1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 5 * Authors: Doug Rabson <dfr@rabson.org> 6 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (c) 1982, 1986, 1989, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * This code is derived from software contributed to Berkeley by 34 * Scooter Morris at Genentech Inc. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 61 */ 62 63 #include <sys/cdefs.h> 64 #include "opt_debug_lockf.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/hash.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/limits.h> 72 #include <sys/lock.h> 73 #include <sys/mount.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/sbuf.h> 77 #include <sys/stat.h> 78 #include <sys/sx.h> 79 #include <sys/unistd.h> 80 #include <sys/user.h> 81 #include <sys/vnode.h> 82 #include <sys/malloc.h> 83 #include <sys/fcntl.h> 84 #include <sys/lockf.h> 85 #include <sys/taskqueue.h> 86 87 #ifdef LOCKF_DEBUG 88 #include <sys/sysctl.h> 89 90 static int lockf_debug = 0; /* control debug output */ 91 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 92 #endif 93 94 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 95 96 struct owner_edge; 97 struct owner_vertex; 98 struct owner_vertex_list; 99 struct owner_graph; 100 101 #define NOLOCKF (struct lockf_entry *)0 102 #define SELF 0x1 103 #define OTHERS 0x2 104 static void lf_init(void *); 105 static int lf_hash_owner(caddr_t, struct vnode *, struct flock *, int); 106 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 107 int); 108 static struct lockf_entry * 109 lf_alloc_lock(struct lock_owner *); 110 static int lf_free_lock(struct lockf_entry *); 111 static int lf_clearlock(struct lockf *, struct lockf_entry *); 112 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 113 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 114 static void lf_free_edge(struct lockf_edge *); 115 static struct lockf_edge * 116 lf_alloc_edge(void); 117 static void lf_alloc_vertex(struct lockf_entry *); 118 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 119 static void lf_remove_edge(struct lockf_edge *); 120 static void lf_remove_outgoing(struct lockf_entry *); 121 static void lf_remove_incoming(struct lockf_entry *); 122 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 123 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 124 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 125 int); 126 static struct lockf_entry * 127 lf_getblock(struct lockf *, struct lockf_entry *); 128 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 129 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 130 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 131 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 132 int all, struct lockf_entry_list *); 133 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 134 struct lockf_entry_list*); 135 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 136 struct lockf_entry_list*); 137 static int lf_setlock(struct lockf *, struct lockf_entry *, 138 struct vnode *, void **cookiep); 139 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 140 static void lf_split(struct lockf *, struct lockf_entry *, 141 struct lockf_entry *, struct lockf_entry_list *); 142 #ifdef LOCKF_DEBUG 143 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 144 struct owner_vertex_list *path); 145 static void graph_check(struct owner_graph *g, int checkorder); 146 static void graph_print_vertices(struct owner_vertex_list *set); 147 #endif 148 static int graph_delta_forward(struct owner_graph *g, 149 struct owner_vertex *x, struct owner_vertex *y, 150 struct owner_vertex_list *delta); 151 static int graph_delta_backward(struct owner_graph *g, 152 struct owner_vertex *x, struct owner_vertex *y, 153 struct owner_vertex_list *delta); 154 static int graph_add_indices(int *indices, int n, 155 struct owner_vertex_list *set); 156 static int graph_assign_indices(struct owner_graph *g, int *indices, 157 int nextunused, struct owner_vertex_list *set); 158 static int graph_add_edge(struct owner_graph *g, 159 struct owner_vertex *x, struct owner_vertex *y); 160 static void graph_remove_edge(struct owner_graph *g, 161 struct owner_vertex *x, struct owner_vertex *y); 162 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 163 struct lock_owner *lo); 164 static void graph_free_vertex(struct owner_graph *g, 165 struct owner_vertex *v); 166 static struct owner_graph * graph_init(struct owner_graph *g); 167 #ifdef LOCKF_DEBUG 168 static void lf_print(char *, struct lockf_entry *); 169 static void lf_printlist(char *, struct lockf_entry *); 170 static void lf_print_owner(struct lock_owner *); 171 #endif 172 173 /* 174 * This structure is used to keep track of both local and remote lock 175 * owners. The lf_owner field of the struct lockf_entry points back at 176 * the lock owner structure. Each possible lock owner (local proc for 177 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 178 * pair for remote locks) is represented by a unique instance of 179 * struct lock_owner. 180 * 181 * If a lock owner has a lock that blocks some other lock or a lock 182 * that is waiting for some other lock, it also has a vertex in the 183 * owner_graph below. 184 * 185 * Locks: 186 * (s) locked by state->ls_lock 187 * (S) locked by lf_lock_states_lock 188 * (g) locked by lf_owner_graph_lock 189 * (c) const until freeing 190 */ 191 #define LOCK_OWNER_HASH_SIZE 256 192 193 struct lock_owner { 194 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 195 int lo_refs; /* (l) Number of locks referring to this */ 196 int lo_flags; /* (c) Flags passed to lf_advlock */ 197 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 198 pid_t lo_pid; /* (c) Process Id of the lock owner */ 199 int lo_sysid; /* (c) System Id of the lock owner */ 200 int lo_hash; /* (c) Used to lock the appropriate chain */ 201 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 202 }; 203 204 LIST_HEAD(lock_owner_list, lock_owner); 205 206 struct lock_owner_chain { 207 struct sx lock; 208 struct lock_owner_list list; 209 }; 210 211 static struct sx lf_lock_states_lock; 212 static struct lockf_list lf_lock_states; /* (S) */ 213 static struct lock_owner_chain lf_lock_owners[LOCK_OWNER_HASH_SIZE]; 214 215 /* 216 * Structures for deadlock detection. 217 * 218 * We have two types of directed graph, the first is the set of locks, 219 * both active and pending on a vnode. Within this graph, active locks 220 * are terminal nodes in the graph (i.e. have no out-going 221 * edges). Pending locks have out-going edges to each blocking active 222 * lock that prevents the lock from being granted and also to each 223 * older pending lock that would block them if it was active. The 224 * graph for each vnode is naturally acyclic; new edges are only ever 225 * added to or from new nodes (either new pending locks which only add 226 * out-going edges or new active locks which only add in-coming edges) 227 * therefore they cannot create loops in the lock graph. 