xref: /freebsd/sys/kern/kern_lockf.c (revision e1e636193db45630c7881246d25902e57c43d24e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 #include "opt_debug_lockf.h"
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/hash.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/limits.h>
70 #include <sys/lock.h>
71 #include <sys/mount.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84 
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87 
88 static int	lockf_debug = 0; /* control debug output */
89 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
90 #endif
91 
92 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
93 
94 struct owner_edge;
95 struct owner_vertex;
96 struct owner_vertex_list;
97 struct owner_graph;
98 
99 #define NOLOCKF (struct lockf_entry *)0
100 #define SELF	0x1
101 #define OTHERS	0x2
102 static void	 lf_init(void *);
103 static int	 lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
104 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
105     int);
106 static struct lockf_entry *
107 		 lf_alloc_lock(struct lock_owner *);
108 static int	 lf_free_lock(struct lockf_entry *);
109 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
110 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
111 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
112 static void	 lf_free_edge(struct lockf_edge *);
113 static struct lockf_edge *
114 		 lf_alloc_edge(void);
115 static void	 lf_alloc_vertex(struct lockf_entry *);
116 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
117 static void	 lf_remove_edge(struct lockf_edge *);
118 static void	 lf_remove_outgoing(struct lockf_entry *);
119 static void	 lf_remove_incoming(struct lockf_entry *);
120 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
121 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
122 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
123     int);
124 static struct lockf_entry *
125 		 lf_getblock(struct lockf *, struct lockf_entry *);
126 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
127 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
128 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
129 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
130     int all, struct lockf_entry_list *);
131 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
132 	struct lockf_entry_list*);
133 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
134 	struct lockf_entry_list*);
135 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
136     struct vnode *, void **cookiep);
137 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
138 static void	 lf_split(struct lockf *, struct lockf_entry *,
139     struct lockf_entry *, struct lockf_entry_list *);
140 #ifdef LOCKF_DEBUG
141 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
142     struct owner_vertex_list *path);
143 static void	 graph_check(struct owner_graph *g, int checkorder);
144 static void	 graph_print_vertices(struct owner_vertex_list *set);
145 #endif
146 static int	 graph_delta_forward(struct owner_graph *g,
147     struct owner_vertex *x, struct owner_vertex *y,
148     struct owner_vertex_list *delta);
149 static int	 graph_delta_backward(struct owner_graph *g,
150     struct owner_vertex *x, struct owner_vertex *y,
151     struct owner_vertex_list *delta);
152 static int	 graph_add_indices(int *indices, int n,
153     struct owner_vertex_list *set);
154 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
155     int nextunused, struct owner_vertex_list *set);
156 static int	 graph_add_edge(struct owner_graph *g,
157     struct owner_vertex *x, struct owner_vertex *y);
158 static void	 graph_remove_edge(struct owner_graph *g,
159     struct owner_vertex *x, struct owner_vertex *y);
160 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
161     struct lock_owner *lo);
162 static void	 graph_free_vertex(struct owner_graph *g,
163     struct owner_vertex *v);
164 static struct owner_graph * graph_init(struct owner_graph *g);
165 #ifdef LOCKF_DEBUG
166 static void	 lf_print(char *, struct lockf_entry *);
167 static void	 lf_printlist(char *, struct lockf_entry *);
168 static void	 lf_print_owner(struct lock_owner *);
169 #endif
170 
171 /*
172  * This structure is used to keep track of both local and remote lock
173  * owners. The lf_owner field of the struct lockf_entry points back at
174  * the lock owner structure. Each possible lock owner (local proc for
175  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
176  * pair for remote locks) is represented by a unique instance of
177  * struct lock_owner.
178  *
179  * If a lock owner has a lock that blocks some other lock or a lock
180  * that is waiting for some other lock, it also has a vertex in the
181  * owner_graph below.
182  *
183  * Locks:
184  * (s)		locked by state->ls_lock
185  * (S)		locked by lf_lock_states_lock
186  * (g)		locked by lf_owner_graph_lock
187  * (c)		const until freeing
188  */
189 #define	LOCK_OWNER_HASH_SIZE	256
190 
191 struct lock_owner {
192 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
193 	int	lo_refs;	    /* (l) Number of locks referring to this */
194 	int	lo_flags;	    /* (c) Flags passed to lf_advlock */
195 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
196 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
197 	int	lo_sysid;	    /* (c) System Id of the lock owner */
198 	int	lo_hash;	    /* (c) Used to lock the appropriate chain */
199 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
200 };
201 
202 LIST_HEAD(lock_owner_list, lock_owner);
203 
204 struct lock_owner_chain {
205 	struct sx		lock;
206 	struct lock_owner_list	list;
207 };
208 
209 static struct sx		lf_lock_states_lock;
210 static struct lockf_list	lf_lock_states; /* (S) */
211 static struct lock_owner_chain	lf_lock_owners[LOCK_OWNER_HASH_SIZE];
212 
213 /*
214  * Structures for deadlock detection.
215  *
216  * We have two types of directed graph, the first is the set of locks,
217  * both active and pending on a vnode. Within this graph, active locks
218  * are terminal nodes in the graph (i.e. have no out-going
219  * edges). Pending locks have out-going edges to each blocking active
220  * lock that prevents the lock from being granted and also to each
221  * older pending lock that would block them if it was active. The
222  * graph for each vnode is naturally acyclic; new edges are only ever
223  * added to or from new nodes (either new pending locks which only add
224  * out-going edges or new active locks which only add in-coming edges)
225  * therefore they cannot create loops in the lock graph.
226  *
227  * The second graph is a global graph of lock owners. Each lock owner
228  * is a vertex in that graph and an edge is added to the graph
229  * whenever an edge is added to a vnode graph, with end points
230  * corresponding to owner of the new pending lock and the owner of the
231  * lock upon which it waits. In order to prevent deadlock, we only add
232  * an edge to this graph if the new edge would not create a cycle.
233  *
234  * The lock owner graph is topologically sorted, i.e. if a node has
235  * any outgoing edges, then it has an order strictly less than any
236  * node to which it has an outgoing edge. We preserve this ordering
237  * (and detect cycles) on edge insertion using Algorithm PK from the
238  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
239  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
240  * No. 1.7)
241  */
242 struct owner_vertex;
243 
244 struct owner_edge {
245 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
246 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
247 	int		e_refs;		  /* (g) number of times added */
248 	struct owner_vertex *e_from;	  /* (c) out-going from here */
249 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
250 };
251 LIST_HEAD(owner_edge_list, owner_edge);
252 
253 struct owner_vertex {
254 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
255 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
256 	int		v_order;	  /* (g) order of vertex in graph */
257 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
258 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
259 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
260 };
261 TAILQ_HEAD(owner_vertex_list, owner_vertex);
262 
263 struct owner_graph {
264 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
265 	int		g_size;		  /* (g) number of vertices */
266 	int		g_space;	  /* (g) space allocated for vertices */
267 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
268 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
269 };
270 
271 static struct sx		lf_owner_graph_lock;
272 static struct owner_graph	lf_owner_graph;
273 
274 /*
275  * Initialise various structures and locks.
276  */
277 static void
278 lf_init(void *dummy)
279 {
280 	int i;
281 
282 	sx_init(&lf_lock_states_lock, "lock states lock");
283 	LIST_INIT(&lf_lock_states);
284 
285 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
286 		sx_init(&lf_lock_owners[i].lock, "lock owners lock");
287 		LIST_INIT(&lf_lock_owners[i].list);
288 	}
289 
290 	sx_init(&lf_owner_graph_lock, "owner graph lock");
291 	graph_init(&lf_owner_graph);
292 }
293 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
294 
295 /*
296  * Generate a hash value for a lock owner.
297  */
298 static int
299 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
300 {
301 	uint32_t h;
302 
303 	if (flags & F_REMOTE) {
304 		h = HASHSTEP(0, fl->l_pid);
305 		h = HASHSTEP(h, fl->l_sysid);
306 	} else if (flags & F_FLOCK) {
307 		h = ((uintptr_t) id) >> 7;
308 	} else {
309 		h = ((uintptr_t) vp) >> 7;
310 	}
311 
312 	return (h % LOCK_OWNER_HASH_SIZE);
313 }
314 
315 /*
316  * Return true if a lock owner matches the details passed to
317  * lf_advlock.
318  */
319 static int
320 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
321     int flags)
322 {
323 	if (flags & F_REMOTE) {
324 		return lo->lo_pid == fl->l_pid
325 			&& lo->lo_sysid == fl->l_sysid;
326 	} else {
327 		return lo->lo_id == id;
328 	}
329 }
330 
331 static struct lockf_entry *
332 lf_alloc_lock(struct lock_owner *lo)
333 {
334 	struct lockf_entry *lf;
335 
336 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
337 
338 #ifdef LOCKF_DEBUG
339 	if (lockf_debug & 4)
340 		printf("Allocated lock %p\n", lf);
341 #endif
342 	if (lo) {
343 		sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
344 		lo->lo_refs++;
345 		sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
346 		lf->lf_owner = lo;
347 	}
348 
349 	return (lf);
350 }
351 
352 static int
353 lf_free_lock(struct lockf_entry *lock)
354 {
355 	struct sx *chainlock;
356 
357 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
358 	if (--lock->lf_refs > 0)
359 		return (0);
360 	/*
361 	 * Adjust the lock_owner reference count and
362 	 * reclaim the entry if this is the last lock
363 	 * for that owner.
364 	 */
365 	struct lock_owner *lo = lock->lf_owner;
366 	if (lo) {
367 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
368 		    ("freeing lock with dependencies"));
369 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
370 		    ("freeing lock with dependants"));
371 		chainlock = &lf_lock_owners[lo->lo_hash].lock;
372 		sx_xlock(chainlock);
373 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
374 		lo->lo_refs--;
375 		if (lo->lo_refs == 0) {
376 #ifdef LOCKF_DEBUG
377 			if (lockf_debug & 1)
378 				printf("lf_free_lock: freeing lock owner %p\n",
379 				    lo);
380 #endif
381 			if (lo->lo_vertex) {
382 				sx_xlock(&lf_owner_graph_lock);
383 				graph_free_vertex(&lf_owner_graph,
384 				    lo->lo_vertex);
385 				sx_xunlock(&lf_owner_graph_lock);
386 			}
387 			LIST_REMOVE(lo, lo_link);
388 			free(lo, M_LOCKF);
389 #ifdef LOCKF_DEBUG
390 			if (lockf_debug & 4)
391 				printf("Freed lock owner %p\n", lo);
392 #endif
393 		}
394 		sx_unlock(chainlock);
395 	}
396 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
397 		vrele(lock->lf_vnode);
398 		lock->lf_vnode = NULL;
399 	}
400 #ifdef LOCKF_DEBUG
401 	if (lockf_debug & 4)
402 		printf("Freed lock %p\n", lock);
403 #endif
404 	free(lock, M_LOCKF);
405 	return (1);
406 }
407 
408 /*
409  * Advisory record locking support
410  */
411 int
412 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
413     u_quad_t size)
414 {
415 	struct lockf *state;
416 	struct flock *fl = ap->a_fl;
417 	struct lockf_entry *lock;
418 	struct vnode *vp = ap->a_vp;
419 	caddr_t id = ap->a_id;
420 	int flags = ap->a_flags;
421 	int hash;
422 	struct lock_owner *lo;
423 	off_t start, end, oadd;
424 	int error;
425 
426 	/*
427 	 * Handle the F_UNLKSYS case first - no need to mess about
428 	 * creating a lock owner for this one.
