 if (state == NULL) { 606 struct lockf *ls; 607 608 VI_UNLOCK(vp); 609 610 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 611 sx_init(&ls->ls_lock, "ls_lock"); 612 LIST_INIT(&ls->ls_active); 613 LIST_INIT(&ls->ls_pending); 614 ls->ls_threads = 1; 615 616 sx_xlock(&lf_lock_states_lock); 617 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 618 sx_xunlock(&lf_lock_states_lock); 619 620 /* 621 * Cope if we lost a race with some other thread while 622 * trying to allocate memory. 623 */ 624 VI_LOCK(vp); 625 if (VN_IS_DOOMED(vp)) { 626 VI_UNLOCK(vp); 627 sx_xlock(&lf_lock_states_lock); 628 LIST_REMOVE(ls, ls_link); 629 sx_xunlock(&lf_lock_states_lock); 630 sx_destroy(&ls->ls_lock); 631 free(ls, M_LOCKF); 632 lf_free_lock(lock); 633 return (ENOENT); 634 } 635 if ((*statep) == NULL) { 636 state = *statep = ls; 637 VI_UNLOCK(vp); 638 } else { 639 state = *statep; 640 state->ls_threads++; 641 VI_UNLOCK(vp); 642 643 sx_xlock(&lf_lock_states_lock); 644 LIST_REMOVE(ls, ls_link); 645 sx_xunlock(&lf_lock_states_lock); 646 sx_destroy(&ls->ls_lock); 647 free(ls, M_LOCKF); 648 } 649 } else { 650 state->ls_threads++; 651 VI_UNLOCK(vp); 652 } 653 654 sx_xlock(&state->ls_lock); 655 /* 656 * Recheck the doomed vnode after state->ls_lock is 657 * locked. lf_purgelocks() requires that no new threads add 658 * pending locks when vnode is marked by VIRF_DOOMED flag. 659 */ 660 VI_LOCK(vp); 661 if (VN_IS_DOOMED(vp)) { 662 state->ls_threads--; 663 wakeup(state); 664 VI_UNLOCK(vp); 665 sx_xunlock(&state->ls_lock); 666 lf_free_lock(lock); 667 return (ENOENT); 668 } 669 VI_UNLOCK(vp); 670 671 switch (ap->a_op) { 672 case F_SETLK: 673 error = lf_setlock(state, lock, vp, ap->a_cookiep); 674 break; 675 676 case F_UNLCK: 677 error = lf_clearlock(state, lock); 678 lf_free_lock(lock); 679 break; 680 681 case F_GETLK: 682 error = lf_getlock(state, lock, fl); 683 lf_free_lock(lock); 684 break; 685 686 case F_CANCEL: 687 if (ap->a_cookiep) 688 error = lf_cancel(state, lock, *ap->a_cookiep); 689 else 690 error = EINVAL; 691 lf_free_lock(lock); 692 break; 693 694 default: 695 lf_free_lock(lock); 696 error = EINVAL; 697 break; 698 } 699 700 #ifdef DIAGNOSTIC 701 /* 702 * Check for some can't happen stuff. In this case, the active 703 * lock list becoming disordered or containing mutually 704 * blocking locks. We also check the pending list for locks 705 * which should be active (i.e. have no out-going edges). 706 */ 707 LIST_FOREACH(lock, &state->ls_active, lf_link) { 708 struct lockf_entry *lf; 709 if (LIST_NEXT(lock, lf_link)) 710 KASSERT((lock->lf_start 711 <= LIST_NEXT(lock, lf_link)->lf_start), 712 ("locks disordered")); 713 LIST_FOREACH(lf, &state->ls_active, lf_link) { 714 if (lock == lf) 715 break; 716 KASSERT(!lf_blocks(lock, lf), 717 ("two conflicting active locks")); 718 if (lock->lf_owner == lf->lf_owner) 719 KASSERT(!lf_overlaps(lock, lf), 720 ("two overlapping locks from same owner")); 721 } 722 } 723 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 724 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 725 ("pending lock which should be active")); 726 } 727 #endif 728 sx_xunlock(&state->ls_lock); 729 730 VI_LOCK(vp); 731 732 state->ls_threads--; 733 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 734 KASSERT(LIST_EMPTY(&state->ls_pending), 735 ("freeable state with pending locks")); 736 } else { 737 wakeup(state); 738 } 739 740 VI_UNLOCK(vp); 741 742 if (error == EDOOFUS) { 743 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 744 goto retry_setlock; 745 } 746 return (error); 747 } 748 749 int 750 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 751 { 752 struct vop_advlockasync_args a; 753 754 a.a_vp = ap->a_vp; 755 a.a_id = ap->a_id; 756 a.a_op = ap->a_op; 757 a.a_fl = ap->a_fl; 758 a.a_flags = ap->a_flags; 759 a.a_task = NULL; 760 a.a_cookiep = NULL; 761 762 return (lf_advlockasync(&a, statep, size)); 763 } 764 765 void 766 lf_purgelocks(struct vnode *vp, struct lockf **statep) 767 { 768 struct lockf *state; 769 struct lockf_entry *lock, *nlock; 770 771 /* 772 * For this to work correctly, the caller must ensure that no 773 * other threads enter the locking system for this vnode, 774 * e.g. by checking VIRF_DOOMED. We wake up any threads that are 775 * sleeping waiting for locks on this vnode and then free all 776 * the remaining locks. 777 */ 778 VI_LOCK(vp); 779 KASSERT(VN_IS_DOOMED(vp), 780 ("lf_purgelocks: vp %p has not vgone yet", vp)); 781 state = *statep; 782 if (state == NULL) { 783 VI_UNLOCK(vp); 784 return; 785 } 786 *statep = NULL; 787 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 788 KASSERT(LIST_EMPTY(&state->ls_pending), 789 ("freeing state with pending locks")); 790 VI_UNLOCK(vp); 791 goto out_free; 792 } 793 state->ls_threads++; 794 VI_UNLOCK(vp); 795 796 sx_xlock(&state->ls_lock); 797 sx_xlock(&lf_owner_graph_lock); 798 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 799 LIST_REMOVE(lock, lf_link); 800 lf_remove_outgoing(lock); 801 lf_remove_incoming(lock); 802 803 /* 804 * If its an async lock, we can just free it 805 * here, otherwise we let the sleeping thread 806 * free it. 807 */ 808 if (lock->lf_async_task) { 809 lf_free_lock(lock); 810 } else { 811 lock->lf_flags |= F_INTR; 812 wakeup(lock); 813 } 814 } 815 sx_xunlock(&lf_owner_graph_lock); 816 sx_xunlock(&state->ls_lock); 817 818 /* 819 * Wait for all other threads, sleeping and otherwise 820 * to leave. 821 */ 822 VI_LOCK(vp); 823 while (state->ls_threads > 1) 824 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 825 VI_UNLOCK(vp); 826 827 /* 828 * We can just free all the active locks since they 829 * will have no dependencies (we removed them all 830 * above). We don't need to bother locking since we 831 * are the last thread using this state structure. 832 */ 833 KASSERT(LIST_EMPTY(&state->ls_pending), 834 ("lock pending for %p", state)); 835 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 836 LIST_REMOVE(lock, lf_link); 837 lf_free_lock(lock); 838 } 839 out_free: 840 sx_xlock(&lf_lock_states_lock); 841 LIST_REMOVE(state, ls_link); 842 sx_xunlock(&lf_lock_states_lock); 843 sx_destroy(&state->ls_lock); 844 free(state, M_LOCKF); 845 } 846 847 /* 848 * Return non-zero if locks 'x' and 'y' overlap. 