228 * 229 * The second graph is a global graph of lock owners. Each lock owner 230 * is a vertex in that graph and an edge is added to the graph 231 * whenever an edge is added to a vnode graph, with end points 232 * corresponding to owner of the new pending lock and the owner of the 233 * lock upon which it waits. In order to prevent deadlock, we only add 234 * an edge to this graph if the new edge would not create a cycle. 235 * 236 * The lock owner graph is topologically sorted, i.e. if a node has 237 * any outgoing edges, then it has an order strictly less than any 238 * node to which it has an outgoing edge. We preserve this ordering 239 * (and detect cycles) on edge insertion using Algorithm PK from the 240 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 241 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 242 * No. 1.7) 243 */ 244 struct owner_vertex; 245 246 struct owner_edge { 247 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 248 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 249 int e_refs; /* (g) number of times added */ 250 struct owner_vertex *e_from; /* (c) out-going from here */ 251 struct owner_vertex *e_to; /* (c) in-coming to here */ 252 }; 253 LIST_HEAD(owner_edge_list, owner_edge); 254 255 struct owner_vertex { 256 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 257 uint32_t v_gen; /* (g) workspace for edge insertion */ 258 int v_order; /* (g) order of vertex in graph */ 259 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 260 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 261 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 262 }; 263 TAILQ_HEAD(owner_vertex_list, owner_vertex); 264 265 struct owner_graph { 266 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 267 int g_size; /* (g) number of vertices */ 268 int g_space; /* (g) space allocated for vertices */ 269 int *g_indexbuf; /* (g) workspace for loop detection */ 270 uint32_t g_gen; /* (g) increment when re-ordering */ 271 }; 272 273 static struct sx lf_owner_graph_lock; 274 static struct owner_graph lf_owner_graph; 275 276 /* 277 * Initialise various structures and locks. 278 */ 279 static void 280 lf_init(void *dummy) 281 { 282 int i; 283 284 sx_init(&lf_lock_states_lock, "lock states lock"); 285 LIST_INIT(&lf_lock_states); 286 287 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 288 sx_init(&lf_lock_owners[i].lock, "lock owners lock"); 289 LIST_INIT(&lf_lock_owners[i].list); 290 } 291 292 sx_init(&lf_owner_graph_lock, "owner graph lock"); 293 graph_init(&lf_owner_graph); 294 } 295 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 296 297 /* 298 * Generate a hash value for a lock owner. 299 */ 300 static int 301 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags) 302 { 303 uint32_t h; 304 305 if (flags & F_REMOTE) { 306 h = HASHSTEP(0, fl->l_pid); 307 h = HASHSTEP(h, fl->l_sysid); 308 } else if (flags & F_FLOCK) { 309 h = ((uintptr_t) id) >> 7; 310 } else { 311 h = ((uintptr_t) vp) >> 7; 312 } 313 314 return (h % LOCK_OWNER_HASH_SIZE); 315 } 316 317 /* 318 * Return true if a lock owner matches the details passed to 319 * lf_advlock. 320 */ 321 static int 322 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 323 int flags) 324 { 325 if (flags & F_REMOTE) { 326 return lo->lo_pid == fl->l_pid 327 && lo->lo_sysid == fl->l_sysid; 328 } else { 329 return lo->lo_id == id; 330 } 331 } 332 333 static struct lockf_entry * 334 lf_alloc_lock(struct lock_owner *lo) 335 { 336 struct lockf_entry *lf; 337 338 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 339 340 #ifdef LOCKF_DEBUG 341 if (lockf_debug & 4) 342 printf("Allocated lock %p\n", lf); 343 #endif 344 if (lo) { 345 sx_xlock(&lf_lock_owners[lo->lo_hash].lock); 346 lo->lo_refs++; 347 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock); 348 lf->lf_owner = lo; 349 } 350 351 return (lf); 352 } 353 354 static int 355 lf_free_lock(struct lockf_entry *lock) 356 { 357 struct sx *chainlock; 358 359 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 360 if (--lock->lf_refs > 0) 361 return (0); 362 /* 363 * Adjust the lock_owner reference count and 364 * reclaim the entry if this is the last lock 365 * for that owner. 366 */ 367 struct lock_owner *lo = lock->lf_owner; 368 if (lo) { 369 KASSERT(LIST_EMPTY(&lock->lf_outedges), 370 ("freeing lock with dependencies")); 371 KASSERT(LIST_EMPTY(&lock->lf_inedges), 372 ("freeing lock with dependants")); 373 chainlock = &lf_lock_owners[lo->lo_hash].lock; 374 sx_xlock(chainlock); 375 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 376 lo->lo_refs--; 377 if (lo->lo_refs == 0) { 378 #ifdef LOCKF_DEBUG 379 if (lockf_debug & 1) 380 printf("lf_free_lock: freeing lock owner %p\n", 381 lo); 382 #endif 383 if (lo->lo_vertex) { 384 sx_xlock(&lf_owner_graph_lock); 385 graph_free_vertex(&lf_owner_graph, 386 lo->lo_vertex); 387 sx_xunlock(&lf_owner_graph_lock); 388 } 389 LIST_REMOVE(lo, lo_link); 390 free(lo, M_LOCKF); 391 #ifdef LOCKF_DEBUG 392 if (lockf_debug & 4) 393 printf("Freed lock owner %p\n", lo); 394 #endif 395 } 396 sx_unlock(chainlock); 397 } 398 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 399 vrele(lock->lf_vnode); 400 lock->lf_vnode = NULL; 401 } 402 #ifdef LOCKF_DEBUG 403 if (lockf_debug & 4) 404 printf("Freed lock %p\n", lock); 405 #endif 406 free(lock, M_LOCKF); 407 return (1); 408 } 409 410 /* 411 * Advisory record locking support 412 */ 413 int 414 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 415 u_quad_t size) 416 { 417 struct lockf *state; 418 struct flock *fl = ap->a_fl; 419 struct lockf_entry *lock; 420 struct vnode *vp = ap->a_vp; 421 caddr_t id = ap->a_id; 422 int flags = ap->a_flags; 423 int hash; 424 struct lock_owner *lo; 425 off_t start, end, oadd; 426 int error; 427 428 /* 429 * Handle the F_UNLKSYS case first - no need to mess about 430 * creating a lock owner for this one. 431 */ 432 if (ap->a_op == F_UNLCKSYS) { 433 lf_clearremotesys(fl->l_sysid); 434 return (0); 435 } 436 437 /* 438 * Convert the flock structure into a start and end. 439 */ 440 switch (fl->l_whence) { 441 case SEEK_SET: 442 case SEEK_CUR: 443 /* 444 * Caller is responsible for adding any necessary offset 445 * when SEEK_CUR is used. 446 */ 447 start = fl->l_start; 448 break; 449 450 case SEEK_END: 451 if (size > OFF_MAX || 452 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 453 return (EOVERFLOW); 454 start = size + fl->l_start; 455 break; 456 457 default: 458 return (EINVAL); 459 } 460 if (start < 0) 461 return (EINVAL); 462 if (fl->l_len < 0) { 463 if (start == 0) 464 return (EINVAL); 465 end = start - 1; 466 start += fl->l_len; 467 if (start < 0) 468 return (EINVAL); 469 } else if (fl->l_len == 0) { 470 end = OFF_MAX; 471 } else { 472 oadd = fl->l_len - 1; 473 if (oadd > OFF_MAX - start) 474 return (EOVERFLOW); 475 end = start + oadd; 476 } 477 478 retry_setlock: 479 480 /* 481 * Avoid the common case of unlocking when inode has no locks. 482 */ 483 if (ap->a_op != F_SETLK && (*statep) == NULL) { 484 VI_LOCK(vp); 485 if ((*statep) == NULL) { 486 fl->l_type = F_UNLCK; 487 VI_UNLOCK(vp); 488 return (0); 489 } 490 VI_UNLOCK(vp); 491 } 492 493 /* 494 * Map our arguments to an existing lock owner or create one 495 * if this is the first time we have seen this owner. 