429 	 */
430 	if (ap->a_op == F_UNLCKSYS) {
431 		lf_clearremotesys(fl->l_sysid);
432 		return (0);
433 	}
434 
435 	/*
436 	 * Convert the flock structure into a start and end.
437 	 */
438 	switch (fl->l_whence) {
439 	case SEEK_SET:
440 	case SEEK_CUR:
441 		/*
442 		 * Caller is responsible for adding any necessary offset
443 		 * when SEEK_CUR is used.
444 		 */
445 		start = fl->l_start;
446 		break;
447 
448 	case SEEK_END:
449 		if (size > OFF_MAX ||
450 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
451 			return (EOVERFLOW);
452 		start = size + fl->l_start;
453 		break;
454 
455 	default:
456 		return (EINVAL);
457 	}
458 	if (start < 0)
459 		return (EINVAL);
460 	if (fl->l_len < 0) {
461 		if (start == 0)
462 			return (EINVAL);
463 		end = start - 1;
464 		start += fl->l_len;
465 		if (start < 0)
466 			return (EINVAL);
467 	} else if (fl->l_len == 0) {
468 		end = OFF_MAX;
469 	} else {
470 		oadd = fl->l_len - 1;
471 		if (oadd > OFF_MAX - start)
472 			return (EOVERFLOW);
473 		end = start + oadd;
474 	}
475 
476 retry_setlock:
477 
478 	/*
479 	 * Avoid the common case of unlocking when inode has no locks.
480 	 */
481 	if (ap->a_op != F_SETLK && (*statep) == NULL) {
482 		VI_LOCK(vp);
483 		if ((*statep) == NULL) {
484 			fl->l_type = F_UNLCK;
485 			VI_UNLOCK(vp);
486 			return (0);
487 		}
488 		VI_UNLOCK(vp);
489 	}
490 
491 	/*
492 	 * Map our arguments to an existing lock owner or create one
493 	 * if this is the first time we have seen this owner.
494 	 */
495 	hash = lf_hash_owner(id, vp, fl, flags);
496 	sx_xlock(&lf_lock_owners[hash].lock);
497 	LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
498 		if (lf_owner_matches(lo, id, fl, flags))
499 			break;
500 	if (!lo) {
501 		/*
502 		 * We initialise the lock with a reference
503 		 * count which matches the new lockf_entry
504 		 * structure created below.
505 		 */
506 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
507 		    M_WAITOK|M_ZERO);
508 #ifdef LOCKF_DEBUG
509 		if (lockf_debug & 4)
510 			printf("Allocated lock owner %p\n", lo);
511 #endif
512 
513 		lo->lo_refs = 1;
514 		lo->lo_flags = flags;
515 		lo->lo_id = id;
516 		lo->lo_hash = hash;
517 		if (flags & F_REMOTE) {
518 			lo->lo_pid = fl->l_pid;
519 			lo->lo_sysid = fl->l_sysid;
520 		} else if (flags & F_FLOCK) {
521 			lo->lo_pid = -1;
522 			lo->lo_sysid = 0;
523 		} else {
524 			struct proc *p = (struct proc *) id;
525 			lo->lo_pid = p->p_pid;
526 			lo->lo_sysid = 0;
527 		}
528 		lo->lo_vertex = NULL;
529 
530 #ifdef LOCKF_DEBUG
531 		if (lockf_debug & 1) {
532 			printf("lf_advlockasync: new lock owner %p ", lo);
533 			lf_print_owner(lo);
534 			printf("\n");
535 		}
536 #endif
537 
538 		LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
539 	} else {
540 		/*
541 		 * We have seen this lock owner before, increase its
542 		 * reference count to account for the new lockf_entry
543 		 * structure we create below.
544 		 */
545 		lo->lo_refs++;
546 	}
547 	sx_xunlock(&lf_lock_owners[hash].lock);
548 
549 	/*
550 	 * Create the lockf structure. We initialise the lf_owner
551 	 * field here instead of in lf_alloc_lock() to avoid paying
552 	 * the lf_lock_owners_lock tax twice.
553 	 */
554 	lock = lf_alloc_lock(NULL);
555 	lock->lf_refs = 1;
556 	lock->lf_start = start;
557 	lock->lf_end = end;
558 	lock->lf_owner = lo;
559 	lock->lf_vnode = vp;
560 	if (flags & F_REMOTE) {
561 		/*
562 		 * For remote locks, the caller may release its ref to
563 		 * the vnode at any time - we have to ref it here to
564 		 * prevent it from being recycled unexpectedly.
565 		 */
566 		vref(vp);
567 	}
568 
569 	lock->lf_type = fl->l_type;
570 	LIST_INIT(&lock->lf_outedges);
571 	LIST_INIT(&lock->lf_inedges);
572 	lock->lf_async_task = ap->a_task;
573 	lock->lf_flags = ap->a_flags;
574 
575 	/*
576 	 * Do the requested operation. First find our state structure
577 	 * and create a new one if necessary - the caller's *statep
578 	 * variable and the state's ls_threads count is protected by
579 	 * the vnode interlock.
580 	 */
581 	VI_LOCK(vp);
582 	if (VN_IS_DOOMED(vp)) {
583 		VI_UNLOCK(vp);
584 		lf_free_lock(lock);
585 		return (ENOENT);
586 	}
587 
588 	/*
589 	 * Allocate a state structure if necessary.
590 	 */
591 	state = *statep;
592 	if (state == NULL) {
593 		struct lockf *ls;
594 
595 		VI_UNLOCK(vp);
596 
597 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
598 		sx_init(&ls->ls_lock, "ls_lock");
599 		LIST_INIT(&ls->ls_active);
600 		LIST_INIT(&ls->ls_pending);
601 		ls->ls_threads = 1;
602 
603 		sx_xlock(&lf_lock_states_lock);
604 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
605 		sx_xunlock(&lf_lock_states_lock);
606 
607 		/*
608 		 * Cope if we lost a race with some other thread while
609 		 * trying to allocate memory.
610 		 */
611 		VI_LOCK(vp);
612 		if (VN_IS_DOOMED(vp)) {
613 			VI_UNLOCK(vp);
614 			sx_xlock(&lf_lock_states_lock);
615 			LIST_REMOVE(ls, ls_link);
616 			sx_xunlock(&lf_lock_states_lock);
617 			sx_destroy(&ls->ls_lock);
618 			free(ls, M_LOCKF);
619 			lf_free_lock(lock);
620 			return (ENOENT);
621 		}
622 		if ((*statep) == NULL) {
623 			state = *statep = ls;
624 			VI_UNLOCK(vp);
625 		} else {
626 			state = *statep;
627 			MPASS(state->ls_threads >= 0);
628 			state->ls_threads++;
629 			VI_UNLOCK(vp);
630 
631 			sx_xlock(&lf_lock_states_lock);
632 			LIST_REMOVE(ls, ls_link);
633 			sx_xunlock(&lf_lock_states_lock);
634 			sx_destroy(&ls->ls_lock);
635 			free(ls, M_LOCKF);
636 		}
637 	} else {
638 		MPASS(state->ls_threads >= 0);
639 		state->ls_threads++;
640 		VI_UNLOCK(vp);
641 	}
642 
643 	sx_xlock(&state->ls_lock);
644 	/*
645 	 * Recheck the doomed vnode after state->ls_lock is
646 	 * locked. lf_purgelocks() requires that no new threads add
647 	 * pending locks when vnode is marked by VIRF_DOOMED flag.
648 	 */
649 	if (VN_IS_DOOMED(vp)) {
650 		VI_LOCK(vp);
651 		MPASS(state->ls_threads > 0);
652 		state->ls_threads--;
653 		wakeup(state);
654 		VI_UNLOCK(vp);
655 		sx_xunlock(&state->ls_lock);
656 		lf_free_lock(lock);
657 		return (ENOENT);
658 	}
659 
660 	switch (ap->a_op) {
661 	case F_SETLK:
662 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
663 		break;
664 
665 	case F_UNLCK:
666 		error = lf_clearlock(state, lock);
667 		lf_free_lock(lock);
668 		break;
669 
670 	case F_GETLK:
671 		error = lf_getlock(state, lock, fl);
672 		lf_free_lock(lock);
673 		break;
674 
675 	case F_CANCEL:
676 		if (ap->a_cookiep)
677 			error = lf_cancel(state, lock, *ap->a_cookiep);
678 		else
679 			error = EINVAL;
680 		lf_free_lock(lock);
681 		break;
682 
683 	default:
684 		lf_free_lock(lock);
685 		error = EINVAL;
686 		break;
687 	}
688 
689 #ifdef DIAGNOSTIC
690 	/*
691 	 * Check for some can't happen stuff. In this case, the active
692 	 * lock list becoming disordered or containing mutually
693 	 * blocking locks. We also check the pending list for locks
694 	 * which should be active (i.e. have no out-going edges).