849 */ 850 static int 851 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 852 { 853 854 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 855 } 856 857 /* 858 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 859 */ 860 static int 861 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 862 { 863 864 return x->lf_owner != y->lf_owner 865 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 866 && lf_overlaps(x, y); 867 } 868 869 /* 870 * Allocate a lock edge from the free list 871 */ 872 static struct lockf_edge * 873 lf_alloc_edge(void) 874 { 875 876 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 877 } 878 879 /* 880 * Free a lock edge. 881 */ 882 static void 883 lf_free_edge(struct lockf_edge *e) 884 { 885 886 free(e, M_LOCKF); 887 } 888 889 890 /* 891 * Ensure that the lock's owner has a corresponding vertex in the 892 * owner graph. 893 */ 894 static void 895 lf_alloc_vertex(struct lockf_entry *lock) 896 { 897 struct owner_graph *g = &lf_owner_graph; 898 899 if (!lock->lf_owner->lo_vertex) 900 lock->lf_owner->lo_vertex = 901 graph_alloc_vertex(g, lock->lf_owner); 902 } 903 904 /* 905 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 906 * the new edge would cause a cycle in the owner graph. 907 */ 908 static int 909 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 910 { 911 struct owner_graph *g = &lf_owner_graph; 912 struct lockf_edge *e; 913 int error; 914 915 #ifdef DIAGNOSTIC 916 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 917 KASSERT(e->le_to != y, ("adding lock edge twice")); 918 #endif 919 920 /* 921 * Make sure the two owners have entries in the owner graph. 922 */ 923 lf_alloc_vertex(x); 924 lf_alloc_vertex(y); 925 926 error = graph_add_edge(g, x->lf_owner->lo_vertex, 927 y->lf_owner->lo_vertex); 928 if (error) 929 return (error); 930 931 e = lf_alloc_edge(); 932 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 933 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 934 e->le_from = x; 935 e->le_to = y; 936 937 return (0); 938 } 939 940 /* 941 * Remove an edge from the lock graph. 942 */ 943 static void 944 lf_remove_edge(struct lockf_edge *e) 945 { 946 struct owner_graph *g = &lf_owner_graph; 947 struct lockf_entry *x = e->le_from; 948 struct lockf_entry *y = e->le_to; 949 950 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 951 LIST_REMOVE(e, le_outlink); 952 LIST_REMOVE(e, le_inlink); 953 e->le_from = NULL; 954 e->le_to = NULL; 955 lf_free_edge(e); 956 } 957 958 /* 959 * Remove all out-going edges from lock x. 960 */ 961 static void 962 lf_remove_outgoing(struct lockf_entry *x) 963 { 964 struct lockf_edge *e; 965 966 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 967 lf_remove_edge(e); 968 } 969 } 970 971 /* 972 * Remove all in-coming edges from lock x. 973 */ 974 static void 975 lf_remove_incoming(struct lockf_entry *x) 976 { 977 struct lockf_edge *e; 978 979 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 980 lf_remove_edge(e); 981 } 982 } 983 984 /* 985 * Walk the list of locks for the file and create an out-going edge 986 * from lock to each blocking lock. 987 */ 988 static int 989 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 990 { 991 struct lockf_entry *overlap; 992 int error; 993 994 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 995 /* 996 * We may assume that the active list is sorted by 997 * lf_start. 998 */ 999 if (overlap->lf_start > lock->lf_end) 1000 break; 1001 if (!lf_blocks(lock, overlap)) 1002 continue; 1003 1004 /* 1005 * We've found a blocking lock. Add the corresponding 1006 * edge to the graphs and see if it would cause a 1007 * deadlock. 1008 */ 1009 error = lf_add_edge(lock, overlap); 1010 1011 /* 1012 * The only error that lf_add_edge returns is EDEADLK. 1013 * Remove any edges we added and return the error. 1014 */ 1015 if (error) { 1016 lf_remove_outgoing(lock); 1017 return (error); 1018 } 1019 } 1020 1021 /* 1022 * We also need to add edges to sleeping locks that block 1023 * us. This ensures that lf_wakeup_lock cannot grant two 1024 * mutually blocking locks simultaneously and also enforces a 1025 * 'first come, first served' fairness model. Note that this 1026 * only happens if we are blocked by at least one active lock 1027 * due to the call to lf_getblock in lf_setlock below. 1028 */ 1029 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1030 if (!lf_blocks(lock, overlap)) 1031 continue; 1032 /* 1033 * We've found a blocking lock. Add the corresponding 1034 * edge to the graphs and see if it would cause a 1035 * deadlock. 1036 */ 1037 error = lf_add_edge(lock, overlap); 1038 1039 /* 1040 * The only error that lf_add_edge returns is EDEADLK. 1041 * Remove any edges we added and return the error. 1042 */ 1043 if (error) { 1044 lf_remove_outgoing(lock); 1045 return (error); 1046 } 1047 } 1048 1049 return (0); 1050 } 1051 1052 /* 1053 * Walk the list of pending locks for the file and create an in-coming 1054 * edge from lock to each blocking lock. 1055 */ 1056 static int 1057 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1058 { 1059 struct lockf_entry *overlap; 1060 int error; 1061 1062 sx_assert(&state->ls_lock, SX_XLOCKED); 1063 if (LIST_EMPTY(&state->ls_pending)) 1064 return (0); 1065 1066 error = 0; 1067 sx_xlock(&lf_owner_graph_lock); 1068 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1069 if (!lf_blocks(lock, overlap)) 1070 continue; 1071 1072 /* 1073 * We've found a blocking lock. Add the corresponding 1074 * edge to the graphs and see if it would cause a 1075 * deadlock. 1076 */ 1077 error = lf_add_edge(overlap, lock); 1078 1079 /* 1080 * The only error that lf_add_edge returns is EDEADLK. 1081 * Remove any edges we added and return the error. 1082 */ 1083 if (error) { 1084 lf_remove_incoming(lock); 1085 break; 1086 } 1087 } 1088 sx_xunlock(&lf_owner_graph_lock); 1089 return (error); 1090 } 1091 1092 /* 1093 * Insert lock into the active list, keeping list entries ordered by 1094 * increasing values of lf_start. 1095 */ 1096 static void 1097 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1098 { 1099 struct lockf_entry *lf, *lfprev; 1100 1101 if (LIST_EMPTY(&state->ls_active)) { 1102 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1103 return; 1104 } 1105 1106 lfprev = NULL; 1107 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1108 if (lf->lf_start > lock->lf_start) { 1109 LIST_INSERT_BEFORE(lf, lock, lf_link); 1110 return; 1111 } 1112 lfprev = lf; 1113 } 1114 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1115 } 1116 1117 /* 1118 * Wake up a sleeping lock and remove it from the pending list now 1119 * that all its dependencies have been resolved. The caller should 1120 * arrange for the lock to be added to the active list, adjusting any 1121 * existing locks for the same owner as needed. 