496 */ 497 hash = lf_hash_owner(id, vp, fl, flags); 498 sx_xlock(&lf_lock_owners[hash].lock); 499 LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link) 500 if (lf_owner_matches(lo, id, fl, flags)) 501 break; 502 if (!lo) { 503 /* 504 * We initialise the lock with a reference 505 * count which matches the new lockf_entry 506 * structure created below. 507 */ 508 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 509 M_WAITOK|M_ZERO); 510 #ifdef LOCKF_DEBUG 511 if (lockf_debug & 4) 512 printf("Allocated lock owner %p\n", lo); 513 #endif 514 515 lo->lo_refs = 1; 516 lo->lo_flags = flags; 517 lo->lo_id = id; 518 lo->lo_hash = hash; 519 if (flags & F_REMOTE) { 520 lo->lo_pid = fl->l_pid; 521 lo->lo_sysid = fl->l_sysid; 522 } else if (flags & F_FLOCK) { 523 lo->lo_pid = -1; 524 lo->lo_sysid = 0; 525 } else { 526 struct proc *p = (struct proc *) id; 527 lo->lo_pid = p->p_pid; 528 lo->lo_sysid = 0; 529 } 530 lo->lo_vertex = NULL; 531 532 #ifdef LOCKF_DEBUG 533 if (lockf_debug & 1) { 534 printf("lf_advlockasync: new lock owner %p ", lo); 535 lf_print_owner(lo); 536 printf("\n"); 537 } 538 #endif 539 540 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link); 541 } else { 542 /* 543 * We have seen this lock owner before, increase its 544 * reference count to account for the new lockf_entry 545 * structure we create below. 546 */ 547 lo->lo_refs++; 548 } 549 sx_xunlock(&lf_lock_owners[hash].lock); 550 551 /* 552 * Create the lockf structure. We initialise the lf_owner 553 * field here instead of in lf_alloc_lock() to avoid paying 554 * the lf_lock_owners_lock tax twice. 555 */ 556 lock = lf_alloc_lock(NULL); 557 lock->lf_refs = 1; 558 lock->lf_start = start; 559 lock->lf_end = end; 560 lock->lf_owner = lo; 561 lock->lf_vnode = vp; 562 if (flags & F_REMOTE) { 563 /* 564 * For remote locks, the caller may release its ref to 565 * the vnode at any time - we have to ref it here to 566 * prevent it from being recycled unexpectedly. 567 */ 568 vref(vp); 569 } 570 571 lock->lf_type = fl->l_type; 572 LIST_INIT(&lock->lf_outedges); 573 LIST_INIT(&lock->lf_inedges); 574 lock->lf_async_task = ap->a_task; 575 lock->lf_flags = ap->a_flags; 576 577 /* 578 * Do the requested operation. First find our state structure 579 * and create a new one if necessary - the caller's *statep 580 * variable and the state's ls_threads count is protected by 581 * the vnode interlock. 582 */ 583 VI_LOCK(vp); 584 if (VN_IS_DOOMED(vp)) { 585 VI_UNLOCK(vp); 586 lf_free_lock(lock); 587 return (ENOENT); 588 } 589 590 /* 591 * Allocate a state structure if necessary. 592 */ 593 state = *statep; 594 if (state == NULL) { 595 struct lockf *ls; 596 597 VI_UNLOCK(vp); 598 599 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 600 sx_init(&ls->ls_lock, "ls_lock"); 601 LIST_INIT(&ls->ls_active); 602 LIST_INIT(&ls->ls_pending); 603 ls->ls_threads = 1; 604 605 sx_xlock(&lf_lock_states_lock); 606 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 607 sx_xunlock(&lf_lock_states_lock); 608 609 /* 610 * Cope if we lost a race with some other thread while 611 * trying to allocate memory. 612 */ 613 VI_LOCK(vp); 614 if (VN_IS_DOOMED(vp)) { 615 VI_UNLOCK(vp); 616 sx_xlock(&lf_lock_states_lock); 617 LIST_REMOVE(ls, ls_link); 618 sx_xunlock(&lf_lock_states_lock); 619 sx_destroy(&ls->ls_lock); 620 free(ls, M_LOCKF); 621 lf_free_lock(lock); 622 return (ENOENT); 623 } 624 if ((*statep) == NULL) { 625 state = *statep = ls; 626 VI_UNLOCK(vp); 627 } else { 628 state = *statep; 629 MPASS(state->ls_threads >= 0); 630 state->ls_threads++; 631 VI_UNLOCK(vp); 632 633 sx_xlock(&lf_lock_states_lock); 634 LIST_REMOVE(ls, ls_link); 635 sx_xunlock(&lf_lock_states_lock); 636 sx_destroy(&ls->ls_lock); 637 free(ls, M_LOCKF); 638 } 639 } else { 640 MPASS(state->ls_threads >= 0); 641 state->ls_threads++; 642 VI_UNLOCK(vp); 643 } 644 645 sx_xlock(&state->ls_lock); 646 /* 647 * Recheck the doomed vnode after state->ls_lock is 648 * locked. lf_purgelocks() requires that no new threads add 649 * pending locks when vnode is marked by VIRF_DOOMED flag. 650 */ 651 if (VN_IS_DOOMED(vp)) { 652 VI_LOCK(vp); 653 MPASS(state->ls_threads > 0); 654 state->ls_threads--; 655 wakeup(state); 656 VI_UNLOCK(vp); 657 sx_xunlock(&state->ls_lock); 658 lf_free_lock(lock); 659 return (ENOENT); 660 } 661 662 switch (ap->a_op) { 663 case F_SETLK: 664 error = lf_setlock(state, lock, vp, ap->a_cookiep); 665 break; 666 667 case F_UNLCK: 668 error = lf_clearlock(state, lock); 669 lf_free_lock(lock); 670 break; 671 672 case F_GETLK: 673 error = lf_getlock(state, lock, fl); 674 lf_free_lock(lock); 675 break; 676 677 case F_CANCEL: 678 if (ap->a_cookiep) 679 error = lf_cancel(state, lock, *ap->a_cookiep); 680 else 681 error = EINVAL; 682 lf_free_lock(lock); 683 break; 684 685 default: 686 lf_free_lock(lock); 687 error = EINVAL; 688 break; 689 } 690 691 #ifdef DIAGNOSTIC 692 /* 693 * Check for some can't happen stuff. In this case, the active 694 * lock list becoming disordered or containing mutually 695 * blocking locks. We also check the pending list for locks 696 * which should be active (i.e. have no out-going edges). 697 */ 698 LIST_FOREACH(lock, &state->ls_active, lf_link) { 699 struct lockf_entry *lf; 700 if (LIST_NEXT(lock, lf_link)) 701 KASSERT((lock->lf_start 702 <= LIST_NEXT(lock, lf_link)->lf_start), 703 ("locks disordered")); 704 LIST_FOREACH(lf, &state->ls_active, lf_link) { 705 if (lock == lf) 706 break; 707 KASSERT(!lf_blocks(lock, lf), 708 ("two conflicting active locks")); 709 if (lock->lf_owner == lf->lf_owner) 710 KASSERT(!lf_overlaps(lock, lf), 711 ("two overlapping locks from same owner")); 712 } 713 } 714 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 715 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 716 ("pending lock which should be active")); 717 } 718 #endif 719 sx_xunlock(&state->ls_lock); 720 721 VI_LOCK(vp); 722 MPASS(state->ls_threads > 0); 723 state->ls_threads--; 724 if (state->ls_threads != 0) { 725 wakeup(state); 726 } 727 VI_UNLOCK(vp); 728 729 if (error == EDOOFUS) { 730 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 731 goto retry_setlock; 732 } 733 return (error); 734 } 735 736 int 737 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 738 { 739 struct vop_advlockasync_args a; 740 741 a.a_vp = ap->a_vp; 742 a.a_id = ap->a_id; 743 a.a_op = ap->a_op; 744 a.a_fl = ap->a_fl; 745 a.a_flags = ap->a_flags; 746 a.a_task = NULL; 747 a.a_cookiep = NULL; 748 749 return (lf_advlockasync(&a, statep, size)); 750 } 751 752 void 753 lf_purgelocks(struct vnode *vp, struct lockf **statep) 754 { 755 struct lockf *state; 756 struct lockf_entry *lock, *nlock; 757 758 /* 759 * For this to work correctly, the caller must ensure that no 760 * other threads enter the locking system for this vnode, 761 * e.g. by checking VIRF_DOOMED. We wake up any threads that are 762 * sleeping waiting for locks on this vnode and then free all 763 * the remaining locks. 