695 	 */
696 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
697 		struct lockf_entry *lf;
698 		if (LIST_NEXT(lock, lf_link))
699 			KASSERT((lock->lf_start
700 				<= LIST_NEXT(lock, lf_link)->lf_start),
701 			    ("locks disordered"));
702 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
703 			if (lock == lf)
704 				break;
705 			KASSERT(!lf_blocks(lock, lf),
706 			    ("two conflicting active locks"));
707 			if (lock->lf_owner == lf->lf_owner)
708 				KASSERT(!lf_overlaps(lock, lf),
709 				    ("two overlapping locks from same owner"));
710 		}
711 	}
712 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
713 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
714 		    ("pending lock which should be active"));
715 	}
716 #endif
717 	sx_xunlock(&state->ls_lock);
718 
719 	VI_LOCK(vp);
720 	MPASS(state->ls_threads > 0);
721 	state->ls_threads--;
722 	if (state->ls_threads != 0) {
723 		wakeup(state);
724 	}
725 	VI_UNLOCK(vp);
726 
727 	if (error == EDOOFUS) {
728 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
729 		goto retry_setlock;
730 	}
731 	return (error);
732 }
733 
734 int
735 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
736 {
737 	struct vop_advlockasync_args a;
738 
739 	a.a_vp = ap->a_vp;
740 	a.a_id = ap->a_id;
741 	a.a_op = ap->a_op;
742 	a.a_fl = ap->a_fl;
743 	a.a_flags = ap->a_flags;
744 	a.a_task = NULL;
745 	a.a_cookiep = NULL;
746 
747 	return (lf_advlockasync(&a, statep, size));
748 }
749 
750 void
751 lf_purgelocks(struct vnode *vp, struct lockf **statep)
752 {
753 	struct lockf *state;
754 	struct lockf_entry *lock, *nlock;
755 
756 	/*
757 	 * For this to work correctly, the caller must ensure that no
758 	 * other threads enter the locking system for this vnode,
759 	 * e.g. by checking VIRF_DOOMED. We wake up any threads that are
760 	 * sleeping waiting for locks on this vnode and then free all
761 	 * the remaining locks.
762 	 */
763 	KASSERT(VN_IS_DOOMED(vp),
764 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
765 	state = *statep;
766 	if (state == NULL) {
767 		return;
768 	}
769 	VI_LOCK(vp);
770 	*statep = NULL;
771 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
772 		KASSERT(LIST_EMPTY(&state->ls_pending),
773 		    ("freeing state with pending locks"));
774 		VI_UNLOCK(vp);
775 		goto out_free;
776 	}
777 	MPASS(state->ls_threads >= 0);
778 	state->ls_threads++;
779 	VI_UNLOCK(vp);
780 
781 	sx_xlock(&state->ls_lock);
782 	sx_xlock(&lf_owner_graph_lock);
783 	LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
784 		LIST_REMOVE(lock, lf_link);
785 		lf_remove_outgoing(lock);
786 		lf_remove_incoming(lock);
787 
788 		/*
789 		 * If its an async lock, we can just free it
790 		 * here, otherwise we let the sleeping thread
791 		 * free it.
792 		 */
793 		if (lock->lf_async_task) {
794 			lf_free_lock(lock);
795 		} else {
796 			lock->lf_flags |= F_INTR;
797 			wakeup(lock);
798 		}
799 	}
800 	sx_xunlock(&lf_owner_graph_lock);
801 	sx_xunlock(&state->ls_lock);
802 
803 	/*
804 	 * Wait for all other threads, sleeping and otherwise
805 	 * to leave.
806 	 */
807 	VI_LOCK(vp);
808 	while (state->ls_threads > 1)
809 		msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
810 	VI_UNLOCK(vp);
811 
812 	/*
813 	 * We can just free all the active locks since they
814 	 * will have no dependencies (we removed them all
815 	 * above). We don't need to bother locking since we
816 	 * are the last thread using this state structure.
817 	 */
818 	KASSERT(LIST_EMPTY(&state->ls_pending),
819 	    ("lock pending for %p", state));
820 	LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
821 		LIST_REMOVE(lock, lf_link);
822 		lf_free_lock(lock);
823 	}
824 out_free:
825 	sx_xlock(&lf_lock_states_lock);
826 	LIST_REMOVE(state, ls_link);
827 	sx_xunlock(&lf_lock_states_lock);
828 	sx_destroy(&state->ls_lock);
829 	free(state, M_LOCKF);
830 }
831 
832 /*
833  * Return non-zero if locks 'x' and 'y' overlap.
834  */
835 static int
836 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
837 {
838 
839 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
840 }
841 
842 /*
843  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
844  */
845 static int
846 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
847 {
848 
849 	return x->lf_owner != y->lf_owner
850 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
851 		&& lf_overlaps(x, y);
852 }
853 
854 /*
855  * Allocate a lock edge from the free list
856  */
857 static struct lockf_edge *
858 lf_alloc_edge(void)
859 {
860 
861 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
862 }
863 
864 /*
865  * Free a lock edge.
866  */
867 static void
868 lf_free_edge(struct lockf_edge *e)
869 {
870 
871 	free(e, M_LOCKF);
872 }
873 
874 /*
875  * Ensure that the lock's owner has a corresponding vertex in the
876  * owner graph.
877  */
878 static void
879 lf_alloc_vertex(struct lockf_entry *lock)
880 {
881 	struct owner_graph *g = &lf_owner_graph;
882 
883 	if (!lock->lf_owner->lo_vertex)
884 		lock->lf_owner->lo_vertex =
885 			graph_alloc_vertex(g, lock->lf_owner);
886 }
887 
888 /*
889  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
890  * the new edge would cause a cycle in the owner graph.
891  */
892 static int
893 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
894 {
895 	struct owner_graph *g = &lf_owner_graph;
896 	struct lockf_edge *e;
897 	int error;
898 
899 #ifdef DIAGNOSTIC
900 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
901 		KASSERT(e->le_to != y, ("adding lock edge twice"));
902 #endif
903 
904 	/*
905 	 * Make sure the two owners have entries in the owner graph.
906 	 */
907 	lf_alloc_vertex(x);
908 	lf_alloc_vertex(y);
909 
910 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
911 	    y->lf_owner->lo_vertex);
912 	if (error)
913 		return (error);
914 
915 	e = lf_alloc_edge();
916 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
917 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
918 	e->le_from = x;
919 	e->le_to = y;
920 
921 	return (0);
922 }
923 
924 /*
925  * Remove an edge from the lock graph.
926  */
927 static void
928 lf_remove_edge(struct lockf_edge *e)
929 {
930 	struct owner_graph *g = &lf_owner_graph;
931 	struct lockf_entry *x = e->le_from;
932 	struct lockf_entry *y = e->le_to;
933 
934 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
935 	LIST_REMOVE(e, le_outlink);
936 	LIST_REMOVE(e, le_inlink);
937 	e->le_from = NULL;
938 	e->le_to = NULL;
939 	lf_free_edge(e);
940 }
941 
942 /*
943  * Remove all out-going edges from lock x.
944  */
945 static void
946 lf_remove_outgoing(struct lockf_entry *x)
947 {
948 	struct lockf_edge *e;
949 
950 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
951 		lf_remove_edge(e);
952 	}
953 }
954 
955 /*
956  * Remove all in-coming edges from lock x.
957  */
958 static void
959 lf_remove_incoming(struct lockf_entry *x)
960 {
961 	struct lockf_edge *e;
962 
963 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
964 		lf_remove_edge(e);
965 	}
966 }
967 
968 /*
969  * Walk the list of locks for the file and create an out-going edge
970  * from lock to each blocking lock.
971  */
972 static int
973 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
974 {
975 	struct lockf_entry *overlap;
976 	int error;
977 
978 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
979 		/*
980 		 * We may assume that the active list is sorted by
981 		 * lf_start.
982 		 */
983 		if (overlap->lf_start > lock->lf_end)
984 			break;
985 		if (!lf_blocks(lock, overlap))
986 			continue;
987 
988 		/*
989 		 * We've found a blocking lock. Add the corresponding
990 		 * edge to the graphs and see if it would cause a
991 		 * deadlock.
992 		 */
993 		error = lf_add_edge(lock, overlap);
994 
995 		/*
996 		 * The only error that lf_add_edge returns is EDEADLK.
997 		 * Remove any edges we added and return the error.
998 		 */
999 		if (error) {
1000 			lf_remove_outgoing(lock);
1001 			return (error);
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * We also need to add edges to sleeping locks that block
1007 	 * us. This ensures that lf_wakeup_lock cannot grant two
1008 	 * mutually blocking locks simultaneously and also enforces a
1009 	 * 'first come, first served' fairness model. Note that this
1010 	 * only happens if we are blocked by at least one active lock
1011 	 * due to the call to lf_getblock in lf_setlock below.
1012 	 */
1013 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1014 		if (!lf_blocks(lock, overlap))
1015 			continue;
1016 		/*
1017 		 * We've found a blocking lock. Add the corresponding
1018 		 * edge to the graphs and see if it would cause a
1019 		 * deadlock.
1020 		 */
1021 		error = lf_add_edge(lock, overlap);
1022 
1023 		/*
1024 		 * The only error that lf_add_edge returns is EDEADLK.
1025 		 * Remove any edges we added and return the error.
1026 		 */
1027 		if (error) {
1028 			lf_remove_outgoing(lock);
1029 			return (error);
1030 		}
1031 	}
1032 
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Walk the list of pending locks for the file and create an in-coming
1038  * edge from lock to each blocking lock.
1039  */
1040 static int
1041 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1042 {
1043 	struct lockf_entry *overlap;
1044 	int error;
1045 
1046 	sx_assert(&state->ls_lock, SX_XLOCKED);
1047 	if (LIST_EMPTY(&state->ls_pending))
1048 		return (0);
1049 
1050 	error = 0;
1051 	sx_xlock(&lf_owner_graph_lock);
1052 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1053 		if (!lf_blocks(lock, overlap))
1054 			continue;
1055 
1056 		/*
1057 		 * We've found a blocking lock. Add the corresponding
1058 		 * edge to the graphs and see if it would cause a
1059 		 * deadlock.
1060 		 */
1061 		error = lf_add_edge(overlap, lock);
1062 
1063 		/*
1064 		 * The only error that lf_add_edge returns is EDEADLK.
1065 		 * Remove any edges we added and return the error.
1066 		 */
1067 		if (error) {
1068 			lf_remove_incoming(lock);
1069 			break;
1070 		}
1071 	}
1072 	sx_xunlock(&lf_owner_graph_lock);
1073 	return (error);
1074 }
1075 
1076 /*
1077  * Insert lock into the active list, keeping list entries ordered by
1078  * increasing values of lf_start.
1079  */
1080 static void
1081 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1082 {
1083 	struct lockf_entry *lf, *lfprev;
1084 
1085 	if (LIST_EMPTY(&state->ls_active)) {
1086 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1087 		return;
1088 	}
1089 
1090 	lfprev = NULL;
1091 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1092 		if (lf->lf_start > lock->lf_start) {
1093 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1094 			return;
1095 		}
1096 		lfprev = lf;
1097 	}
1098 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1099 }
1100 
1101 /*
1102  * Wake up a sleeping lock and remove it from the pending list now
1103  * that all its dependencies have been resolved. The caller should
1104  * arrange for the lock to be added to the active list, adjusting any
1105  * existing locks for the same owner as needed.