1122 */ 1123 static void 1124 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1125 { 1126 1127 /* 1128 * Remove from ls_pending list and wake up the caller 1129 * or start the async notification, as appropriate. 1130 */ 1131 LIST_REMOVE(wakelock, lf_link); 1132 #ifdef LOCKF_DEBUG 1133 if (lockf_debug & 1) 1134 lf_print("lf_wakeup_lock: awakening", wakelock); 1135 #endif /* LOCKF_DEBUG */ 1136 if (wakelock->lf_async_task) { 1137 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1138 } else { 1139 wakeup(wakelock); 1140 } 1141 } 1142 1143 /* 1144 * Re-check all dependent locks and remove edges to locks that we no 1145 * longer block. If 'all' is non-zero, the lock has been removed and 1146 * we must remove all the dependencies, otherwise it has simply been 1147 * reduced but remains active. Any pending locks which have been been 1148 * unblocked are added to 'granted' 1149 */ 1150 static void 1151 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1152 struct lockf_entry_list *granted) 1153 { 1154 struct lockf_edge *e, *ne; 1155 struct lockf_entry *deplock; 1156 1157 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1158 deplock = e->le_from; 1159 if (all || !lf_blocks(lock, deplock)) { 1160 sx_xlock(&lf_owner_graph_lock); 1161 lf_remove_edge(e); 1162 sx_xunlock(&lf_owner_graph_lock); 1163 if (LIST_EMPTY(&deplock->lf_outedges)) { 1164 lf_wakeup_lock(state, deplock); 1165 LIST_INSERT_HEAD(granted, deplock, lf_link); 1166 } 1167 } 1168 } 1169 } 1170 1171 /* 1172 * Set the start of an existing active lock, updating dependencies and 1173 * adding any newly woken locks to 'granted'. 1174 */ 1175 static void 1176 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1177 struct lockf_entry_list *granted) 1178 { 1179 1180 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1181 lock->lf_start = new_start; 1182 LIST_REMOVE(lock, lf_link); 1183 lf_insert_lock(state, lock); 1184 lf_update_dependancies(state, lock, FALSE, granted); 1185 } 1186 1187 /* 1188 * Set the end of an existing active lock, updating dependencies and 1189 * adding any newly woken locks to 'granted'. 1190 */ 1191 static void 1192 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1193 struct lockf_entry_list *granted) 1194 { 1195 1196 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1197 lock->lf_end = new_end; 1198 lf_update_dependancies(state, lock, FALSE, granted); 1199 } 1200 1201 /* 1202 * Add a lock to the active list, updating or removing any current 1203 * locks owned by the same owner and processing any pending locks that 1204 * become unblocked as a result. This code is also used for unlock 1205 * since the logic for updating existing locks is identical. 1206 * 1207 * As a result of processing the new lock, we may unblock existing 1208 * pending locks as a result of downgrading/unlocking. We simply 1209 * activate the newly granted locks by looping. 1210 * 1211 * Since the new lock already has its dependencies set up, we always 1212 * add it to the list (unless its an unlock request). This may 1213 * fragment the lock list in some pathological cases but its probably 1214 * not a real problem. 1215 */ 1216 static void 1217 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1218 { 1219 struct lockf_entry *overlap, *lf; 1220 struct lockf_entry_list granted; 1221 int ovcase; 1222 1223 LIST_INIT(&granted); 1224 LIST_INSERT_HEAD(&granted, lock, lf_link); 1225 1226 while (!LIST_EMPTY(&granted)) { 1227 lock = LIST_FIRST(&granted); 1228 LIST_REMOVE(lock, lf_link); 1229 1230 /* 1231 * Skip over locks owned by other processes. Handle 1232 * any locks that overlap and are owned by ourselves. 1233 */ 1234 overlap = LIST_FIRST(&state->ls_active); 1235 for (;;) { 1236 ovcase = lf_findoverlap(&overlap, lock, SELF); 1237 1238 #ifdef LOCKF_DEBUG 1239 if (ovcase && (lockf_debug & 2)) { 1240 printf("lf_setlock: overlap %d", ovcase); 1241 lf_print("", overlap); 1242 } 1243 #endif 1244 /* 1245 * Six cases: 1246 * 0) no overlap 1247 * 1) overlap == lock 1248 * 2) overlap contains lock 1249 * 3) lock contains overlap 1250 * 4) overlap starts before lock 1251 * 5) overlap ends after lock 1252 */ 1253 switch (ovcase) { 1254 case 0: /* no overlap */ 1255 break; 1256 1257 case 1: /* overlap == lock */ 1258 /* 1259 * We have already setup the 1260 * dependants for the new lock, taking 1261 * into account a possible downgrade 1262 * or unlock. Remove the old lock. 1263 */ 1264 LIST_REMOVE(overlap, lf_link); 1265 lf_update_dependancies(state, overlap, TRUE, 1266 &granted); 1267 lf_free_lock(overlap); 1268 break; 1269 1270 case 2: /* overlap contains lock */ 1271 /* 1272 * Just split the existing lock. 1273 */ 1274 lf_split(state, overlap, lock, &granted); 1275 break; 1276 1277 case 3: /* lock contains overlap */ 1278 /* 1279 * Delete the overlap and advance to 1280 * the next entry in the list. 1281 */ 1282 lf = LIST_NEXT(overlap, lf_link); 1283 LIST_REMOVE(overlap, lf_link); 1284 lf_update_dependancies(state, overlap, TRUE, 1285 &granted); 1286 lf_free_lock(overlap); 1287 overlap = lf; 1288 continue; 1289 1290 case 4: /* overlap starts before lock */ 1291 /* 1292 * Just update the overlap end and 1293 * move on. 1294 */ 1295 lf_set_end(state, overlap, lock->lf_start - 1, 1296 &granted); 1297 overlap = LIST_NEXT(overlap, lf_link); 1298 continue; 1299 1300 case 5: /* overlap ends after lock */ 1301 /* 1302 * Change the start of overlap and 1303 * re-insert. 1304 */ 1305 lf_set_start(state, overlap, lock->lf_end + 1, 1306 &granted); 1307 break; 1308 } 1309 break; 1310 } 1311 #ifdef LOCKF_DEBUG 1312 if (lockf_debug & 1) { 1313 if (lock->lf_type != F_UNLCK) 1314 lf_print("lf_activate_lock: activated", lock); 1315 else 1316 lf_print("lf_activate_lock: unlocked", lock); 1317 lf_printlist("lf_activate_lock", lock); 1318 } 1319 #endif /* LOCKF_DEBUG */ 1320 if (lock->lf_type != F_UNLCK) 1321 lf_insert_lock(state, lock); 1322 } 1323 } 1324 1325 /* 1326 * Cancel a pending lock request, either as a result of a signal or a 1327 * cancel request for an async lock. 1328 */ 1329 static void 1330 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1331 { 1332 struct lockf_entry_list granted; 1333 1334 /* 1335 * Note it is theoretically possible that cancelling this lock 1336 * may allow some other pending lock to become 1337 * active. Consider this case: 1338 * 1339 * Owner Action Result Dependencies 1340 * 1341 * A: lock [0..0] succeeds 1342 * B: lock [2..2] succeeds 1343 * C: lock [1..2] blocked C->B 1344 * D: lock [0..1] blocked C->B,D->A,D->C 1345 * A: unlock [0..0] C->B,D->C 1346 * C: cancel [1..2] 1347 */ 1348 1349 LIST_REMOVE(lock, lf_link); 1350 1351 /* 1352 * Removing out-going edges is simple. 