764 */ 765 KASSERT(VN_IS_DOOMED(vp), 766 ("lf_purgelocks: vp %p has not vgone yet", vp)); 767 state = *statep; 768 if (state == NULL) { 769 return; 770 } 771 VI_LOCK(vp); 772 *statep = NULL; 773 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 774 KASSERT(LIST_EMPTY(&state->ls_pending), 775 ("freeing state with pending locks")); 776 VI_UNLOCK(vp); 777 goto out_free; 778 } 779 MPASS(state->ls_threads >= 0); 780 state->ls_threads++; 781 VI_UNLOCK(vp); 782 783 sx_xlock(&state->ls_lock); 784 sx_xlock(&lf_owner_graph_lock); 785 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 786 LIST_REMOVE(lock, lf_link); 787 lf_remove_outgoing(lock); 788 lf_remove_incoming(lock); 789 790 /* 791 * If its an async lock, we can just free it 792 * here, otherwise we let the sleeping thread 793 * free it. 794 */ 795 if (lock->lf_async_task) { 796 lf_free_lock(lock); 797 } else { 798 lock->lf_flags |= F_INTR; 799 wakeup(lock); 800 } 801 } 802 sx_xunlock(&lf_owner_graph_lock); 803 sx_xunlock(&state->ls_lock); 804 805 /* 806 * Wait for all other threads, sleeping and otherwise 807 * to leave. 808 */ 809 VI_LOCK(vp); 810 while (state->ls_threads > 1) 811 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 812 VI_UNLOCK(vp); 813 814 /* 815 * We can just free all the active locks since they 816 * will have no dependencies (we removed them all 817 * above). We don't need to bother locking since we 818 * are the last thread using this state structure. 819 */ 820 KASSERT(LIST_EMPTY(&state->ls_pending), 821 ("lock pending for %p", state)); 822 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 823 LIST_REMOVE(lock, lf_link); 824 lf_free_lock(lock); 825 } 826 out_free: 827 sx_xlock(&lf_lock_states_lock); 828 LIST_REMOVE(state, ls_link); 829 sx_xunlock(&lf_lock_states_lock); 830 sx_destroy(&state->ls_lock); 831 free(state, M_LOCKF); 832 } 833 834 /* 835 * Return non-zero if locks 'x' and 'y' overlap. 836 */ 837 static int 838 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 839 { 840 841 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 842 } 843 844 /* 845 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 846 */ 847 static int 848 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 849 { 850 851 return x->lf_owner != y->lf_owner 852 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 853 && lf_overlaps(x, y); 854 } 855 856 /* 857 * Allocate a lock edge from the free list 858 */ 859 static struct lockf_edge * 860 lf_alloc_edge(void) 861 { 862 863 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 864 } 865 866 /* 867 * Free a lock edge. 868 */ 869 static void 870 lf_free_edge(struct lockf_edge *e) 871 { 872 873 free(e, M_LOCKF); 874 } 875 876 /* 877 * Ensure that the lock's owner has a corresponding vertex in the 878 * owner graph. 879 */ 880 static void 881 lf_alloc_vertex(struct lockf_entry *lock) 882 { 883 struct owner_graph *g = &lf_owner_graph; 884 885 if (!lock->lf_owner->lo_vertex) 886 lock->lf_owner->lo_vertex = 887 graph_alloc_vertex(g, lock->lf_owner); 888 } 889 890 /* 891 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 892 * the new edge would cause a cycle in the owner graph. 893 */ 894 static int 895 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 896 { 897 struct owner_graph *g = &lf_owner_graph; 898 struct lockf_edge *e; 899 int error; 900 901 #ifdef DIAGNOSTIC 902 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 903 KASSERT(e->le_to != y, ("adding lock edge twice")); 904 #endif 905 906 /* 907 * Make sure the two owners have entries in the owner graph. 908 */ 909 lf_alloc_vertex(x); 910 lf_alloc_vertex(y); 911 912 error = graph_add_edge(g, x->lf_owner->lo_vertex, 913 y->lf_owner->lo_vertex); 914 if (error) 915 return (error); 916 917 e = lf_alloc_edge(); 918 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 919 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 920 e->le_from = x; 921 e->le_to = y; 922 923 return (0); 924 } 925 926 /* 927 * Remove an edge from the lock graph. 928 */ 929 static void 930 lf_remove_edge(struct lockf_edge *e) 931 { 932 struct owner_graph *g = &lf_owner_graph; 933 struct lockf_entry *x = e->le_from; 934 struct lockf_entry *y = e->le_to; 935 936 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 937 LIST_REMOVE(e, le_outlink); 938 LIST_REMOVE(e, le_inlink); 939 e->le_from = NULL; 940 e->le_to = NULL; 941 lf_free_edge(e); 942 } 943 944 /* 945 * Remove all out-going edges from lock x. 946 */ 947 static void 948 lf_remove_outgoing(struct lockf_entry *x) 949 { 950 struct lockf_edge *e; 951 952 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 953 lf_remove_edge(e); 954 } 955 } 956 957 /* 958 * Remove all in-coming edges from lock x. 959 */ 960 static void 961 lf_remove_incoming(struct lockf_entry *x) 962 { 963 struct lockf_edge *e; 964 965 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 966 lf_remove_edge(e); 967 } 968 } 969 970 /* 971 * Walk the list of locks for the file and create an out-going edge 972 * from lock to each blocking lock. 973 */ 974 static int 975 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 976 { 977 struct lockf_entry *overlap; 978 int error; 979 980 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 981 /* 982 * We may assume that the active list is sorted by 983 * lf_start. 984 */ 985 if (overlap->lf_start > lock->lf_end) 986 break; 987 if (!lf_blocks(lock, overlap)) 988 continue; 989 990 /* 991 * We've found a blocking lock. Add the corresponding 992 * edge to the graphs and see if it would cause a 993 * deadlock. 994 */ 995 error = lf_add_edge(lock, overlap); 996 997 /* 998 * The only error that lf_add_edge returns is EDEADLK. 999 * Remove any edges we added and return the error. 1000 */ 1001 if (error) { 1002 lf_remove_outgoing(lock); 1003 return (error); 1004 } 1005 } 1006 1007 /* 1008 * We also need to add edges to sleeping locks that block 1009 * us. This ensures that lf_wakeup_lock cannot grant two 1010 * mutually blocking locks simultaneously and also enforces a 1011 * 'first come, first served' fairness model. Note that this 1012 * only happens if we are blocked by at least one active lock 1013 * due to the call to lf_getblock in lf_setlock below. 1014 */ 1015 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1016 if (!lf_blocks(lock, overlap)) 1017 continue; 1018 /* 1019 * We've found a blocking lock. Add the corresponding 1020 * edge to the graphs and see if it would cause a 1021 * deadlock. 1022 */ 1023 error = lf_add_edge(lock, overlap); 1024 1025 /* 1026 * The only error that lf_add_edge returns is EDEADLK. 1027 * Remove any edges we added and return the error. 1028 */ 1029 if (error) { 1030 lf_remove_outgoing(lock); 1031 return (error); 1032 } 1033 } 1034 1035 return (0); 1036 } 1037 1038 /* 1039 * Walk the list of pending locks for the file and create an in-coming 1040 * edge from lock to each blocking lock. 1041 */ 1042 static int 1043 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1044 { 1045 struct lockf_entry *overlap; 1046 int error; 1047 1048 sx_assert(&state->ls_lock, SX_XLOCKED); 1049 if (LIST_EMPTY(&state->ls_pending)) 1050 return (0); 1051 1052 error = 0; 1053 sx_xlock(&lf_owner_graph_lock); 1054 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1055 if (!lf_blocks(lock, overlap)) 1056 continue; 1057 1058 /* 1059 * We've found a blocking lock. Add the corresponding 1060 * edge to the graphs and see if it would cause a 1061 * deadlock. 1062 */ 1063 error = lf_add_edge(overlap, lock); 1064 1065 /* 1066 * The only error that lf_add_edge returns is EDEADLK. 1067 * Remove any edges we added and return the error. 