1106  */
1107 static void
1108 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1109 {
1110 
1111 	/*
1112 	 * Remove from ls_pending list and wake up the caller
1113 	 * or start the async notification, as appropriate.
1114 	 */
1115 	LIST_REMOVE(wakelock, lf_link);
1116 #ifdef LOCKF_DEBUG
1117 	if (lockf_debug & 1)
1118 		lf_print("lf_wakeup_lock: awakening", wakelock);
1119 #endif /* LOCKF_DEBUG */
1120 	if (wakelock->lf_async_task) {
1121 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1122 	} else {
1123 		wakeup(wakelock);
1124 	}
1125 }
1126 
1127 /*
1128  * Re-check all dependent locks and remove edges to locks that we no
1129  * longer block. If 'all' is non-zero, the lock has been removed and
1130  * we must remove all the dependencies, otherwise it has simply been
1131  * reduced but remains active. Any pending locks which have been been
1132  * unblocked are added to 'granted'
1133  */
1134 static void
1135 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1136 	struct lockf_entry_list *granted)
1137 {
1138 	struct lockf_edge *e, *ne;
1139 	struct lockf_entry *deplock;
1140 
1141 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1142 		deplock = e->le_from;
1143 		if (all || !lf_blocks(lock, deplock)) {
1144 			sx_xlock(&lf_owner_graph_lock);
1145 			lf_remove_edge(e);
1146 			sx_xunlock(&lf_owner_graph_lock);
1147 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1148 				lf_wakeup_lock(state, deplock);
1149 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1150 			}
1151 		}
1152 	}
1153 }
1154 
1155 /*
1156  * Set the start of an existing active lock, updating dependencies and
1157  * adding any newly woken locks to 'granted'.
1158  */
1159 static void
1160 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1161 	struct lockf_entry_list *granted)
1162 {
1163 
1164 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1165 	lock->lf_start = new_start;
1166 	LIST_REMOVE(lock, lf_link);
1167 	lf_insert_lock(state, lock);
1168 	lf_update_dependancies(state, lock, FALSE, granted);
1169 }
1170 
1171 /*
1172  * Set the end of an existing active lock, updating dependencies and
1173  * adding any newly woken locks to 'granted'.
1174  */
1175 static void
1176 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1177 	struct lockf_entry_list *granted)
1178 {
1179 
1180 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1181 	lock->lf_end = new_end;
1182 	lf_update_dependancies(state, lock, FALSE, granted);
1183 }
1184 
1185 /*
1186  * Add a lock to the active list, updating or removing any current
1187  * locks owned by the same owner and processing any pending locks that
1188  * become unblocked as a result. This code is also used for unlock
1189  * since the logic for updating existing locks is identical.
1190  *
1191  * As a result of processing the new lock, we may unblock existing
1192  * pending locks as a result of downgrading/unlocking. We simply
1193  * activate the newly granted locks by looping.
1194  *
1195  * Since the new lock already has its dependencies set up, we always
1196  * add it to the list (unless its an unlock request). This may
1197  * fragment the lock list in some pathological cases but its probably
1198  * not a real problem.
1199  */
1200 static void
1201 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1202 {
1203 	struct lockf_entry *overlap, *lf;
1204 	struct lockf_entry_list granted;
1205 	int ovcase;
1206 
1207 	LIST_INIT(&granted);
1208 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1209 
1210 	while (!LIST_EMPTY(&granted)) {
1211 		lock = LIST_FIRST(&granted);
1212 		LIST_REMOVE(lock, lf_link);
1213 
1214 		/*
1215 		 * Skip over locks owned by other processes.  Handle
1216 		 * any locks that overlap and are owned by ourselves.
1217 		 */
1218 		overlap = LIST_FIRST(&state->ls_active);
1219 		for (;;) {
1220 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1221 
1222 #ifdef LOCKF_DEBUG
1223 			if (ovcase && (lockf_debug & 2)) {
1224 				printf("lf_setlock: overlap %d", ovcase);
1225 				lf_print("", overlap);
1226 			}
1227 #endif
1228 			/*
1229 			 * Six cases:
1230 			 *	0) no overlap
1231 			 *	1) overlap == lock
1232 			 *	2) overlap contains lock
1233 			 *	3) lock contains overlap
1234 			 *	4) overlap starts before lock
1235 			 *	5) overlap ends after lock
1236 			 */
1237 			switch (ovcase) {
1238 			case 0: /* no overlap */
1239 				break;
1240 
1241 			case 1: /* overlap == lock */
1242 				/*
1243 				 * We have already setup the
1244 				 * dependants for the new lock, taking
1245 				 * into account a possible downgrade
1246 				 * or unlock. Remove the old lock.
1247 				 */
1248 				LIST_REMOVE(overlap, lf_link);
1249 				lf_update_dependancies(state, overlap, TRUE,
1250 					&granted);
1251 				lf_free_lock(overlap);
1252 				break;
1253 
1254 			case 2: /* overlap contains lock */
1255 				/*
1256 				 * Just split the existing lock.
1257 				 */
1258 				lf_split(state, overlap, lock, &granted);
1259 				break;
1260 
1261 			case 3: /* lock contains overlap */
1262 				/*
1263 				 * Delete the overlap and advance to
1264 				 * the next entry in the list.
1265 				 */
1266 				lf = LIST_NEXT(overlap, lf_link);
1267 				LIST_REMOVE(overlap, lf_link);
1268 				lf_update_dependancies(state, overlap, TRUE,
1269 					&granted);
1270 				lf_free_lock(overlap);
1271 				overlap = lf;
1272 				continue;
1273 
1274 			case 4: /* overlap starts before lock */
1275 				/*
1276 				 * Just update the overlap end and
1277 				 * move on.
1278 				 */
1279 				lf_set_end(state, overlap, lock->lf_start - 1,
1280 				    &granted);
1281 				overlap = LIST_NEXT(overlap, lf_link);
1282 				continue;
1283 
1284 			case 5: /* overlap ends after lock */
1285 				/*
1286 				 * Change the start of overlap and
1287 				 * re-insert.
1288 				 */
1289 				lf_set_start(state, overlap, lock->lf_end + 1,
1290 				    &granted);
1291 				break;
1292 			}
1293 			break;
1294 		}
1295 #ifdef LOCKF_DEBUG
1296 		if (lockf_debug & 1) {
1297 			if (lock->lf_type != F_UNLCK)
1298 				lf_print("lf_activate_lock: activated", lock);
1299 			else
1300 				lf_print("lf_activate_lock: unlocked", lock);
1301 			lf_printlist("lf_activate_lock", lock);
1302 		}
1303 #endif /* LOCKF_DEBUG */
1304 		if (lock->lf_type != F_UNLCK)
1305 			lf_insert_lock(state, lock);
1306 	}
1307 }
1308 
1309 /*
1310  * Cancel a pending lock request, either as a result of a signal or a
1311  * cancel request for an async lock.
1312  */
1313 static void
1314 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1315 {
1316 	struct lockf_entry_list granted;
1317 
1318 	/*
1319 	 * Note it is theoretically possible that cancelling this lock
1320 	 * may allow some other pending lock to become
1321 	 * active. Consider this case:
1322 	 *
1323 	 * Owner	Action		Result		Dependencies
1324 	 *
1325 	 * A:		lock [0..0]	succeeds
1326 	 * B:		lock [2..2]	succeeds
1327 	 * C:		lock [1..2]	blocked		C->B
1328 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1329 	 * A:		unlock [0..0]			C->B,D->C
1330 	 * C:		cancel [1..2]
1331 	 */
1332 
1333 	LIST_REMOVE(lock, lf_link);
1334 
1335 	/*
1336 	 * Removing out-going edges is simple.
1337 	 */
1338 	sx_xlock(&lf_owner_graph_lock);
1339 	lf_remove_outgoing(lock);
1340 	sx_xunlock(&lf_owner_graph_lock);
1341 
1342 	/*
1343 	 * Removing in-coming edges may allow some other lock to
1344 	 * become active - we use lf_update_dependancies to figure
1345 	 * this out.
1346 	 */
1347 	LIST_INIT(&granted);
1348 	lf_update_dependancies(state, lock, TRUE, &granted);
1349 	lf_free_lock(lock);
1350 
1351 	/*
1352 	 * Feed any newly active locks to lf_activate_lock.
1353 	 */
1354 	while (!LIST_EMPTY(&granted)) {
1355 		lock = LIST_FIRST(&granted);
1356 		LIST_REMOVE(lock, lf_link);
1357 		lf_activate_lock(state, lock);
1358 	}
1359 }
1360 
1361 /*
1362  * Set a byte-range lock.
1363  */
1364 static int
1365 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1366     void **cookiep)
1367 {
1368 	static char lockstr[] = "lockf";
1369 	int error, priority, stops_deferred;
1370 
1371 #ifdef LOCKF_DEBUG
1372 	if (lockf_debug & 1)
1373 		lf_print("lf_setlock", lock);
1374 #endif /* LOCKF_DEBUG */
1375 
1376 	/*
1377 	 * Set the priority
1378 	 */
1379 	priority = PLOCK;
1380 	if (lock->lf_type == F_WRLCK)
1381 		priority += 4;
1382 	if (!(lock->lf_flags & F_NOINTR))
1383 		priority |= PCATCH;
1384 	/*
1385 	 * Scan lock list for this file looking for locks that would block us.
1386 	 */
1387 	if (lf_getblock(state, lock)) {
1388 		/*
1389 		 * Free the structure and return if nonblocking.
1390 		 */
1391 		if ((lock->lf_flags & F_WAIT) == 0
1392 		    && lock->lf_async_task == NULL) {
1393 			lf_free_lock(lock);
1394 			error = EAGAIN;
1395 			goto out;
1396 		}
1397 
1398 		/*
1399 		 * For flock type locks, we must first remove
1400 		 * any shared locks that we hold before we sleep
1401 		 * waiting for an exclusive lock.
1402 		 */
1403 		if ((lock->lf_flags & F_FLOCK) &&
1404 		    lock->lf_type == F_WRLCK) {
1405 			lock->lf_type = F_UNLCK;
1406 			lf_activate_lock(state, lock);
1407 			lock->lf_type = F_WRLCK;
1408 		}
1409 
1410 		/*
1411 		 * We are blocked. Create edges to each blocking lock,
1412 		 * checking for deadlock using the owner graph. For
1413 		 * simplicity, we run deadlock detection for all
1414 		 * locks, posix and otherwise.