1353 */ 1354 sx_xlock(&lf_owner_graph_lock); 1355 lf_remove_outgoing(lock); 1356 sx_xunlock(&lf_owner_graph_lock); 1357 1358 /* 1359 * Removing in-coming edges may allow some other lock to 1360 * become active - we use lf_update_dependancies to figure 1361 * this out. 1362 */ 1363 LIST_INIT(&granted); 1364 lf_update_dependancies(state, lock, TRUE, &granted); 1365 lf_free_lock(lock); 1366 1367 /* 1368 * Feed any newly active locks to lf_activate_lock. 1369 */ 1370 while (!LIST_EMPTY(&granted)) { 1371 lock = LIST_FIRST(&granted); 1372 LIST_REMOVE(lock, lf_link); 1373 lf_activate_lock(state, lock); 1374 } 1375 } 1376 1377 /* 1378 * Set a byte-range lock. 1379 */ 1380 static int 1381 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1382 void **cookiep) 1383 { 1384 static char lockstr[] = "lockf"; 1385 int error, priority, stops_deferred; 1386 1387 #ifdef LOCKF_DEBUG 1388 if (lockf_debug & 1) 1389 lf_print("lf_setlock", lock); 1390 #endif /* LOCKF_DEBUG */ 1391 1392 /* 1393 * Set the priority 1394 */ 1395 priority = PLOCK; 1396 if (lock->lf_type == F_WRLCK) 1397 priority += 4; 1398 if (!(lock->lf_flags & F_NOINTR)) 1399 priority |= PCATCH; 1400 /* 1401 * Scan lock list for this file looking for locks that would block us. 1402 */ 1403 if (lf_getblock(state, lock)) { 1404 /* 1405 * Free the structure and return if nonblocking. 1406 */ 1407 if ((lock->lf_flags & F_WAIT) == 0 1408 && lock->lf_async_task == NULL) { 1409 lf_free_lock(lock); 1410 error = EAGAIN; 1411 goto out; 1412 } 1413 1414 /* 1415 * For flock type locks, we must first remove 1416 * any shared locks that we hold before we sleep 1417 * waiting for an exclusive lock. 1418 */ 1419 if ((lock->lf_flags & F_FLOCK) && 1420 lock->lf_type == F_WRLCK) { 1421 lock->lf_type = F_UNLCK; 1422 lf_activate_lock(state, lock); 1423 lock->lf_type = F_WRLCK; 1424 } 1425 1426 /* 1427 * We are blocked. Create edges to each blocking lock, 1428 * checking for deadlock using the owner graph. For 1429 * simplicity, we run deadlock detection for all 1430 * locks, posix and otherwise. 1431 */ 1432 sx_xlock(&lf_owner_graph_lock); 1433 error = lf_add_outgoing(state, lock); 1434 sx_xunlock(&lf_owner_graph_lock); 1435 1436 if (error) { 1437 #ifdef LOCKF_DEBUG 1438 if (lockf_debug & 1) 1439 lf_print("lf_setlock: deadlock", lock); 1440 #endif 1441 lf_free_lock(lock); 1442 goto out; 1443 } 1444 1445 /* 1446 * We have added edges to everything that blocks 1447 * us. Sleep until they all go away. 1448 */ 1449 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1450 #ifdef LOCKF_DEBUG 1451 if (lockf_debug & 1) { 1452 struct lockf_edge *e; 1453 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1454 lf_print("lf_setlock: blocking on", e->le_to); 1455 lf_printlist("lf_setlock", e->le_to); 1456 } 1457 } 1458 #endif /* LOCKF_DEBUG */ 1459 1460 if ((lock->lf_flags & F_WAIT) == 0) { 1461 /* 1462 * The caller requested async notification - 1463 * this callback happens when the blocking 1464 * lock is released, allowing the caller to 1465 * make another attempt to take the lock. 1466 */ 1467 *cookiep = (void *) lock; 1468 error = EINPROGRESS; 1469 goto out; 1470 } 1471 1472 lock->lf_refs++; 1473 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART); 1474 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1475 sigallowstop(stops_deferred); 1476 if (lf_free_lock(lock)) { 1477 error = EDOOFUS; 1478 goto out; 1479 } 1480 1481 /* 1482 * We may have been awakened by a signal and/or by a 1483 * debugger continuing us (in which cases we must 1484 * remove our lock graph edges) and/or by another 1485 * process releasing a lock (in which case our edges 1486 * have already been removed and we have been moved to 1487 * the active list). We may also have been woken by 1488 * lf_purgelocks which we report to the caller as 1489 * EINTR. In that case, lf_purgelocks will have 1490 * removed our lock graph edges. 1491 * 1492 * Note that it is possible to receive a signal after 1493 * we were successfully woken (and moved to the active 1494 * list) but before we resumed execution. In this 1495 * case, our lf_outedges list will be clear. We 1496 * pretend there was no error. 1497 * 1498 * Note also, if we have been sleeping long enough, we 1499 * may now have incoming edges from some newer lock 1500 * which is waiting behind us in the queue. 1501 */ 1502 if (lock->lf_flags & F_INTR) { 1503 error = EINTR; 1504 lf_free_lock(lock); 1505 goto out; 1506 } 1507 if (LIST_EMPTY(&lock->lf_outedges)) { 1508 error = 0; 1509 } else { 1510 lf_cancel_lock(state, lock); 1511 goto out; 1512 } 1513 #ifdef LOCKF_DEBUG 1514 if (lockf_debug & 1) { 1515 lf_print("lf_setlock: granted", lock); 1516 } 1517 #endif 1518 goto out; 1519 } 1520 /* 1521 * It looks like we are going to grant the lock. First add 1522 * edges from any currently pending lock that the new lock 1523 * would block. 1524 */ 1525 error = lf_add_incoming(state, lock); 1526 if (error) { 1527 #ifdef LOCKF_DEBUG 1528 if (lockf_debug & 1) 1529 lf_print("lf_setlock: deadlock", lock); 1530 #endif 1531 lf_free_lock(lock); 1532 goto out; 1533 } 1534 1535 /* 1536 * No blocks!! Add the lock. Note that we will 1537 * downgrade or upgrade any overlapping locks this 1538 * process already owns. 1539 */ 1540 lf_activate_lock(state, lock); 1541 error = 0; 1542 out: 1543 return (error); 1544 } 1545 1546 /* 1547 * Remove a byte-range lock on an inode. 1548 * 1549 * Generally, find the lock (or an overlap to that lock) 1550 * and remove it (or shrink it), then wakeup anyone we can. 1551 */ 1552 static int 1553 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1554 { 1555 struct lockf_entry *overlap; 1556 1557 overlap = LIST_FIRST(&state->ls_active); 1558 1559 if (overlap == NOLOCKF) 1560 return (0); 1561 #ifdef LOCKF_DEBUG 1562 if (unlock->lf_type != F_UNLCK) 1563 panic("lf_clearlock: bad type"); 1564 if (lockf_debug & 1) 1565 lf_print("lf_clearlock", unlock); 1566 #endif /* LOCKF_DEBUG */ 1567 1568 lf_activate_lock(state, unlock); 1569 1570 return (0); 1571 } 1572 1573 /* 1574 * Check whether there is a blocking lock, and if so return its 1575 * details in '*fl'. 1576 */ 1577 static int 1578 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1579 { 1580 struct lockf_entry *block; 1581 1582 #ifdef LOCKF_DEBUG 1583 if (lockf_debug & 1) 1584 lf_print("lf_getlock", lock); 1585 #endif /* LOCKF_DEBUG */ 1586 1587 if ((block = lf_getblock(state, lock))) { 1588 fl->l_type = block->lf_type; 1589 fl->l_whence = SEEK_SET; 1590 fl->l_start = block->lf_start; 1591 if (block->lf_end == OFF_MAX) 1592 fl->l_len = 0; 1593 else 1594 fl->l_len = block->lf_end - block->lf_start + 1; 1595 fl->l_pid = block->lf_owner->lo_pid; 1596 fl->l_sysid = block->lf_owner->lo_sysid; 1597 } else { 1598 fl->l_type = F_UNLCK; 1599 } 1600 return (0); 1601 } 1602 1603 /* 1604 * Cancel an async lock request. 