1068 */ 1069 if (error) { 1070 lf_remove_incoming(lock); 1071 break; 1072 } 1073 } 1074 sx_xunlock(&lf_owner_graph_lock); 1075 return (error); 1076 } 1077 1078 /* 1079 * Insert lock into the active list, keeping list entries ordered by 1080 * increasing values of lf_start. 1081 */ 1082 static void 1083 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1084 { 1085 struct lockf_entry *lf, *lfprev; 1086 1087 if (LIST_EMPTY(&state->ls_active)) { 1088 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1089 return; 1090 } 1091 1092 lfprev = NULL; 1093 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1094 if (lf->lf_start > lock->lf_start) { 1095 LIST_INSERT_BEFORE(lf, lock, lf_link); 1096 return; 1097 } 1098 lfprev = lf; 1099 } 1100 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1101 } 1102 1103 /* 1104 * Wake up a sleeping lock and remove it from the pending list now 1105 * that all its dependencies have been resolved. The caller should 1106 * arrange for the lock to be added to the active list, adjusting any 1107 * existing locks for the same owner as needed. 1108 */ 1109 static void 1110 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1111 { 1112 1113 /* 1114 * Remove from ls_pending list and wake up the caller 1115 * or start the async notification, as appropriate. 1116 */ 1117 LIST_REMOVE(wakelock, lf_link); 1118 #ifdef LOCKF_DEBUG 1119 if (lockf_debug & 1) 1120 lf_print("lf_wakeup_lock: awakening", wakelock); 1121 #endif /* LOCKF_DEBUG */ 1122 if (wakelock->lf_async_task) { 1123 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1124 } else { 1125 wakeup(wakelock); 1126 } 1127 } 1128 1129 /* 1130 * Re-check all dependent locks and remove edges to locks that we no 1131 * longer block. If 'all' is non-zero, the lock has been removed and 1132 * we must remove all the dependencies, otherwise it has simply been 1133 * reduced but remains active. Any pending locks which have been been 1134 * unblocked are added to 'granted' 1135 */ 1136 static void 1137 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1138 struct lockf_entry_list *granted) 1139 { 1140 struct lockf_edge *e, *ne; 1141 struct lockf_entry *deplock; 1142 1143 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1144 deplock = e->le_from; 1145 if (all || !lf_blocks(lock, deplock)) { 1146 sx_xlock(&lf_owner_graph_lock); 1147 lf_remove_edge(e); 1148 sx_xunlock(&lf_owner_graph_lock); 1149 if (LIST_EMPTY(&deplock->lf_outedges)) { 1150 lf_wakeup_lock(state, deplock); 1151 LIST_INSERT_HEAD(granted, deplock, lf_link); 1152 } 1153 } 1154 } 1155 } 1156 1157 /* 1158 * Set the start of an existing active lock, updating dependencies and 1159 * adding any newly woken locks to 'granted'. 1160 */ 1161 static void 1162 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1163 struct lockf_entry_list *granted) 1164 { 1165 1166 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1167 lock->lf_start = new_start; 1168 LIST_REMOVE(lock, lf_link); 1169 lf_insert_lock(state, lock); 1170 lf_update_dependancies(state, lock, FALSE, granted); 1171 } 1172 1173 /* 1174 * Set the end of an existing active lock, updating dependencies and 1175 * adding any newly woken locks to 'granted'. 1176 */ 1177 static void 1178 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1179 struct lockf_entry_list *granted) 1180 { 1181 1182 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1183 lock->lf_end = new_end; 1184 lf_update_dependancies(state, lock, FALSE, granted); 1185 } 1186 1187 /* 1188 * Add a lock to the active list, updating or removing any current 1189 * locks owned by the same owner and processing any pending locks that 1190 * become unblocked as a result. This code is also used for unlock 1191 * since the logic for updating existing locks is identical. 1192 * 1193 * As a result of processing the new lock, we may unblock existing 1194 * pending locks as a result of downgrading/unlocking. We simply 1195 * activate the newly granted locks by looping. 1196 * 1197 * Since the new lock already has its dependencies set up, we always 1198 * add it to the list (unless its an unlock request). This may 1199 * fragment the lock list in some pathological cases but its probably 1200 * not a real problem. 1201 */ 1202 static void 1203 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1204 { 1205 struct lockf_entry *overlap, *lf; 1206 struct lockf_entry_list granted; 1207 int ovcase; 1208 1209 LIST_INIT(&granted); 1210 LIST_INSERT_HEAD(&granted, lock, lf_link); 1211 1212 while (!LIST_EMPTY(&granted)) { 1213 lock = LIST_FIRST(&granted); 1214 LIST_REMOVE(lock, lf_link); 1215 1216 /* 1217 * Skip over locks owned by other processes. Handle 1218 * any locks that overlap and are owned by ourselves. 1219 */ 1220 overlap = LIST_FIRST(&state->ls_active); 1221 for (;;) { 1222 ovcase = lf_findoverlap(&overlap, lock, SELF); 1223 1224 #ifdef LOCKF_DEBUG 1225 if (ovcase && (lockf_debug & 2)) { 1226 printf("lf_setlock: overlap %d", ovcase); 1227 lf_print("", overlap); 1228 } 1229 #endif 1230 /* 1231 * Six cases: 1232 * 0) no overlap 1233 * 1) overlap == lock 1234 * 2) overlap contains lock 1235 * 3) lock contains overlap 1236 * 4) overlap starts before lock 1237 * 5) overlap ends after lock 1238 */ 1239 switch (ovcase) { 1240 case 0: /* no overlap */ 1241 break; 1242 1243 case 1: /* overlap == lock */ 1244 /* 1245 * We have already setup the 1246 * dependants for the new lock, taking 1247 * into account a possible downgrade 1248 * or unlock. Remove the old lock. 1249 */ 1250 LIST_REMOVE(overlap, lf_link); 1251 lf_update_dependancies(state, overlap, TRUE, 1252 &granted); 1253 lf_free_lock(overlap); 1254 break; 1255 1256 case 2: /* overlap contains lock */ 1257 /* 1258 * Just split the existing lock. 1259 */ 1260 lf_split(state, overlap, lock, &granted); 1261 break; 1262 1263 case 3: /* lock contains overlap */ 1264 /* 1265 * Delete the overlap and advance to 1266 * the next entry in the list. 1267 */ 1268 lf = LIST_NEXT(overlap, lf_link); 1269 LIST_REMOVE(overlap, lf_link); 1270 lf_update_dependancies(state, overlap, TRUE, 1271 &granted); 1272 lf_free_lock(overlap); 1273 overlap = lf; 1274 continue; 1275 1276 case 4: /* overlap starts before lock */ 1277 /* 1278 * Just update the overlap end and 1279 * move on. 1280 */ 1281 lf_set_end(state, overlap, lock->lf_start - 1, 1282 &granted); 1283 overlap = LIST_NEXT(overlap, lf_link); 1284 continue; 1285 1286 case 5: /* overlap ends after lock */ 1287 /* 1288 * Change the start of overlap and 1289 * re-insert. 1290 */ 1291 lf_set_start(state, overlap, lock->lf_end + 1, 1292 &granted); 1293 break; 1294 } 1295 break; 1296 } 1297 #ifdef LOCKF_DEBUG 1298 if (lockf_debug & 1) { 1299 if (lock->lf_type != F_UNLCK) 1300 lf_print("lf_activate_lock: activated", lock); 1301 else 1302 lf_print("lf_activate_lock: unlocked", lock); 1303 lf_printlist("lf_activate_lock", lock); 1304 } 1305 #endif /* LOCKF_DEBUG */ 1306 if (lock->lf_type != F_UNLCK) 1307 lf_insert_lock(state, lock); 1308 } 1309 } 1310 1311 /* 1312 * Cancel a pending lock request, either as a result of a signal or a 1313 * cancel request for an async lock. 1314 */ 1315 static void 1316 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1317 { 1318 struct lockf_entry_list granted; 1319 1320 /* 1321 * Note it is theoretically possible that cancelling this lock 1322 * may allow some other pending lock to become 1323 * active. Consider this case: 1324 * 1325 * Owner Action Result Dependencies 1326 * 1327 * A: lock [0..0] succeeds 1328 * B: lock [2..2] succeeds 1329 * C: lock [1..2] blocked C->B 1330 * D: lock [0..1] blocked C->B,D->A,D->C 1331 * A: unlock [0..0] C->B,D->C 1332 * C: cancel [1..2] 1333 */ 1334 1335 LIST_REMOVE(lock, lf_link); 1336 1337 /* 1338 * Removing out-going edges is simple. 