1415 		 */
1416 		sx_xlock(&lf_owner_graph_lock);
1417 		error = lf_add_outgoing(state, lock);
1418 		sx_xunlock(&lf_owner_graph_lock);
1419 
1420 		if (error) {
1421 #ifdef LOCKF_DEBUG
1422 			if (lockf_debug & 1)
1423 				lf_print("lf_setlock: deadlock", lock);
1424 #endif
1425 			lf_free_lock(lock);
1426 			goto out;
1427 		}
1428 
1429 		/*
1430 		 * We have added edges to everything that blocks
1431 		 * us. Sleep until they all go away.
1432 		 */
1433 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1434 #ifdef LOCKF_DEBUG
1435 		if (lockf_debug & 1) {
1436 			struct lockf_edge *e;
1437 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1438 				lf_print("lf_setlock: blocking on", e->le_to);
1439 				lf_printlist("lf_setlock", e->le_to);
1440 			}
1441 		}
1442 #endif /* LOCKF_DEBUG */
1443 
1444 		if ((lock->lf_flags & F_WAIT) == 0) {
1445 			/*
1446 			 * The caller requested async notification -
1447 			 * this callback happens when the blocking
1448 			 * lock is released, allowing the caller to
1449 			 * make another attempt to take the lock.
1450 			 */
1451 			*cookiep = (void *) lock;
1452 			error = EINPROGRESS;
1453 			goto out;
1454 		}
1455 
1456 		lock->lf_refs++;
1457 		stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1458 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1459 		sigallowstop(stops_deferred);
1460 		if (lf_free_lock(lock)) {
1461 			error = EDOOFUS;
1462 			goto out;
1463 		}
1464 
1465 		/*
1466 		 * We may have been awakened by a signal and/or by a
1467 		 * debugger continuing us (in which cases we must
1468 		 * remove our lock graph edges) and/or by another
1469 		 * process releasing a lock (in which case our edges
1470 		 * have already been removed and we have been moved to
1471 		 * the active list). We may also have been woken by
1472 		 * lf_purgelocks which we report to the caller as
1473 		 * EINTR. In that case, lf_purgelocks will have
1474 		 * removed our lock graph edges.
1475 		 *
1476 		 * Note that it is possible to receive a signal after
1477 		 * we were successfully woken (and moved to the active
1478 		 * list) but before we resumed execution. In this
1479 		 * case, our lf_outedges list will be clear. We
1480 		 * pretend there was no error.
1481 		 *
1482 		 * Note also, if we have been sleeping long enough, we
1483 		 * may now have incoming edges from some newer lock
1484 		 * which is waiting behind us in the queue.
1485 		 */
1486 		if (lock->lf_flags & F_INTR) {
1487 			error = EINTR;
1488 			lf_free_lock(lock);
1489 			goto out;
1490 		}
1491 		if (LIST_EMPTY(&lock->lf_outedges)) {
1492 			error = 0;
1493 		} else {
1494 			lf_cancel_lock(state, lock);
1495 			goto out;
1496 		}
1497 #ifdef LOCKF_DEBUG
1498 		if (lockf_debug & 1) {
1499 			lf_print("lf_setlock: granted", lock);
1500 		}
1501 #endif
1502 		goto out;
1503 	}
1504 	/*
1505 	 * It looks like we are going to grant the lock. First add
1506 	 * edges from any currently pending lock that the new lock
1507 	 * would block.
1508 	 */
1509 	error = lf_add_incoming(state, lock);
1510 	if (error) {
1511 #ifdef LOCKF_DEBUG
1512 		if (lockf_debug & 1)
1513 			lf_print("lf_setlock: deadlock", lock);
1514 #endif
1515 		lf_free_lock(lock);
1516 		goto out;
1517 	}
1518 
1519 	/*
1520 	 * No blocks!!  Add the lock.  Note that we will
1521 	 * downgrade or upgrade any overlapping locks this
1522 	 * process already owns.
1523 	 */
1524 	lf_activate_lock(state, lock);
1525 	error = 0;
1526 out:
1527 	return (error);
1528 }
1529 
1530 /*
1531  * Remove a byte-range lock on an inode.
1532  *
1533  * Generally, find the lock (or an overlap to that lock)
1534  * and remove it (or shrink it), then wakeup anyone we can.
1535  */
1536 static int
1537 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1538 {
1539 	struct lockf_entry *overlap;
1540 
1541 	overlap = LIST_FIRST(&state->ls_active);
1542 
1543 	if (overlap == NOLOCKF)
1544 		return (0);
1545 #ifdef LOCKF_DEBUG
1546 	if (unlock->lf_type != F_UNLCK)
1547 		panic("lf_clearlock: bad type");
1548 	if (lockf_debug & 1)
1549 		lf_print("lf_clearlock", unlock);
1550 #endif /* LOCKF_DEBUG */
1551 
1552 	lf_activate_lock(state, unlock);
1553 
1554 	return (0);
1555 }
1556 
1557 /*
1558  * Check whether there is a blocking lock, and if so return its
1559  * details in '*fl'.
1560  */
1561 static int
1562 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1563 {
1564 	struct lockf_entry *block;
1565 
1566 #ifdef LOCKF_DEBUG
1567 	if (lockf_debug & 1)
1568 		lf_print("lf_getlock", lock);
1569 #endif /* LOCKF_DEBUG */
1570 
1571 	if ((block = lf_getblock(state, lock))) {
1572 		fl->l_type = block->lf_type;
1573 		fl->l_whence = SEEK_SET;
1574 		fl->l_start = block->lf_start;
1575 		if (block->lf_end == OFF_MAX)
1576 			fl->l_len = 0;
1577 		else
1578 			fl->l_len = block->lf_end - block->lf_start + 1;
1579 		fl->l_pid = block->lf_owner->lo_pid;
1580 		fl->l_sysid = block->lf_owner->lo_sysid;
1581 	} else {
1582 		fl->l_type = F_UNLCK;
1583 	}
1584 	return (0);
1585 }
1586 
1587 /*
1588  * Cancel an async lock request.
1589  */
1590 static int
1591 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1592 {
1593 	struct lockf_entry *reallock;
1594 
1595 	/*
1596 	 * We need to match this request with an existing lock
1597 	 * request.
1598 	 */
1599 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1600 		if ((void *) reallock == cookie) {
1601 			/*
1602 			 * Double-check that this lock looks right
1603 			 * (maybe use a rolling ID for the cancel
1604 			 * cookie instead?)
1605 			 */
1606 			if (!(reallock->lf_vnode == lock->lf_vnode
1607 				&& reallock->lf_start == lock->lf_start
1608 				&& reallock->lf_end == lock->lf_end)) {
1609 				return (ENOENT);
1610 			}
1611 
1612 			/*
1613 			 * Make sure this lock was async and then just
1614 			 * remove it from its wait lists.
1615 			 */
1616 			if (!reallock->lf_async_task) {
1617 				return (ENOENT);
1618 			}
1619 
1620 			/*
1621 			 * Note that since any other thread must take
1622 			 * state->ls_lock before it can possibly
1623 			 * trigger the async callback, we are safe
1624 			 * from a race with lf_wakeup_lock, i.e. we
1625 			 * can free the lock (actually our caller does
1626 			 * this).
1627 			 */
1628 			lf_cancel_lock(state, reallock);
1629 			return (0);
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * We didn't find a matching lock - not much we can do here.
1635 	 */
1636 	return (ENOENT);
1637 }
1638 
1639 /*
1640  * Walk the list of locks for an inode and
1641  * return the first blocking lock.
1642  */
1643 static struct lockf_entry *
1644 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1645 {
1646 	struct lockf_entry *overlap;
1647 
1648 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1649 		/*
1650 		 * We may assume that the active list is sorted by
1651 		 * lf_start.
1652 		 */
1653 		if (overlap->lf_start > lock->lf_end)
1654 			break;
1655 		if (!lf_blocks(lock, overlap))
1656 			continue;
1657 		return (overlap);
1658 	}
1659 	return (NOLOCKF);
1660 }
1661 
1662 /*
1663  * Walk the list of locks for an inode to find an overlapping lock (if
1664  * any) and return a classification of that overlap.
1665  *
1666  * Arguments:
1667  *	*overlap	The place in the lock list to start looking
1668  *	lock		The lock which is being tested
1669  *	type		Pass 'SELF' to test only locks with the same
1670  *			owner as lock, or 'OTHER' to test only locks
1671  *			with a different owner
1672  *
1673  * Returns one of six values:
1674  *	0) no overlap
1675  *	1) overlap == lock
1676  *	2) overlap contains lock
1677  *	3) lock contains overlap
1678  *	4) overlap starts before lock
1679  *	5) overlap ends after lock
1680  *
1681  * If there is an overlapping lock, '*overlap' is set to point at the
1682  * overlapping lock.
1683  *
1684  * NOTE: this returns only the FIRST overlapping lock.  There
1685  *	 may be more than one.