1605 */ 1606 static int 1607 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1608 { 1609 struct lockf_entry *reallock; 1610 1611 /* 1612 * We need to match this request with an existing lock 1613 * request. 1614 */ 1615 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1616 if ((void *) reallock == cookie) { 1617 /* 1618 * Double-check that this lock looks right 1619 * (maybe use a rolling ID for the cancel 1620 * cookie instead?) 1621 */ 1622 if (!(reallock->lf_vnode == lock->lf_vnode 1623 && reallock->lf_start == lock->lf_start 1624 && reallock->lf_end == lock->lf_end)) { 1625 return (ENOENT); 1626 } 1627 1628 /* 1629 * Make sure this lock was async and then just 1630 * remove it from its wait lists. 1631 */ 1632 if (!reallock->lf_async_task) { 1633 return (ENOENT); 1634 } 1635 1636 /* 1637 * Note that since any other thread must take 1638 * state->ls_lock before it can possibly 1639 * trigger the async callback, we are safe 1640 * from a race with lf_wakeup_lock, i.e. we 1641 * can free the lock (actually our caller does 1642 * this). 1643 */ 1644 lf_cancel_lock(state, reallock); 1645 return (0); 1646 } 1647 } 1648 1649 /* 1650 * We didn't find a matching lock - not much we can do here. 1651 */ 1652 return (ENOENT); 1653 } 1654 1655 /* 1656 * Walk the list of locks for an inode and 1657 * return the first blocking lock. 1658 */ 1659 static struct lockf_entry * 1660 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1661 { 1662 struct lockf_entry *overlap; 1663 1664 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1665 /* 1666 * We may assume that the active list is sorted by 1667 * lf_start. 1668 */ 1669 if (overlap->lf_start > lock->lf_end) 1670 break; 1671 if (!lf_blocks(lock, overlap)) 1672 continue; 1673 return (overlap); 1674 } 1675 return (NOLOCKF); 1676 } 1677 1678 /* 1679 * Walk the list of locks for an inode to find an overlapping lock (if 1680 * any) and return a classification of that overlap. 1681 * 1682 * Arguments: 1683 * *overlap The place in the lock list to start looking 1684 * lock The lock which is being tested 1685 * type Pass 'SELF' to test only locks with the same 1686 * owner as lock, or 'OTHER' to test only locks 1687 * with a different owner 1688 * 1689 * Returns one of six values: 1690 * 0) no overlap 1691 * 1) overlap == lock 1692 * 2) overlap contains lock 1693 * 3) lock contains overlap 1694 * 4) overlap starts before lock 1695 * 5) overlap ends after lock 1696 * 1697 * If there is an overlapping lock, '*overlap' is set to point at the 1698 * overlapping lock. 1699 * 1700 * NOTE: this returns only the FIRST overlapping lock. There 1701 * may be more than one. 1702 */ 1703 static int 1704 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1705 { 1706 struct lockf_entry *lf; 1707 off_t start, end; 1708 int res; 1709 1710 if ((*overlap) == NOLOCKF) { 1711 return (0); 1712 } 1713 #ifdef LOCKF_DEBUG 1714 if (lockf_debug & 2) 1715 lf_print("lf_findoverlap: looking for overlap in", lock); 1716 #endif /* LOCKF_DEBUG */ 1717 start = lock->lf_start; 1718 end = lock->lf_end; 1719 res = 0; 1720 while (*overlap) { 1721 lf = *overlap; 1722 if (lf->lf_start > end) 1723 break; 1724 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1725 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1726 *overlap = LIST_NEXT(lf, lf_link); 1727 continue; 1728 } 1729 #ifdef LOCKF_DEBUG 1730 if (lockf_debug & 2) 1731 lf_print("\tchecking", lf); 1732 #endif /* LOCKF_DEBUG */ 1733 /* 1734 * OK, check for overlap 1735 * 1736 * Six cases: 1737 * 0) no overlap 1738 * 1) overlap == lock 1739 * 2) overlap contains lock 1740 * 3) lock contains overlap 1741 * 4) overlap starts before lock 1742 * 5) overlap ends after lock 1743 */ 1744 if (start > lf->lf_end) { 1745 /* Case 0 */ 1746 #ifdef LOCKF_DEBUG 1747 if (lockf_debug & 2) 1748 printf("no overlap\n"); 1749 #endif /* LOCKF_DEBUG */ 1750 *overlap = LIST_NEXT(lf, lf_link); 1751 continue; 1752 } 1753 if (lf->lf_start == start && lf->lf_end == end) { 1754 /* Case 1 */ 1755 #ifdef LOCKF_DEBUG 1756 if (lockf_debug & 2) 1757 printf("overlap == lock\n"); 1758 #endif /* LOCKF_DEBUG */ 1759 res = 1; 1760 break; 1761 } 1762 if (lf->lf_start <= start && lf->lf_end >= end) { 1763 /* Case 2 */ 1764 #ifdef LOCKF_DEBUG 1765 if (lockf_debug & 2) 1766 printf("overlap contains lock\n"); 1767 #endif /* LOCKF_DEBUG */ 1768 res = 2; 1769 break; 1770 } 1771 if (start <= lf->lf_start && end >= lf->lf_end) { 1772 /* Case 3 */ 1773 #ifdef LOCKF_DEBUG 1774 if (lockf_debug & 2) 1775 printf("lock contains overlap\n"); 1776 #endif /* LOCKF_DEBUG */ 1777 res = 3; 1778 break; 1779 } 1780 if (lf->lf_start < start && lf->lf_end >= start) { 1781 /* Case 4 */ 1782 #ifdef LOCKF_DEBUG 1783 if (lockf_debug & 2) 1784 printf("overlap starts before lock\n"); 1785 #endif /* LOCKF_DEBUG */ 1786 res = 4; 1787 break; 1788 } 1789 if (lf->lf_start > start && lf->lf_end > end) { 1790 /* Case 5 */ 1791 #ifdef LOCKF_DEBUG 1792 if (lockf_debug & 2) 1793 printf("overlap ends after lock\n"); 1794 #endif /* LOCKF_DEBUG */ 1795 res = 5; 1796 break; 1797 } 1798 panic("lf_findoverlap: default"); 1799 } 1800 return (res); 1801 } 1802 1803 /* 1804 * Split an the existing 'lock1', based on the extent of the lock 1805 * described by 'lock2'. The existing lock should cover 'lock2' 1806 * entirely. 1807 * 1808 * Any pending locks which have been been unblocked are added to 1809 * 'granted' 1810 */ 1811 static void 1812 lf_split(struct lockf *state, struct lockf_entry *lock1, 1813 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1814 { 1815 struct lockf_entry *splitlock; 1816 1817 #ifdef LOCKF_DEBUG 1818 if (lockf_debug & 2) { 1819 lf_print("lf_split", lock1); 1820 lf_print("splitting from", lock2); 1821 } 1822 #endif /* LOCKF_DEBUG */ 1823 /* 1824 * Check to see if we don't need to split at all. 1825 */ 1826 if (lock1->lf_start == lock2->lf_start) { 1827 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1828 return; 1829 } 1830 if (lock1->lf_end == lock2->lf_end) { 1831 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1832 return; 1833 } 1834 /* 1835 * Make a new lock consisting of the last part of 1836 * the encompassing lock. 1837 */ 1838 splitlock = lf_alloc_lock(lock1->lf_owner); 1839 memcpy(splitlock, lock1, sizeof *splitlock); 1840 splitlock->lf_refs = 1; 1841 if (splitlock->lf_flags & F_REMOTE) 1842 vref(splitlock->lf_vnode); 1843 1844 /* 1845 * This cannot cause a deadlock since any edges we would add 1846 * to splitlock already exist in lock1. We must be sure to add 1847 * necessary dependencies to splitlock before we reduce lock1 1848 * otherwise we may accidentally grant a pending lock that 1849 * was blocked by the tail end of lock1. 