1339 */ 1340 sx_xlock(&lf_owner_graph_lock); 1341 lf_remove_outgoing(lock); 1342 sx_xunlock(&lf_owner_graph_lock); 1343 1344 /* 1345 * Removing in-coming edges may allow some other lock to 1346 * become active - we use lf_update_dependancies to figure 1347 * this out. 1348 */ 1349 LIST_INIT(&granted); 1350 lf_update_dependancies(state, lock, TRUE, &granted); 1351 lf_free_lock(lock); 1352 1353 /* 1354 * Feed any newly active locks to lf_activate_lock. 1355 */ 1356 while (!LIST_EMPTY(&granted)) { 1357 lock = LIST_FIRST(&granted); 1358 LIST_REMOVE(lock, lf_link); 1359 lf_activate_lock(state, lock); 1360 } 1361 } 1362 1363 /* 1364 * Set a byte-range lock. 1365 */ 1366 static int 1367 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1368 void **cookiep) 1369 { 1370 static char lockstr[] = "lockf"; 1371 int error, priority, stops_deferred; 1372 1373 #ifdef LOCKF_DEBUG 1374 if (lockf_debug & 1) 1375 lf_print("lf_setlock", lock); 1376 #endif /* LOCKF_DEBUG */ 1377 1378 /* 1379 * Set the priority 1380 */ 1381 priority = PLOCK; 1382 if (lock->lf_type == F_WRLCK) 1383 priority += 4; 1384 if (!(lock->lf_flags & F_NOINTR)) 1385 priority |= PCATCH; 1386 /* 1387 * Scan lock list for this file looking for locks that would block us. 1388 */ 1389 if (lf_getblock(state, lock)) { 1390 /* 1391 * Free the structure and return if nonblocking. 1392 */ 1393 if ((lock->lf_flags & F_WAIT) == 0 1394 && lock->lf_async_task == NULL) { 1395 lf_free_lock(lock); 1396 error = EAGAIN; 1397 goto out; 1398 } 1399 1400 /* 1401 * For flock type locks, we must first remove 1402 * any shared locks that we hold before we sleep 1403 * waiting for an exclusive lock. 1404 */ 1405 if ((lock->lf_flags & F_FLOCK) && 1406 lock->lf_type == F_WRLCK) { 1407 lock->lf_type = F_UNLCK; 1408 lf_activate_lock(state, lock); 1409 lock->lf_type = F_WRLCK; 1410 } 1411 1412 /* 1413 * We are blocked. Create edges to each blocking lock, 1414 * checking for deadlock using the owner graph. For 1415 * simplicity, we run deadlock detection for all 1416 * locks, posix and otherwise. 1417 */ 1418 sx_xlock(&lf_owner_graph_lock); 1419 error = lf_add_outgoing(state, lock); 1420 sx_xunlock(&lf_owner_graph_lock); 1421 1422 if (error) { 1423 #ifdef LOCKF_DEBUG 1424 if (lockf_debug & 1) 1425 lf_print("lf_setlock: deadlock", lock); 1426 #endif 1427 lf_free_lock(lock); 1428 goto out; 1429 } 1430 1431 /* 1432 * We have added edges to everything that blocks 1433 * us. Sleep until they all go away. 1434 */ 1435 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1436 #ifdef LOCKF_DEBUG 1437 if (lockf_debug & 1) { 1438 struct lockf_edge *e; 1439 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1440 lf_print("lf_setlock: blocking on", e->le_to); 1441 lf_printlist("lf_setlock", e->le_to); 1442 } 1443 } 1444 #endif /* LOCKF_DEBUG */ 1445 1446 if ((lock->lf_flags & F_WAIT) == 0) { 1447 /* 1448 * The caller requested async notification - 1449 * this callback happens when the blocking 1450 * lock is released, allowing the caller to 1451 * make another attempt to take the lock. 1452 */ 1453 *cookiep = (void *) lock; 1454 error = EINPROGRESS; 1455 goto out; 1456 } 1457 1458 lock->lf_refs++; 1459 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART); 1460 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1461 sigallowstop(stops_deferred); 1462 if (lf_free_lock(lock)) { 1463 error = EDOOFUS; 1464 goto out; 1465 } 1466 1467 /* 1468 * We may have been awakened by a signal and/or by a 1469 * debugger continuing us (in which cases we must 1470 * remove our lock graph edges) and/or by another 1471 * process releasing a lock (in which case our edges 1472 * have already been removed and we have been moved to 1473 * the active list). We may also have been woken by 1474 * lf_purgelocks which we report to the caller as 1475 * EINTR. In that case, lf_purgelocks will have 1476 * removed our lock graph edges. 1477 * 1478 * Note that it is possible to receive a signal after 1479 * we were successfully woken (and moved to the active 1480 * list) but before we resumed execution. In this 1481 * case, our lf_outedges list will be clear. We 1482 * pretend there was no error. 1483 * 1484 * Note also, if we have been sleeping long enough, we 1485 * may now have incoming edges from some newer lock 1486 * which is waiting behind us in the queue. 1487 */ 1488 if (lock->lf_flags & F_INTR) { 1489 error = EINTR; 1490 lf_free_lock(lock); 1491 goto out; 1492 } 1493 if (LIST_EMPTY(&lock->lf_outedges)) { 1494 error = 0; 1495 } else { 1496 lf_cancel_lock(state, lock); 1497 goto out; 1498 } 1499 #ifdef LOCKF_DEBUG 1500 if (lockf_debug & 1) { 1501 lf_print("lf_setlock: granted", lock); 1502 } 1503 #endif 1504 goto out; 1505 } 1506 /* 1507 * It looks like we are going to grant the lock. First add 1508 * edges from any currently pending lock that the new lock 1509 * would block. 1510 */ 1511 error = lf_add_incoming(state, lock); 1512 if (error) { 1513 #ifdef LOCKF_DEBUG 1514 if (lockf_debug & 1) 1515 lf_print("lf_setlock: deadlock", lock); 1516 #endif 1517 lf_free_lock(lock); 1518 goto out; 1519 } 1520 1521 /* 1522 * No blocks!! Add the lock. Note that we will 1523 * downgrade or upgrade any overlapping locks this 1524 * process already owns. 1525 */ 1526 lf_activate_lock(state, lock); 1527 error = 0; 1528 out: 1529 return (error); 1530 } 1531 1532 /* 1533 * Remove a byte-range lock on an inode. 1534 * 1535 * Generally, find the lock (or an overlap to that lock) 1536 * and remove it (or shrink it), then wakeup anyone we can. 1537 */ 1538 static int 1539 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1540 { 1541 struct lockf_entry *overlap; 1542 1543 overlap = LIST_FIRST(&state->ls_active); 1544 1545 if (overlap == NOLOCKF) 1546 return (0); 1547 #ifdef LOCKF_DEBUG 1548 if (unlock->lf_type != F_UNLCK) 1549 panic("lf_clearlock: bad type"); 1550 if (lockf_debug & 1) 1551 lf_print("lf_clearlock", unlock); 1552 #endif /* LOCKF_DEBUG */ 1553 1554 lf_activate_lock(state, unlock); 1555 1556 return (0); 1557 } 1558 1559 /* 1560 * Check whether there is a blocking lock, and if so return its 1561 * details in '*fl'. 1562 */ 1563 static int 1564 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1565 { 1566 struct lockf_entry *block; 1567 1568 #ifdef LOCKF_DEBUG 1569 if (lockf_debug & 1) 1570 lf_print("lf_getlock", lock); 1571 #endif /* LOCKF_DEBUG */ 1572 1573 if ((block = lf_getblock(state, lock))) { 1574 fl->l_type = block->lf_type; 1575 fl->l_whence = SEEK_SET; 1576 fl->l_start = block->lf_start; 1577 if (block->lf_end == OFF_MAX) 1578 fl->l_len = 0; 1579 else 1580 fl->l_len = block->lf_end - block->lf_start + 1; 1581 fl->l_pid = block->lf_owner->lo_pid; 1582 fl->l_sysid = block->lf_owner->lo_sysid; 1583 } else { 1584 fl->l_type = F_UNLCK; 1585 } 1586 return (0); 1587 } 1588 1589 /* 1590 * Cancel an async lock request. 