1686  */
1687 static int
1688 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1689 {
1690 	struct lockf_entry *lf;
1691 	off_t start, end;
1692 	int res;
1693 
1694 	if ((*overlap) == NOLOCKF) {
1695 		return (0);
1696 	}
1697 #ifdef LOCKF_DEBUG
1698 	if (lockf_debug & 2)
1699 		lf_print("lf_findoverlap: looking for overlap in", lock);
1700 #endif /* LOCKF_DEBUG */
1701 	start = lock->lf_start;
1702 	end = lock->lf_end;
1703 	res = 0;
1704 	while (*overlap) {
1705 		lf = *overlap;
1706 		if (lf->lf_start > end)
1707 			break;
1708 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1709 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1710 			*overlap = LIST_NEXT(lf, lf_link);
1711 			continue;
1712 		}
1713 #ifdef LOCKF_DEBUG
1714 		if (lockf_debug & 2)
1715 			lf_print("\tchecking", lf);
1716 #endif /* LOCKF_DEBUG */
1717 		/*
1718 		 * OK, check for overlap
1719 		 *
1720 		 * Six cases:
1721 		 *	0) no overlap
1722 		 *	1) overlap == lock
1723 		 *	2) overlap contains lock
1724 		 *	3) lock contains overlap
1725 		 *	4) overlap starts before lock
1726 		 *	5) overlap ends after lock
1727 		 */
1728 		if (start > lf->lf_end) {
1729 			/* Case 0 */
1730 #ifdef LOCKF_DEBUG
1731 			if (lockf_debug & 2)
1732 				printf("no overlap\n");
1733 #endif /* LOCKF_DEBUG */
1734 			*overlap = LIST_NEXT(lf, lf_link);
1735 			continue;
1736 		}
1737 		if (lf->lf_start == start && lf->lf_end == end) {
1738 			/* Case 1 */
1739 #ifdef LOCKF_DEBUG
1740 			if (lockf_debug & 2)
1741 				printf("overlap == lock\n");
1742 #endif /* LOCKF_DEBUG */
1743 			res = 1;
1744 			break;
1745 		}
1746 		if (lf->lf_start <= start && lf->lf_end >= end) {
1747 			/* Case 2 */
1748 #ifdef LOCKF_DEBUG
1749 			if (lockf_debug & 2)
1750 				printf("overlap contains lock\n");
1751 #endif /* LOCKF_DEBUG */
1752 			res = 2;
1753 			break;
1754 		}
1755 		if (start <= lf->lf_start && end >= lf->lf_end) {
1756 			/* Case 3 */
1757 #ifdef LOCKF_DEBUG
1758 			if (lockf_debug & 2)
1759 				printf("lock contains overlap\n");
1760 #endif /* LOCKF_DEBUG */
1761 			res = 3;
1762 			break;
1763 		}
1764 		if (lf->lf_start < start && lf->lf_end >= start) {
1765 			/* Case 4 */
1766 #ifdef LOCKF_DEBUG
1767 			if (lockf_debug & 2)
1768 				printf("overlap starts before lock\n");
1769 #endif /* LOCKF_DEBUG */
1770 			res = 4;
1771 			break;
1772 		}
1773 		if (lf->lf_start > start && lf->lf_end > end) {
1774 			/* Case 5 */
1775 #ifdef LOCKF_DEBUG
1776 			if (lockf_debug & 2)
1777 				printf("overlap ends after lock\n");
1778 #endif /* LOCKF_DEBUG */
1779 			res = 5;
1780 			break;
1781 		}
1782 		panic("lf_findoverlap: default");
1783 	}
1784 	return (res);
1785 }
1786 
1787 /*
1788  * Split an the existing 'lock1', based on the extent of the lock
1789  * described by 'lock2'. The existing lock should cover 'lock2'
1790  * entirely.
1791  *
1792  * Any pending locks which have been been unblocked are added to
1793  * 'granted'
1794  */
1795 static void
1796 lf_split(struct lockf *state, struct lockf_entry *lock1,
1797     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1798 {
1799 	struct lockf_entry *splitlock;
1800 
1801 #ifdef LOCKF_DEBUG
1802 	if (lockf_debug & 2) {
1803 		lf_print("lf_split", lock1);
1804 		lf_print("splitting from", lock2);
1805 	}
1806 #endif /* LOCKF_DEBUG */
1807 	/*
1808 	 * Check to see if we don't need to split at all.
1809 	 */
1810 	if (lock1->lf_start == lock2->lf_start) {
1811 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1812 		return;
1813 	}
1814 	if (lock1->lf_end == lock2->lf_end) {
1815 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1816 		return;
1817 	}
1818 	/*
1819 	 * Make a new lock consisting of the last part of
1820 	 * the encompassing lock.
1821 	 */
1822 	splitlock = lf_alloc_lock(lock1->lf_owner);
1823 	memcpy(splitlock, lock1, sizeof *splitlock);
1824 	splitlock->lf_refs = 1;
1825 	if (splitlock->lf_flags & F_REMOTE)
1826 		vref(splitlock->lf_vnode);
1827 
1828 	/*
1829 	 * This cannot cause a deadlock since any edges we would add
1830 	 * to splitlock already exist in lock1. We must be sure to add
1831 	 * necessary dependencies to splitlock before we reduce lock1
1832 	 * otherwise we may accidentally grant a pending lock that
1833 	 * was blocked by the tail end of lock1.
1834 	 */
1835 	splitlock->lf_start = lock2->lf_end + 1;
1836 	LIST_INIT(&splitlock->lf_outedges);
1837 	LIST_INIT(&splitlock->lf_inedges);
1838 	lf_add_incoming(state, splitlock);
1839 
1840 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1841 
1842 	/*
1843 	 * OK, now link it in
1844 	 */
1845 	lf_insert_lock(state, splitlock);
1846 }
1847 
1848 struct lockdesc {
1849 	STAILQ_ENTRY(lockdesc) link;
1850 	struct vnode *vp;
1851 	struct flock fl;
1852 };
1853 STAILQ_HEAD(lockdesclist, lockdesc);
1854 
1855 int
1856 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1857 {
1858 	struct lockf *ls;
1859 	struct lockf_entry *lf;
1860 	struct lockdesc *ldesc;
1861 	struct lockdesclist locks;
1862 	int error;
1863 
1864 	/*
1865 	 * In order to keep the locking simple, we iterate over the
1866 	 * active lock lists to build a list of locks that need
1867 	 * releasing. We then call the iterator for each one in turn.
1868 	 *
1869 	 * We take an extra reference to the vnode for the duration to
1870 	 * make sure it doesn't go away before we are finished.
1871 	 */
1872 	STAILQ_INIT(&locks);
1873 	sx_xlock(&lf_lock_states_lock);
1874 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1875 		sx_xlock(&ls->ls_lock);
1876 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1877 			if (lf->lf_owner->lo_sysid != sysid)
1878 				continue;
1879 
1880 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1881 			    M_WAITOK);
1882 			ldesc->vp = lf->lf_vnode;
1883 			vref(ldesc->vp);
1884 			ldesc->fl.l_start = lf->lf_start;
1885 			if (lf->lf_end == OFF_MAX)
1886 				ldesc->fl.l_len = 0;
1887 			else
1888 				ldesc->fl.l_len =
1889 					lf->lf_end - lf->lf_start + 1;
1890 			ldesc->fl.l_whence = SEEK_SET;
1891 			ldesc->fl.l_type = F_UNLCK;
1892 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1893 			ldesc->fl.l_sysid = sysid;
1894 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1895 		}
1896 		sx_xunlock(&ls->ls_lock);
1897 	}
1898 	sx_xunlock(&lf_lock_states_lock);
1899 
1900 	/*
1901 	 * Call the iterator function for each lock in turn. If the
1902 	 * iterator returns an error code, just free the rest of the
1903 	 * lockdesc structures.
1904 	 */
1905 	error = 0;
1906 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1907 		STAILQ_REMOVE_HEAD(&locks, link);
1908 		if (!error)
1909 			error = fn(ldesc->vp, &ldesc->fl, arg);
1910 		vrele(ldesc->vp);
1911 		free(ldesc, M_LOCKF);
1912 	}
1913 
1914 	return (error);
1915 }
1916 
1917 int
1918 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1919 {
1920 	struct lockf *ls;
1921 	struct lockf_entry *lf;
1922 	struct lockdesc *ldesc;
1923 	struct lockdesclist locks;
1924 	int error;
1925 
1926 	/*
1927 	 * In order to keep the locking simple, we iterate over the
1928 	 * active lock lists to build a list of locks that need
1929 	 * releasing. We then call the iterator for each one in turn.
1930 	 *
1931 	 * We take an extra reference to the vnode for the duration to
1932 	 * make sure it doesn't go away before we are finished.
1933 	 */
1934 	STAILQ_INIT(&locks);
1935 	VI_LOCK(vp);
1936 	ls = vp->v_lockf;
1937 	if (!ls) {
1938 		VI_UNLOCK(vp);
1939 		return (0);
1940 	}
1941 	MPASS(ls->ls_threads >= 0);
1942 	ls->ls_threads++;
1943 	VI_UNLOCK(vp);
1944 
1945 	sx_xlock(&ls->ls_lock);
1946 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1947 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1948 		    M_WAITOK);
1949 		ldesc->vp = lf->lf_vnode;
1950 		vref(ldesc->vp);
1951 		ldesc->fl.l_start = lf->lf_start;
1952 		if (lf->lf_end == OFF_MAX)
1953 			ldesc->fl.l_len = 0;
1954 		else
1955 			ldesc->fl.l_len =
1956 				lf->lf_end - lf->lf_start + 1;
1957 		ldesc->fl.l_whence = SEEK_SET;
1958 		ldesc->fl.l_type = F_UNLCK;
1959 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1960 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1961 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1962 	}
1963 	sx_xunlock(&ls->ls_lock);
1964 	VI_LOCK(vp);
1965 	MPASS(ls->ls_threads > 0);
1966 	ls->ls_threads--;
1967 	wakeup(ls);
1968 	VI_UNLOCK(vp);
1969 
1970 	/*
1971 	 * Call the iterator function for each lock in turn. If the
1972 	 * iterator returns an error code, just free the rest of the
1973 	 * lockdesc structures.
1974 	 */
1975 	error = 0;
1976 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1977 		STAILQ_REMOVE_HEAD(&locks, link);
1978 		if (!error)
1979 			error = fn(ldesc->vp, &ldesc->fl, arg);
1980 		vrele(ldesc->vp);
1981 		free(ldesc, M_LOCKF);
1982 	}
1983 
1984 	return (error);
1985 }
1986 
1987 static int
1988 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1989 {
1990 
1991 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1992 	return (0);
1993 }
1994 
1995 void
1996 lf_clearremotesys(int sysid)
1997 {
1998 
1999 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2000 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2001 }
2002 
2003 int
2004 lf_countlocks(int sysid)
2005 {
2006 	int i;
2007 	struct lock_owner *lo;
2008 	int count;
2009 
2010 	count = 0;
2011 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2012 		sx_xlock(&lf_lock_owners[i].lock);
2013 		LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2014 			if (lo->lo_sysid == sysid)
2015 				count += lo->lo_refs;
2016 		sx_xunlock(&lf_lock_owners[i].lock);
2017 	}
2018 
2019 	return (count);
2020 }
2021 
2022 #ifdef LOCKF_DEBUG
2023 
2024 /*
2025  * Return non-zero if y is reachable from x using a brute force
2026  * search. If reachable and path is non-null, return the route taken
2027  * in path.
2028  */
2029 static int
2030 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2031     struct owner_vertex_list *path)
2032 {
2033 	struct owner_edge *e;
2034 
2035 	if (x == y) {
2036 		if (path)
2037 			TAILQ_INSERT_HEAD(path, x, v_link);
2038 		return 1;
2039 	}
2040 
2041 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2042 		if (graph_reaches(e->e_to, y, path)) {
2043 			if (path)
2044 				TAILQ_INSERT_HEAD(path, x, v_link);
2045 			return 1;
2046 		}
2047 	}
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Perform consistency checks on the graph. Make sure the values of
2053  * v_order are correct. If checkorder is non-zero, check no vertex can
2054  * reach any other vertex with a smaller order.