1850 */ 1851 splitlock->lf_start = lock2->lf_end + 1; 1852 LIST_INIT(&splitlock->lf_outedges); 1853 LIST_INIT(&splitlock->lf_inedges); 1854 lf_add_incoming(state, splitlock); 1855 1856 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1857 1858 /* 1859 * OK, now link it in 1860 */ 1861 lf_insert_lock(state, splitlock); 1862 } 1863 1864 struct lockdesc { 1865 STAILQ_ENTRY(lockdesc) link; 1866 struct vnode *vp; 1867 struct flock fl; 1868 }; 1869 STAILQ_HEAD(lockdesclist, lockdesc); 1870 1871 int 1872 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1873 { 1874 struct lockf *ls; 1875 struct lockf_entry *lf; 1876 struct lockdesc *ldesc; 1877 struct lockdesclist locks; 1878 int error; 1879 1880 /* 1881 * In order to keep the locking simple, we iterate over the 1882 * active lock lists to build a list of locks that need 1883 * releasing. We then call the iterator for each one in turn. 1884 * 1885 * We take an extra reference to the vnode for the duration to 1886 * make sure it doesn't go away before we are finished. 1887 */ 1888 STAILQ_INIT(&locks); 1889 sx_xlock(&lf_lock_states_lock); 1890 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1891 sx_xlock(&ls->ls_lock); 1892 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1893 if (lf->lf_owner->lo_sysid != sysid) 1894 continue; 1895 1896 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1897 M_WAITOK); 1898 ldesc->vp = lf->lf_vnode; 1899 vref(ldesc->vp); 1900 ldesc->fl.l_start = lf->lf_start; 1901 if (lf->lf_end == OFF_MAX) 1902 ldesc->fl.l_len = 0; 1903 else 1904 ldesc->fl.l_len = 1905 lf->lf_end - lf->lf_start + 1; 1906 ldesc->fl.l_whence = SEEK_SET; 1907 ldesc->fl.l_type = F_UNLCK; 1908 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1909 ldesc->fl.l_sysid = sysid; 1910 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1911 } 1912 sx_xunlock(&ls->ls_lock); 1913 } 1914 sx_xunlock(&lf_lock_states_lock); 1915 1916 /* 1917 * Call the iterator function for each lock in turn. If the 1918 * iterator returns an error code, just free the rest of the 1919 * lockdesc structures. 1920 */ 1921 error = 0; 1922 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1923 STAILQ_REMOVE_HEAD(&locks, link); 1924 if (!error) 1925 error = fn(ldesc->vp, &ldesc->fl, arg); 1926 vrele(ldesc->vp); 1927 free(ldesc, M_LOCKF); 1928 } 1929 1930 return (error); 1931 } 1932 1933 int 1934 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1935 { 1936 struct lockf *ls; 1937 struct lockf_entry *lf; 1938 struct lockdesc *ldesc; 1939 struct lockdesclist locks; 1940 int error; 1941 1942 /* 1943 * In order to keep the locking simple, we iterate over the 1944 * active lock lists to build a list of locks that need 1945 * releasing. We then call the iterator for each one in turn. 1946 * 1947 * We take an extra reference to the vnode for the duration to 1948 * make sure it doesn't go away before we are finished. 1949 */ 1950 STAILQ_INIT(&locks); 1951 VI_LOCK(vp); 1952 ls = vp->v_lockf; 1953 if (!ls) { 1954 VI_UNLOCK(vp); 1955 return (0); 1956 } 1957 ls->ls_threads++; 1958 VI_UNLOCK(vp); 1959 1960 sx_xlock(&ls->ls_lock); 1961 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1962 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1963 M_WAITOK); 1964 ldesc->vp = lf->lf_vnode; 1965 vref(ldesc->vp); 1966 ldesc->fl.l_start = lf->lf_start; 1967 if (lf->lf_end == OFF_MAX) 1968 ldesc->fl.l_len = 0; 1969 else 1970 ldesc->fl.l_len = 1971 lf->lf_end - lf->lf_start + 1; 1972 ldesc->fl.l_whence = SEEK_SET; 1973 ldesc->fl.l_type = F_UNLCK; 1974 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1975 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1976 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1977 } 1978 sx_xunlock(&ls->ls_lock); 1979 VI_LOCK(vp); 1980 ls->ls_threads--; 1981 wakeup(ls); 1982 VI_UNLOCK(vp); 1983 1984 /* 1985 * Call the iterator function for each lock in turn. If the 1986 * iterator returns an error code, just free the rest of the 1987 * lockdesc structures. 1988 */ 1989 error = 0; 1990 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1991 STAILQ_REMOVE_HEAD(&locks, link); 1992 if (!error) 1993 error = fn(ldesc->vp, &ldesc->fl, arg); 1994 vrele(ldesc->vp); 1995 free(ldesc, M_LOCKF); 1996 } 1997 1998 return (error); 1999 } 2000 2001 static int 2002 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 2003 { 2004 2005 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 2006 return (0); 2007 } 2008 2009 void 2010 lf_clearremotesys(int sysid) 2011 { 2012 2013 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2014 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2015 } 2016 2017 int 2018 lf_countlocks(int sysid) 2019 { 2020 int i; 2021 struct lock_owner *lo; 2022 int count; 2023 2024 count = 0; 2025 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 2026 sx_xlock(&lf_lock_owners[i].lock); 2027 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link) 2028 if (lo->lo_sysid == sysid) 2029 count += lo->lo_refs; 2030 sx_xunlock(&lf_lock_owners[i].lock); 2031 } 2032 2033 return (count); 2034 } 2035 2036 #ifdef LOCKF_DEBUG 2037 2038 /* 2039 * Return non-zero if y is reachable from x using a brute force 2040 * search. If reachable and path is non-null, return the route taken 2041 * in path. 2042 */ 2043 static int 2044 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2045 struct owner_vertex_list *path) 2046 { 2047 struct owner_edge *e; 2048 2049 if (x == y) { 2050 if (path) 2051 TAILQ_INSERT_HEAD(path, x, v_link); 2052 return 1; 2053 } 2054 2055 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2056 if (graph_reaches(e->e_to, y, path)) { 2057 if (path) 2058 TAILQ_INSERT_HEAD(path, x, v_link); 2059 return 1; 2060 } 2061 } 2062 return 0; 2063 } 2064 2065 /* 2066 * Perform consistency checks on the graph. Make sure the values of 2067 * v_order are correct. If checkorder is non-zero, check no vertex can 2068 * reach any other vertex with a smaller order. 