1591 */ 1592 static int 1593 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1594 { 1595 struct lockf_entry *reallock; 1596 1597 /* 1598 * We need to match this request with an existing lock 1599 * request. 1600 */ 1601 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1602 if ((void *) reallock == cookie) { 1603 /* 1604 * Double-check that this lock looks right 1605 * (maybe use a rolling ID for the cancel 1606 * cookie instead?) 1607 */ 1608 if (!(reallock->lf_vnode == lock->lf_vnode 1609 && reallock->lf_start == lock->lf_start 1610 && reallock->lf_end == lock->lf_end)) { 1611 return (ENOENT); 1612 } 1613 1614 /* 1615 * Make sure this lock was async and then just 1616 * remove it from its wait lists. 1617 */ 1618 if (!reallock->lf_async_task) { 1619 return (ENOENT); 1620 } 1621 1622 /* 1623 * Note that since any other thread must take 1624 * state->ls_lock before it can possibly 1625 * trigger the async callback, we are safe 1626 * from a race with lf_wakeup_lock, i.e. we 1627 * can free the lock (actually our caller does 1628 * this). 1629 */ 1630 lf_cancel_lock(state, reallock); 1631 return (0); 1632 } 1633 } 1634 1635 /* 1636 * We didn't find a matching lock - not much we can do here. 1637 */ 1638 return (ENOENT); 1639 } 1640 1641 /* 1642 * Walk the list of locks for an inode and 1643 * return the first blocking lock. 1644 */ 1645 static struct lockf_entry * 1646 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1647 { 1648 struct lockf_entry *overlap; 1649 1650 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1651 /* 1652 * We may assume that the active list is sorted by 1653 * lf_start. 1654 */ 1655 if (overlap->lf_start > lock->lf_end) 1656 break; 1657 if (!lf_blocks(lock, overlap)) 1658 continue; 1659 return (overlap); 1660 } 1661 return (NOLOCKF); 1662 } 1663 1664 /* 1665 * Walk the list of locks for an inode to find an overlapping lock (if 1666 * any) and return a classification of that overlap. 1667 * 1668 * Arguments: 1669 * *overlap The place in the lock list to start looking 1670 * lock The lock which is being tested 1671 * type Pass 'SELF' to test only locks with the same 1672 * owner as lock, or 'OTHER' to test only locks 1673 * with a different owner 1674 * 1675 * Returns one of six values: 1676 * 0) no overlap 1677 * 1) overlap == lock 1678 * 2) overlap contains lock 1679 * 3) lock contains overlap 1680 * 4) overlap starts before lock 1681 * 5) overlap ends after lock 1682 * 1683 * If there is an overlapping lock, '*overlap' is set to point at the 1684 * overlapping lock. 1685 * 1686 * NOTE: this returns only the FIRST overlapping lock. There 1687 * may be more than one. 1688 */ 1689 static int 1690 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1691 { 1692 struct lockf_entry *lf; 1693 off_t start, end; 1694 int res; 1695 1696 if ((*overlap) == NOLOCKF) { 1697 return (0); 1698 } 1699 #ifdef LOCKF_DEBUG 1700 if (lockf_debug & 2) 1701 lf_print("lf_findoverlap: looking for overlap in", lock); 1702 #endif /* LOCKF_DEBUG */ 1703 start = lock->lf_start; 1704 end = lock->lf_end; 1705 res = 0; 1706 while (*overlap) { 1707 lf = *overlap; 1708 if (lf->lf_start > end) 1709 break; 1710 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1711 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1712 *overlap = LIST_NEXT(lf, lf_link); 1713 continue; 1714 } 1715 #ifdef LOCKF_DEBUG 1716 if (lockf_debug & 2) 1717 lf_print("\tchecking", lf); 1718 #endif /* LOCKF_DEBUG */ 1719 /* 1720 * OK, check for overlap 1721 * 1722 * Six cases: 1723 * 0) no overlap 1724 * 1) overlap == lock 1725 * 2) overlap contains lock 1726 * 3) lock contains overlap 1727 * 4) overlap starts before lock 1728 * 5) overlap ends after lock 1729 */ 1730 if (start > lf->lf_end) { 1731 /* Case 0 */ 1732 #ifdef LOCKF_DEBUG 1733 if (lockf_debug & 2) 1734 printf("no overlap\n"); 1735 #endif /* LOCKF_DEBUG */ 1736 *overlap = LIST_NEXT(lf, lf_link); 1737 continue; 1738 } 1739 if (lf->lf_start == start && lf->lf_end == end) { 1740 /* Case 1 */ 1741 #ifdef LOCKF_DEBUG 1742 if (lockf_debug & 2) 1743 printf("overlap == lock\n"); 1744 #endif /* LOCKF_DEBUG */ 1745 res = 1; 1746 break; 1747 } 1748 if (lf->lf_start <= start && lf->lf_end >= end) { 1749 /* Case 2 */ 1750 #ifdef LOCKF_DEBUG 1751 if (lockf_debug & 2) 1752 printf("overlap contains lock\n"); 1753 #endif /* LOCKF_DEBUG */ 1754 res = 2; 1755 break; 1756 } 1757 if (start <= lf->lf_start && end >= lf->lf_end) { 1758 /* Case 3 */ 1759 #ifdef LOCKF_DEBUG 1760 if (lockf_debug & 2) 1761 printf("lock contains overlap\n"); 1762 #endif /* LOCKF_DEBUG */ 1763 res = 3; 1764 break; 1765 } 1766 if (lf->lf_start < start && lf->lf_end >= start) { 1767 /* Case 4 */ 1768 #ifdef LOCKF_DEBUG 1769 if (lockf_debug & 2) 1770 printf("overlap starts before lock\n"); 1771 #endif /* LOCKF_DEBUG */ 1772 res = 4; 1773 break; 1774 } 1775 if (lf->lf_start > start && lf->lf_end > end) { 1776 /* Case 5 */ 1777 #ifdef LOCKF_DEBUG 1778 if (lockf_debug & 2) 1779 printf("overlap ends after lock\n"); 1780 #endif /* LOCKF_DEBUG */ 1781 res = 5; 1782 break; 1783 } 1784 panic("lf_findoverlap: default"); 1785 } 1786 return (res); 1787 } 1788 1789 /* 1790 * Split an the existing 'lock1', based on the extent of the lock 1791 * described by 'lock2'. The existing lock should cover 'lock2' 1792 * entirely. 1793 * 1794 * Any pending locks which have been been unblocked are added to 1795 * 'granted' 1796 */ 1797 static void 1798 lf_split(struct lockf *state, struct lockf_entry *lock1, 1799 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1800 { 1801 struct lockf_entry *splitlock; 1802 1803 #ifdef LOCKF_DEBUG 1804 if (lockf_debug & 2) { 1805 lf_print("lf_split", lock1); 1806 lf_print("splitting from", lock2); 1807 } 1808 #endif /* LOCKF_DEBUG */ 1809 /* 1810 * Check to see if we don't need to split at all. 1811 */ 1812 if (lock1->lf_start == lock2->lf_start) { 1813 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1814 return; 1815 } 1816 if (lock1->lf_end == lock2->lf_end) { 1817 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1818 return; 1819 } 1820 /* 1821 * Make a new lock consisting of the last part of 1822 * the encompassing lock. 1823 */ 1824 splitlock = lf_alloc_lock(lock1->lf_owner); 1825 memcpy(splitlock, lock1, sizeof *splitlock); 1826 splitlock->lf_refs = 1; 1827 if (splitlock->lf_flags & F_REMOTE) 1828 vref(splitlock->lf_vnode); 1829 1830 /* 1831 * This cannot cause a deadlock since any edges we would add 1832 * to splitlock already exist in lock1. We must be sure to add 1833 * necessary dependencies to splitlock before we reduce lock1 1834 * otherwise we may accidentally grant a pending lock that 1835 * was blocked by the tail end of lock1. 