2055  */
2056 static void
2057 graph_check(struct owner_graph *g, int checkorder)
2058 {
2059 	int i, j;
2060 
2061 	for (i = 0; i < g->g_size; i++) {
2062 		if (!g->g_vertices[i]->v_owner)
2063 			continue;
2064 		KASSERT(g->g_vertices[i]->v_order == i,
2065 		    ("lock graph vertices disordered"));
2066 		if (checkorder) {
2067 			for (j = 0; j < i; j++) {
2068 				if (!g->g_vertices[j]->v_owner)
2069 					continue;
2070 				KASSERT(!graph_reaches(g->g_vertices[i],
2071 					g->g_vertices[j], NULL),
2072 				    ("lock graph vertices disordered"));
2073 			}
2074 		}
2075 	}
2076 }
2077 
2078 static void
2079 graph_print_vertices(struct owner_vertex_list *set)
2080 {
2081 	struct owner_vertex *v;
2082 
2083 	printf("{ ");
2084 	TAILQ_FOREACH(v, set, v_link) {
2085 		printf("%d:", v->v_order);
2086 		lf_print_owner(v->v_owner);
2087 		if (TAILQ_NEXT(v, v_link))
2088 			printf(", ");
2089 	}
2090 	printf(" }\n");
2091 }
2092 
2093 #endif
2094 
2095 /*
2096  * Calculate the sub-set of vertices v from the affected region [y..x]
2097  * where v is reachable from y. Return -1 if a loop was detected
2098  * (i.e. x is reachable from y, otherwise the number of vertices in
2099  * this subset.
2100  */
2101 static int
2102 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2103     struct owner_vertex *y, struct owner_vertex_list *delta)
2104 {
2105 	uint32_t gen;
2106 	struct owner_vertex *v;
2107 	struct owner_edge *e;
2108 	int n;
2109 
2110 	/*
2111 	 * We start with a set containing just y. Then for each vertex
2112 	 * v in the set so far unprocessed, we add each vertex that v
2113 	 * has an out-edge to and that is within the affected region
2114 	 * [y..x]. If we see the vertex x on our travels, stop
2115 	 * immediately.
2116 	 */
2117 	TAILQ_INIT(delta);
2118 	TAILQ_INSERT_TAIL(delta, y, v_link);
2119 	v = y;
2120 	n = 1;
2121 	gen = g->g_gen;
2122 	while (v) {
2123 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2124 			if (e->e_to == x)
2125 				return -1;
2126 			if (e->e_to->v_order < x->v_order
2127 			    && e->e_to->v_gen != gen) {
2128 				e->e_to->v_gen = gen;
2129 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2130 				n++;
2131 			}
2132 		}
2133 		v = TAILQ_NEXT(v, v_link);
2134 	}
2135 
2136 	return (n);
2137 }
2138 
2139 /*
2140  * Calculate the sub-set of vertices v from the affected region [y..x]
2141  * where v reaches x. Return the number of vertices in this subset.
2142  */
2143 static int
2144 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2145     struct owner_vertex *y, struct owner_vertex_list *delta)
2146 {
2147 	uint32_t gen;
2148 	struct owner_vertex *v;
2149 	struct owner_edge *e;
2150 	int n;
2151 
2152 	/*
2153 	 * We start with a set containing just x. Then for each vertex
2154 	 * v in the set so far unprocessed, we add each vertex that v
2155 	 * has an in-edge from and that is within the affected region
2156 	 * [y..x].
2157 	 */
2158 	TAILQ_INIT(delta);
2159 	TAILQ_INSERT_TAIL(delta, x, v_link);
2160 	v = x;
2161 	n = 1;
2162 	gen = g->g_gen;
2163 	while (v) {
2164 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2165 			if (e->e_from->v_order > y->v_order
2166 			    && e->e_from->v_gen != gen) {
2167 				e->e_from->v_gen = gen;
2168 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2169 				n++;
2170 			}
2171 		}
2172 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2173 	}
2174 
2175 	return (n);
2176 }
2177 
2178 static int
2179 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2180 {
2181 	struct owner_vertex *v;
2182 	int i, j;
2183 
2184 	TAILQ_FOREACH(v, set, v_link) {
2185 		for (i = n;
2186 		     i > 0 && indices[i - 1] > v->v_order; i--)
2187 			;
2188 		for (j = n - 1; j >= i; j--)
2189 			indices[j + 1] = indices[j];
2190 		indices[i] = v->v_order;
2191 		n++;
2192 	}
2193 
2194 	return (n);
2195 }
2196 
2197 static int
2198 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2199     struct owner_vertex_list *set)
2200 {
2201 	struct owner_vertex *v, *vlowest;
2202 
2203 	while (!TAILQ_EMPTY(set)) {
2204 		vlowest = NULL;
2205 		TAILQ_FOREACH(v, set, v_link) {
2206 			if (!vlowest || v->v_order < vlowest->v_order)
2207 				vlowest = v;
2208 		}
2209 		TAILQ_REMOVE(set, vlowest, v_link);
2210 		vlowest->v_order = indices[nextunused];
2211 		g->g_vertices[vlowest->v_order] = vlowest;
2212 		nextunused++;
2213 	}
2214 
2215 	return (nextunused);
2216 }
2217 
2218 static int
2219 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2220     struct owner_vertex *y)
2221 {
2222 	struct owner_edge *e;
2223 	struct owner_vertex_list deltaF, deltaB;
2224 	int nF, n, vi, i;
2225 	int *indices;
2226 	int nB __unused;
2227 
2228 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2229 
2230 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2231 		if (e->e_to == y) {
2232 			e->e_refs++;
2233 			return (0);
2234 		}
2235 	}
2236 
2237 #ifdef LOCKF_DEBUG
2238 	if (lockf_debug & 8) {
2239 		printf("adding edge %d:", x->v_order);
2240 		lf_print_owner(x->v_owner);
2241 		printf(" -> %d:", y->v_order);
2242 		lf_print_owner(y->v_owner);
2243 		printf("\n");
2244 	}
2245 #endif
2246 	if (y->v_order < x->v_order) {
2247 		/*
2248 		 * The new edge violates the order. First find the set
2249 		 * of affected vertices reachable from y (deltaF) and
2250 		 * the set of affect vertices affected that reach x
2251 		 * (deltaB), using the graph generation number to
2252 		 * detect whether we have visited a given vertex
2253 		 * already. We re-order the graph so that each vertex
2254 		 * in deltaB appears before each vertex in deltaF.
2255 		 *
2256 		 * If x is a member of deltaF, then the new edge would
2257 		 * create a cycle. Otherwise, we may assume that
2258 		 * deltaF and deltaB are disjoint.
2259 		 */
2260 		g->g_gen++;
2261 		if (g->g_gen == 0) {
2262 			/*
2263 			 * Generation wrap.
2264 			 */
2265 			for (vi = 0; vi < g->g_size; vi++) {
2266 				g->g_vertices[vi]->v_gen = 0;
2267 			}
2268 			g->g_gen++;
2269 		}
2270 		nF = graph_delta_forward(g, x, y, &deltaF);
2271 		if (nF < 0) {
2272 #ifdef LOCKF_DEBUG
2273 			if (lockf_debug & 8) {
2274 				struct owner_vertex_list path;
2275 				printf("deadlock: ");
2276 				TAILQ_INIT(&path);
2277 				graph_reaches(y, x, &path);
2278 				graph_print_vertices(&path);
2279 			}
2280 #endif
2281 			return (EDEADLK);
2282 		}
2283 
2284 #ifdef LOCKF_DEBUG
2285 		if (lockf_debug & 8) {
2286 			printf("re-ordering graph vertices\n");
2287 			printf("deltaF = ");
2288 			graph_print_vertices(&deltaF);
2289 		}
2290 #endif
2291 
2292 		nB = graph_delta_backward(g, x, y, &deltaB);
2293 
2294 #ifdef LOCKF_DEBUG
2295 		if (lockf_debug & 8) {
2296 			printf("deltaB = ");
2297 			graph_print_vertices(&deltaB);
2298 		}
2299 #endif
2300 
2301 		/*
2302 		 * We first build a set of vertex indices (vertex
2303 		 * order values) that we may use, then we re-assign
2304 		 * orders first to those vertices in deltaB, then to
2305 		 * deltaF. Note that the contents of deltaF and deltaB
2306 		 * may be partially disordered - we perform an
2307 		 * insertion sort while building our index set.
2308 		 */
2309 		indices = g->g_indexbuf;
2310 		n = graph_add_indices(indices, 0, &deltaF);
2311 		graph_add_indices(indices, n, &deltaB);
2312 
2313 		/*
2314 		 * We must also be sure to maintain the relative
2315 		 * ordering of deltaF and deltaB when re-assigning
2316 		 * vertices. We do this by iteratively removing the
2317 		 * lowest ordered element from the set and assigning
2318 		 * it the next value from our new ordering.
2319 		 */
2320 		i = graph_assign_indices(g, indices, 0, &deltaB);
2321 		graph_assign_indices(g, indices, i, &deltaF);
2322 
2323 #ifdef LOCKF_DEBUG
2324 		if (lockf_debug & 8) {
2325 			struct owner_vertex_list set;
2326 			TAILQ_INIT(&set);
2327 			for (i = 0; i < nB + nF; i++)
2328 				TAILQ_INSERT_TAIL(&set,
2329 				    g->g_vertices[indices[i]], v_link);
2330 			printf("new ordering = ");
2331 			graph_print_vertices(&set);
2332 		}
2333 #endif
2334 	}
2335 
2336 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2337 
2338 #ifdef LOCKF_DEBUG
2339 	if (lockf_debug & 8) {
2340 		graph_check(g, TRUE);
2341 	}
2342 #endif
2343 
2344 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2345 
2346 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2347 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2348 	e->e_refs = 1;
2349 	e->e_from = x;
2350 	e->e_to = y;
2351 
2352 	return (0);
2353 }
2354 
2355 /*
2356  * Remove an edge x->y from the graph.