2069 */ 2070 static void 2071 graph_check(struct owner_graph *g, int checkorder) 2072 { 2073 int i, j; 2074 2075 for (i = 0; i < g->g_size; i++) { 2076 if (!g->g_vertices[i]->v_owner) 2077 continue; 2078 KASSERT(g->g_vertices[i]->v_order == i, 2079 ("lock graph vertices disordered")); 2080 if (checkorder) { 2081 for (j = 0; j < i; j++) { 2082 if (!g->g_vertices[j]->v_owner) 2083 continue; 2084 KASSERT(!graph_reaches(g->g_vertices[i], 2085 g->g_vertices[j], NULL), 2086 ("lock graph vertices disordered")); 2087 } 2088 } 2089 } 2090 } 2091 2092 static void 2093 graph_print_vertices(struct owner_vertex_list *set) 2094 { 2095 struct owner_vertex *v; 2096 2097 printf("{ "); 2098 TAILQ_FOREACH(v, set, v_link) { 2099 printf("%d:", v->v_order); 2100 lf_print_owner(v->v_owner); 2101 if (TAILQ_NEXT(v, v_link)) 2102 printf(", "); 2103 } 2104 printf(" }\n"); 2105 } 2106 2107 #endif 2108 2109 /* 2110 * Calculate the sub-set of vertices v from the affected region [y..x] 2111 * where v is reachable from y. Return -1 if a loop was detected 2112 * (i.e. x is reachable from y, otherwise the number of vertices in 2113 * this subset. 2114 */ 2115 static int 2116 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2117 struct owner_vertex *y, struct owner_vertex_list *delta) 2118 { 2119 uint32_t gen; 2120 struct owner_vertex *v; 2121 struct owner_edge *e; 2122 int n; 2123 2124 /* 2125 * We start with a set containing just y. Then for each vertex 2126 * v in the set so far unprocessed, we add each vertex that v 2127 * has an out-edge to and that is within the affected region 2128 * [y..x]. If we see the vertex x on our travels, stop 2129 * immediately. 2130 */ 2131 TAILQ_INIT(delta); 2132 TAILQ_INSERT_TAIL(delta, y, v_link); 2133 v = y; 2134 n = 1; 2135 gen = g->g_gen; 2136 while (v) { 2137 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2138 if (e->e_to == x) 2139 return -1; 2140 if (e->e_to->v_order < x->v_order 2141 && e->e_to->v_gen != gen) { 2142 e->e_to->v_gen = gen; 2143 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2144 n++; 2145 } 2146 } 2147 v = TAILQ_NEXT(v, v_link); 2148 } 2149 2150 return (n); 2151 } 2152 2153 /* 2154 * Calculate the sub-set of vertices v from the affected region [y..x] 2155 * where v reaches x. Return the number of vertices in this subset. 2156 */ 2157 static int 2158 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2159 struct owner_vertex *y, struct owner_vertex_list *delta) 2160 { 2161 uint32_t gen; 2162 struct owner_vertex *v; 2163 struct owner_edge *e; 2164 int n; 2165 2166 /* 2167 * We start with a set containing just x. Then for each vertex 2168 * v in the set so far unprocessed, we add each vertex that v 2169 * has an in-edge from and that is within the affected region 2170 * [y..x]. 2171 */ 2172 TAILQ_INIT(delta); 2173 TAILQ_INSERT_TAIL(delta, x, v_link); 2174 v = x; 2175 n = 1; 2176 gen = g->g_gen; 2177 while (v) { 2178 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2179 if (e->e_from->v_order > y->v_order 2180 && e->e_from->v_gen != gen) { 2181 e->e_from->v_gen = gen; 2182 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2183 n++; 2184 } 2185 } 2186 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2187 } 2188 2189 return (n); 2190 } 2191 2192 static int 2193 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2194 { 2195 struct owner_vertex *v; 2196 int i, j; 2197 2198 TAILQ_FOREACH(v, set, v_link) { 2199 for (i = n; 2200 i > 0 && indices[i - 1] > v->v_order; i--) 2201 ; 2202 for (j = n - 1; j >= i; j--) 2203 indices[j + 1] = indices[j]; 2204 indices[i] = v->v_order; 2205 n++; 2206 } 2207 2208 return (n); 2209 } 2210 2211 static int 2212 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2213 struct owner_vertex_list *set) 2214 { 2215 struct owner_vertex *v, *vlowest; 2216 2217 while (!TAILQ_EMPTY(set)) { 2218 vlowest = NULL; 2219 TAILQ_FOREACH(v, set, v_link) { 2220 if (!vlowest || v->v_order < vlowest->v_order) 2221 vlowest = v; 2222 } 2223 TAILQ_REMOVE(set, vlowest, v_link); 2224 vlowest->v_order = indices[nextunused]; 2225 g->g_vertices[vlowest->v_order] = vlowest; 2226 nextunused++; 2227 } 2228 2229 return (nextunused); 2230 } 2231 2232 static int 2233 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2234 struct owner_vertex *y) 2235 { 2236 struct owner_edge *e; 2237 struct owner_vertex_list deltaF, deltaB; 2238 int nF, n, vi, i; 2239 int *indices; 2240 int nB __unused; 2241 2242 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2243 2244 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2245 if (e->e_to == y) { 2246 e->e_refs++; 2247 return (0); 2248 } 2249 } 2250 2251 #ifdef LOCKF_DEBUG 2252 if (lockf_debug & 8) { 2253 printf("adding edge %d:", x->v_order); 2254 lf_print_owner(x->v_owner); 2255 printf(" -> %d:", y->v_order); 2256 lf_print_owner(y->v_owner); 2257 printf("\n"); 2258 } 2259 #endif 2260 if (y->v_order < x->v_order) { 2261 /* 2262 * The new edge violates the order. First find the set 2263 * of affected vertices reachable from y (deltaF) and 2264 * the set of affect vertices affected that reach x 2265 * (deltaB), using the graph generation number to 2266 * detect whether we have visited a given vertex 2267 * already. We re-order the graph so that each vertex 2268 * in deltaB appears before each vertex in deltaF. 2269 * 2270 * If x is a member of deltaF, then the new edge would 2271 * create a cycle. Otherwise, we may assume that 2272 * deltaF and deltaB are disjoint. 2273 */ 2274 g->g_gen++; 2275 if (g->g_gen == 0) { 2276 /* 2277 * Generation wrap. 2278 */ 2279 for (vi = 0; vi < g->g_size; vi++) { 2280 g->g_vertices[vi]->v_gen = 0; 2281 } 2282 g->g_gen++; 2283 } 2284 nF = graph_delta_forward(g, x, y, &deltaF); 2285 if (nF < 0) { 2286 #ifdef LOCKF_DEBUG 2287 if (lockf_debug & 8) { 2288 struct owner_vertex_list path; 2289 printf("deadlock: "); 2290 TAILQ_INIT(&path); 2291 graph_reaches(y, x, &path); 2292 graph_print_vertices(&path); 2293 } 2294 #endif 2295 return (EDEADLK); 2296 } 2297 2298 #ifdef LOCKF_DEBUG 2299 if (lockf_debug & 8) { 2300 printf("re-ordering graph vertices\n"); 2301 printf("deltaF = "); 2302 graph_print_vertices(&deltaF); 2303 } 2304 #endif 2305 2306 nB = graph_delta_backward(g, x, y, &deltaB); 2307 2308 #ifdef LOCKF_DEBUG 2309 if (lockf_debug & 8) { 2310 printf("deltaB = "); 2311 graph_print_vertices(&deltaB); 2312 } 2313 #endif 2314 2315 /* 2316 * We first build a set of vertex indices (vertex 2317 * order values) that we may use, then we re-assign 2318 * orders first to those vertices in deltaB, then to 2319 * deltaF. Note that the contents of deltaF and deltaB 2320 * may be partially disordered - we perform an 2321 * insertion sort while building our index set. 2322 */ 2323 indices = g->g_indexbuf; 2324 n = graph_add_indices(indices, 0, &deltaF); 2325 graph_add_indices(indices, n, &deltaB); 2326 2327 /* 2328 * We must also be sure to maintain the relative 2329 * ordering of deltaF and deltaB when re-assigning 2330 * vertices. We do this by iteratively removing the 2331 * lowest ordered element from the set and assigning 2332 * it the next value from our new ordering. 