2357  */
2358 static void
2359 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2360     struct owner_vertex *y)
2361 {
2362 	struct owner_edge *e;
2363 
2364 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2365 
2366 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2367 		if (e->e_to == y)
2368 			break;
2369 	}
2370 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2371 
2372 	e->e_refs--;
2373 	if (e->e_refs == 0) {
2374 #ifdef LOCKF_DEBUG
2375 		if (lockf_debug & 8) {
2376 			printf("removing edge %d:", x->v_order);
2377 			lf_print_owner(x->v_owner);
2378 			printf(" -> %d:", y->v_order);
2379 			lf_print_owner(y->v_owner);
2380 			printf("\n");
2381 		}
2382 #endif
2383 		LIST_REMOVE(e, e_outlink);
2384 		LIST_REMOVE(e, e_inlink);
2385 		free(e, M_LOCKF);
2386 	}
2387 }
2388 
2389 /*
2390  * Allocate a vertex from the free list. Return ENOMEM if there are
2391  * none.
2392  */
2393 static struct owner_vertex *
2394 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2395 {
2396 	struct owner_vertex *v;
2397 
2398 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2399 
2400 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2401 	if (g->g_size == g->g_space) {
2402 		g->g_vertices = realloc(g->g_vertices,
2403 		    2 * g->g_space * sizeof(struct owner_vertex *),
2404 		    M_LOCKF, M_WAITOK);
2405 		free(g->g_indexbuf, M_LOCKF);
2406 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2407 		    M_LOCKF, M_WAITOK);
2408 		g->g_space = 2 * g->g_space;
2409 	}
2410 	v->v_order = g->g_size;
2411 	v->v_gen = g->g_gen;
2412 	g->g_vertices[g->g_size] = v;
2413 	g->g_size++;
2414 
2415 	LIST_INIT(&v->v_outedges);
2416 	LIST_INIT(&v->v_inedges);
2417 	v->v_owner = lo;
2418 
2419 	return (v);
2420 }
2421 
2422 static void
2423 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2424 {
2425 	struct owner_vertex *w;
2426 	int i;
2427 
2428 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2429 
2430 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2431 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2432 
2433 	/*
2434 	 * Remove from the graph's array and close up the gap,
2435 	 * renumbering the other vertices.
2436 	 */
2437 	for (i = v->v_order + 1; i < g->g_size; i++) {
2438 		w = g->g_vertices[i];
2439 		w->v_order--;
2440 		g->g_vertices[i - 1] = w;
2441 	}
2442 	g->g_size--;
2443 
2444 	free(v, M_LOCKF);
2445 }
2446 
2447 static struct owner_graph *
2448 graph_init(struct owner_graph *g)
2449 {
2450 
2451 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2452 	    M_LOCKF, M_WAITOK);
2453 	g->g_size = 0;
2454 	g->g_space = 10;
2455 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2456 	g->g_gen = 0;
2457 
2458 	return (g);
2459 }
2460 
2461 struct kinfo_lockf_linked {
2462 	struct kinfo_lockf kl;
2463 	struct vnode *vp;
2464 	STAILQ_ENTRY(kinfo_lockf_linked) link;
2465 };
2466 
2467 int
2468 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
2469 {
2470 	struct lockf *ls;
2471 	struct lockf_entry *lf;
2472 	struct kinfo_lockf_linked *klf;
2473 	struct vnode *vp;
2474 	struct ucred *ucred;
2475 	char *fullpath, *freepath;
2476 	struct stat stt;
2477 	STAILQ_HEAD(, kinfo_lockf_linked) locks;
2478 	int error, gerror;
2479 
2480 	STAILQ_INIT(&locks);
2481 	sx_slock(&lf_lock_states_lock);
2482 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
2483 		sx_slock(&ls->ls_lock);
2484 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
2485 			vp = lf->lf_vnode;
2486 			if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
2487 				continue;
2488 			vhold(vp);
2489 			klf = malloc(sizeof(struct kinfo_lockf_linked),
2490 			    M_LOCKF, M_WAITOK | M_ZERO);
2491 			klf->vp = vp;
2492 			klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
2493 			klf->kl.kl_start = lf->lf_start;
2494 			klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
2495 			    lf->lf_end - lf->lf_start + 1;
2496 			klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
2497 			    KLOCKF_RW_READ : KLOCKF_RW_WRITE;
2498 			if (lf->lf_owner->lo_sysid != 0) {
2499 				klf->kl.kl_pid = lf->lf_owner->lo_pid;
2500 				klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
2501 				klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
2502 			} else if (lf->lf_owner->lo_pid == -1) {
2503 				klf->kl.kl_pid = -1;
2504 				klf->kl.kl_sysid = 0;
2505 				klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
2506 			} else {
2507 				klf->kl.kl_pid = lf->lf_owner->lo_pid;
2508 				klf->kl.kl_sysid = 0;
2509 				klf->kl.kl_type = KLOCKF_TYPE_PID;
2510 			}
2511 			STAILQ_INSERT_TAIL(&locks, klf, link);
2512 		}
2513 		sx_sunlock(&ls->ls_lock);
2514 	}
2515 	sx_sunlock(&lf_lock_states_lock);
2516 
2517 	gerror = 0;
2518 	ucred = curthread->td_ucred;
2519 	while ((klf = STAILQ_FIRST(&locks)) != NULL) {
2520 		STAILQ_REMOVE_HEAD(&locks, link);
2521 		vp = klf->vp;
2522 		if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
2523 			error = prison_canseemount(ucred, vp->v_mount);
2524 			if (error == 0)
2525 				error = VOP_STAT(vp, &stt, ucred, NOCRED);
2526 			VOP_UNLOCK(vp);
2527 			if (error == 0) {
2528 				klf->kl.kl_file_fsid = stt.st_dev;
2529 				klf->kl.kl_file_rdev = stt.st_rdev;
2530 				klf->kl.kl_file_fileid = stt.st_ino;
2531 				freepath = NULL;
2532 				fullpath = "-";
2533 				error = vn_fullpath(vp, &fullpath, &freepath);
2534 				if (error == 0)
2535 					strlcpy(klf->kl.kl_path, fullpath,
2536 					    sizeof(klf->kl.kl_path));
2537 				free(freepath, M_TEMP);
2538 				if (sbuf_bcat(sb, &klf->kl,
2539 				    klf->kl.kl_structsize) != 0) {
2540 					gerror = sbuf_error(sb);
2541 				}
2542 			}
2543 		}
2544 		vdrop(vp);
2545 		free(klf, M_LOCKF);
2546 	}
2547 
2548 	return (gerror);
2549 }
2550 
2551 static int
2552 sysctl_kern_lockf_run(struct sbuf *sb)
2553 {
2554 	struct mount *mp;
2555 	int error;
2556 
2557 	error = 0;
2558 	mtx_lock(&mountlist_mtx);
2559 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2560 		error = vfs_busy(mp, MBF_MNTLSTLOCK);
2561 		if (error != 0)
2562 			continue;
2563 		error = mp->mnt_op->vfs_report_lockf(mp, sb);
2564 		mtx_lock(&mountlist_mtx);
2565 		vfs_unbusy(mp);
2566 		if (error != 0)
2567 			break;
2568 	}
2569 	mtx_unlock(&mountlist_mtx);
2570 	return (error);
2571 }
2572 
2573 static int
2574 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
2575 {
2576 	struct sbuf sb;
2577 	int error, error2;
2578 
2579 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
2580 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2581 	error = sysctl_kern_lockf_run(&sb);
2582 	error2 = sbuf_finish(&sb);
2583 	sbuf_delete(&sb);
2584 	return (error != 0 ? error : error2);
2585 }
2586 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
2587     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2588     0, 0, sysctl_kern_lockf, "S,lockf",
2589     "Advisory locks table");
2590 
2591 #ifdef LOCKF_DEBUG
2592 /*
2593  * Print description of a lock owner
2594  */
2595 static void
2596 lf_print_owner(struct lock_owner *lo)
2597 {
2598 
2599 	if (lo->lo_flags & F_REMOTE) {
2600 		printf("remote pid %d, system %d",
2601 		    lo->lo_pid, lo->lo_sysid);
2602 	} else if (lo->lo_flags & F_FLOCK) {
2603 		printf("file %p", lo->lo_id);
2604 	} else {
2605 		printf("local pid %d", lo->lo_pid);
2606 	}
2607 }
2608 
2609 /*
2610  * Print out a lock.
2611  */
2612 static void
2613 lf_print(char *tag, struct lockf_entry *lock)
2614 {
2615 
2616 	printf("%s: lock %p for ", tag, (void *)lock);
2617 	lf_print_owner(lock->lf_owner);
2618 	printf("\nvnode %p", lock->lf_vnode);
2619 	VOP_PRINT(lock->lf_vnode);
2620 	printf(" %s, start %jd, end ",
2621 	    lock->lf_type == F_RDLCK ? "shared" :
2622 	    lock->lf_type == F_WRLCK ? "exclusive" :
2623 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2624 	    (intmax_t)lock->lf_start);
2625 	if (lock->lf_end == OFF_MAX)
2626 		printf("EOF");
2627 	else
2628 		printf("%jd", (intmax_t)lock->lf_end);
2629 	if (!LIST_EMPTY(&lock->lf_outedges))
2630 		printf(" block %p\n",
2631 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2632 	else
2633 		printf("\n");
2634 }
2635 
2636 static void
2637 lf_printlist(char *tag, struct lockf_entry *lock)
2638 {
2639 	struct lockf_entry *lf, *blk;
2640 	struct lockf_edge *e;
2641 
2642 	printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
2643 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2644 		printf("\tlock %p for ",(void *)lf);
2645 		lf_print_owner(lock->lf_owner);
2646 		printf(", %s, start %jd, end %jd",
2647 		    lf->lf_type == F_RDLCK ? "shared" :
2648 		    lf->lf_type == F_WRLCK ? "exclusive" :
2649 		    lf->lf_type == F_UNLCK ? "unlock" :
2650 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2651 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2652 			blk = e->le_to;
2653 			printf("\n\t\tlock request %p for ", (void *)blk);
2654 			lf_print_owner(blk->lf_owner);
2655 			printf(", %s, start %jd, end %jd",
2656 			    blk->lf_type == F_RDLCK ? "shared" :
2657 			    blk->lf_type == F_WRLCK ? "exclusive" :
2658 			    blk->lf_type == F_UNLCK ? "unlock" :
2659 			    "unknown", (intmax_t)blk->lf_start,
2660 			    (intmax_t)blk->lf_end);
2661 			if (!LIST_EMPTY(&blk->lf_inedges))
2662 				panic("lf_printlist: bad list");
2663 		}
2664 		printf("\n");
2665 	}
2666 }
2667 #endif /* LOCKF_DEBUG */
2668