2333 */ 2334 i = graph_assign_indices(g, indices, 0, &deltaB); 2335 graph_assign_indices(g, indices, i, &deltaF); 2336 2337 #ifdef LOCKF_DEBUG 2338 if (lockf_debug & 8) { 2339 struct owner_vertex_list set; 2340 TAILQ_INIT(&set); 2341 for (i = 0; i < nB + nF; i++) 2342 TAILQ_INSERT_TAIL(&set, 2343 g->g_vertices[indices[i]], v_link); 2344 printf("new ordering = "); 2345 graph_print_vertices(&set); 2346 } 2347 #endif 2348 } 2349 2350 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2351 2352 #ifdef LOCKF_DEBUG 2353 if (lockf_debug & 8) { 2354 graph_check(g, TRUE); 2355 } 2356 #endif 2357 2358 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2359 2360 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2361 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2362 e->e_refs = 1; 2363 e->e_from = x; 2364 e->e_to = y; 2365 2366 return (0); 2367 } 2368 2369 /* 2370 * Remove an edge x->y from the graph. 2371 */ 2372 static void 2373 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2374 struct owner_vertex *y) 2375 { 2376 struct owner_edge *e; 2377 2378 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2379 2380 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2381 if (e->e_to == y) 2382 break; 2383 } 2384 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2385 2386 e->e_refs--; 2387 if (e->e_refs == 0) { 2388 #ifdef LOCKF_DEBUG 2389 if (lockf_debug & 8) { 2390 printf("removing edge %d:", x->v_order); 2391 lf_print_owner(x->v_owner); 2392 printf(" -> %d:", y->v_order); 2393 lf_print_owner(y->v_owner); 2394 printf("\n"); 2395 } 2396 #endif 2397 LIST_REMOVE(e, e_outlink); 2398 LIST_REMOVE(e, e_inlink); 2399 free(e, M_LOCKF); 2400 } 2401 } 2402 2403 /* 2404 * Allocate a vertex from the free list. Return ENOMEM if there are 2405 * none. 2406 */ 2407 static struct owner_vertex * 2408 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2409 { 2410 struct owner_vertex *v; 2411 2412 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2413 2414 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2415 if (g->g_size == g->g_space) { 2416 g->g_vertices = realloc(g->g_vertices, 2417 2 * g->g_space * sizeof(struct owner_vertex *), 2418 M_LOCKF, M_WAITOK); 2419 free(g->g_indexbuf, M_LOCKF); 2420 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2421 M_LOCKF, M_WAITOK); 2422 g->g_space = 2 * g->g_space; 2423 } 2424 v->v_order = g->g_size; 2425 v->v_gen = g->g_gen; 2426 g->g_vertices[g->g_size] = v; 2427 g->g_size++; 2428 2429 LIST_INIT(&v->v_outedges); 2430 LIST_INIT(&v->v_inedges); 2431 v->v_owner = lo; 2432 2433 return (v); 2434 } 2435 2436 static void 2437 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2438 { 2439 struct owner_vertex *w; 2440 int i; 2441 2442 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2443 2444 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2445 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2446 2447 /* 2448 * Remove from the graph's array and close up the gap, 2449 * renumbering the other vertices. 2450 */ 2451 for (i = v->v_order + 1; i < g->g_size; i++) { 2452 w = g->g_vertices[i]; 2453 w->v_order--; 2454 g->g_vertices[i - 1] = w; 2455 } 2456 g->g_size--; 2457 2458 free(v, M_LOCKF); 2459 } 2460 2461 static struct owner_graph * 2462 graph_init(struct owner_graph *g) 2463 { 2464 2465 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2466 M_LOCKF, M_WAITOK); 2467 g->g_size = 0; 2468 g->g_space = 10; 2469 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2470 g->g_gen = 0; 2471 2472 return (g); 2473 } 2474 2475 #ifdef LOCKF_DEBUG 2476 /* 2477 * Print description of a lock owner 2478 */ 2479 static void 2480 lf_print_owner(struct lock_owner *lo) 2481 { 2482 2483 if (lo->lo_flags & F_REMOTE) { 2484 printf("remote pid %d, system %d", 2485 lo->lo_pid, lo->lo_sysid); 2486 } else if (lo->lo_flags & F_FLOCK) { 2487 printf("file %p", lo->lo_id); 2488 } else { 2489 printf("local pid %d", lo->lo_pid); 2490 } 2491 } 2492 2493 /* 2494 * Print out a lock. 2495 */ 2496 static void 2497 lf_print(char *tag, struct lockf_entry *lock) 2498 { 2499 2500 printf("%s: lock %p for ", tag, (void *)lock); 2501 lf_print_owner(lock->lf_owner); 2502 if (lock->lf_inode != (struct inode *)0) 2503 printf(" in ino %ju on dev <%s>,", 2504 (uintmax_t)lock->lf_inode->i_number, 2505 devtoname(ITODEV(lock->lf_inode))); 2506 printf(" %s, start %jd, end ", 2507 lock->lf_type == F_RDLCK ? "shared" : 2508 lock->lf_type == F_WRLCK ? "exclusive" : 2509 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2510 (intmax_t)lock->lf_start); 2511 if (lock->lf_end == OFF_MAX) 2512 printf("EOF"); 2513 else 2514 printf("%jd", (intmax_t)lock->lf_end); 2515 if (!LIST_EMPTY(&lock->lf_outedges)) 2516 printf(" block %p\n", 2517 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2518 else 2519 printf("\n"); 2520 } 2521 2522 static void 2523 lf_printlist(char *tag, struct lockf_entry *lock) 2524 { 2525 struct lockf_entry *lf, *blk; 2526 struct lockf_edge *e; 2527 2528 if (lock->lf_inode == (struct inode *)0) 2529 return; 2530 2531 printf("%s: Lock list for ino %ju on dev <%s>:\n", 2532 tag, (uintmax_t)lock->lf_inode->i_number, 2533 devtoname(ITODEV(lock->lf_inode))); 2534 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2535 printf("\tlock %p for ",(void *)lf); 2536 lf_print_owner(lock->lf_owner); 2537 printf(", %s, start %jd, end %jd", 2538 lf->lf_type == F_RDLCK ? "shared" : 2539 lf->lf_type == F_WRLCK ? "exclusive" : 2540 lf->lf_type == F_UNLCK ? "unlock" : 2541 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2542 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2543 blk = e->le_to; 2544 printf("\n\t\tlock request %p for ", (void *)blk); 2545 lf_print_owner(blk->lf_owner); 2546 printf(", %s, start %jd, end %jd", 2547 blk->lf_type == F_RDLCK ? "shared" : 2548 blk->lf_type == F_WRLCK ? "exclusive" : 2549 blk->lf_type == F_UNLCK ? "unlock" : 2550 "unknown", (intmax_t)blk->lf_start, 2551 (intmax_t)blk->lf_end); 2552 if (!LIST_EMPTY(&blk->lf_inedges)) 2553 panic("lf_printlist: bad list"); 2554 } 2555 printf("\n"); 2556 } 2557 } 2558 #endif /* LOCKF_DEBUG */ 2559