1836 */ 1837 splitlock->lf_start = lock2->lf_end + 1; 1838 LIST_INIT(&splitlock->lf_outedges); 1839 LIST_INIT(&splitlock->lf_inedges); 1840 lf_add_incoming(state, splitlock); 1841 1842 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1843 1844 /* 1845 * OK, now link it in 1846 */ 1847 lf_insert_lock(state, splitlock); 1848 } 1849 1850 struct lockdesc { 1851 STAILQ_ENTRY(lockdesc) link; 1852 struct vnode *vp; 1853 struct flock fl; 1854 }; 1855 STAILQ_HEAD(lockdesclist, lockdesc); 1856 1857 int 1858 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1859 { 1860 struct lockf *ls; 1861 struct lockf_entry *lf; 1862 struct lockdesc *ldesc; 1863 struct lockdesclist locks; 1864 int error; 1865 1866 /* 1867 * In order to keep the locking simple, we iterate over the 1868 * active lock lists to build a list of locks that need 1869 * releasing. We then call the iterator for each one in turn. 1870 * 1871 * We take an extra reference to the vnode for the duration to 1872 * make sure it doesn't go away before we are finished. 1873 */ 1874 STAILQ_INIT(&locks); 1875 sx_xlock(&lf_lock_states_lock); 1876 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1877 sx_xlock(&ls->ls_lock); 1878 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1879 if (lf->lf_owner->lo_sysid != sysid) 1880 continue; 1881 1882 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1883 M_WAITOK); 1884 ldesc->vp = lf->lf_vnode; 1885 vref(ldesc->vp); 1886 ldesc->fl.l_start = lf->lf_start; 1887 if (lf->lf_end == OFF_MAX) 1888 ldesc->fl.l_len = 0; 1889 else 1890 ldesc->fl.l_len = 1891 lf->lf_end - lf->lf_start + 1; 1892 ldesc->fl.l_whence = SEEK_SET; 1893 ldesc->fl.l_type = F_UNLCK; 1894 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1895 ldesc->fl.l_sysid = sysid; 1896 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1897 } 1898 sx_xunlock(&ls->ls_lock); 1899 } 1900 sx_xunlock(&lf_lock_states_lock); 1901 1902 /* 1903 * Call the iterator function for each lock in turn. If the 1904 * iterator returns an error code, just free the rest of the 1905 * lockdesc structures. 1906 */ 1907 error = 0; 1908 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1909 STAILQ_REMOVE_HEAD(&locks, link); 1910 if (!error) 1911 error = fn(ldesc->vp, &ldesc->fl, arg); 1912 vrele(ldesc->vp); 1913 free(ldesc, M_LOCKF); 1914 } 1915 1916 return (error); 1917 } 1918 1919 int 1920 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1921 { 1922 struct lockf *ls; 1923 struct lockf_entry *lf; 1924 struct lockdesc *ldesc; 1925 struct lockdesclist locks; 1926 int error; 1927 1928 /* 1929 * In order to keep the locking simple, we iterate over the 1930 * active lock lists to build a list of locks that need 1931 * releasing. We then call the iterator for each one in turn. 1932 * 1933 * We take an extra reference to the vnode for the duration to 1934 * make sure it doesn't go away before we are finished. 1935 */ 1936 STAILQ_INIT(&locks); 1937 VI_LOCK(vp); 1938 ls = vp->v_lockf; 1939 if (!ls) { 1940 VI_UNLOCK(vp); 1941 return (0); 1942 } 1943 MPASS(ls->ls_threads >= 0); 1944 ls->ls_threads++; 1945 VI_UNLOCK(vp); 1946 1947 sx_xlock(&ls->ls_lock); 1948 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1949 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1950 M_WAITOK); 1951 ldesc->vp = lf->lf_vnode; 1952 vref(ldesc->vp); 1953 ldesc->fl.l_start = lf->lf_start; 1954 if (lf->lf_end == OFF_MAX) 1955 ldesc->fl.l_len = 0; 1956 else 1957 ldesc->fl.l_len = 1958 lf->lf_end - lf->lf_start + 1; 1959 ldesc->fl.l_whence = SEEK_SET; 1960 ldesc->fl.l_type = F_UNLCK; 1961 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1962 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1963 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1964 } 1965 sx_xunlock(&ls->ls_lock); 1966 VI_LOCK(vp); 1967 MPASS(ls->ls_threads > 0); 1968 ls->ls_threads--; 1969 wakeup(ls); 1970 VI_UNLOCK(vp); 1971 1972 /* 1973 * Call the iterator function for each lock in turn. If the 1974 * iterator returns an error code, just free the rest of the 1975 * lockdesc structures. 1976 */ 1977 error = 0; 1978 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1979 STAILQ_REMOVE_HEAD(&locks, link); 1980 if (!error) 1981 error = fn(ldesc->vp, &ldesc->fl, arg); 1982 vrele(ldesc->vp); 1983 free(ldesc, M_LOCKF); 1984 } 1985 1986 return (error); 1987 } 1988 1989 static int 1990 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 1991 { 1992 1993 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 1994 return (0); 1995 } 1996 1997 void 1998 lf_clearremotesys(int sysid) 1999 { 2000 2001 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2002 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2003 } 2004 2005 int 2006 lf_countlocks(int sysid) 2007 { 2008 int i; 2009 struct lock_owner *lo; 2010 int count; 2011 2012 count = 0; 2013 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 2014 sx_xlock(&lf_lock_owners[i].lock); 2015 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link) 2016 if (lo->lo_sysid == sysid) 2017 count += lo->lo_refs; 2018 sx_xunlock(&lf_lock_owners[i].lock); 2019 } 2020 2021 return (count); 2022 } 2023 2024 #ifdef LOCKF_DEBUG 2025 2026 /* 2027 * Return non-zero if y is reachable from x using a brute force 2028 * search. If reachable and path is non-null, return the route taken 2029 * in path. 2030 */ 2031 static int 2032 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2033 struct owner_vertex_list *path) 2034 { 2035 struct owner_edge *e; 2036 2037 if (x == y) { 2038 if (path) 2039 TAILQ_INSERT_HEAD(path, x, v_link); 2040 return 1; 2041 } 2042 2043 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2044 if (graph_reaches(e->e_to, y, path)) { 2045 if (path) 2046 TAILQ_INSERT_HEAD(path, x, v_link); 2047 return 1; 2048 } 2049 } 2050 return 0; 2051 } 2052 2053 /* 2054 * Perform consistency checks on the graph. Make sure the values of 2055 * v_order are correct. If checkorder is non-zero, check no vertex can 2056 * reach any other vertex with a smaller order. 2057 */ 2058 static void 2059 graph_check(struct owner_graph *g, int checkorder) 2060 { 2061 int i, j; 2062 2063 for (i = 0; i < g->g_size; i++) { 2064 if (!g->g_vertices[i]->v_owner) 2065 continue; 2066 KASSERT(g->g_vertices[i]->v_order == i, 2067 ("lock graph vertices disordered")); 2068 if (checkorder) { 2069 for (j = 0; j < i; j++) { 2070 if (!g->g_vertices[j]->v_owner) 2071 continue; 2072 KASSERT(!graph_reaches(g->g_vertices[i], 2073 g->g_vertices[j], NULL), 2074 ("lock graph vertices disordered")); 2075 } 2076 } 2077 } 2078 } 2079 2080 static void 2081 graph_print_vertices(struct owner_vertex_list *set) 2082 { 2083 struct owner_vertex *v; 2084 2085 printf("{ "); 2086 TAILQ_FOREACH(v, set, v_link) { 2087 printf("%d:", v->v_order); 2088 lf_print_owner(v->v_owner); 2089 if (TAILQ_NEXT(v, v_link)) 2090 printf(", "); 2091 } 2092 printf(" }\n"); 2093 } 2094 2095 #endif 2096 2097 /* 2098 * Calculate the sub-set of vertices v from the affected region [y..x] 2099 * where v is reachable from y. Return -1 if a loop was detected 2100 * (i.e. x is reachable from y, otherwise the number of vertices in 2101 * this subset. 2102 */ 2103 static int 2104 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2105 struct owner_vertex *y, struct owner_vertex_list *delta) 2106 { 2107 uint32_t gen; 2108 struct owner_vertex *v; 2109 struct owner_edge *e; 2110 int n; 2111 2112 /* 2113 * We start with a set containing just y. Then for each vertex 2114 * v in the set so far unprocessed, we add each vertex that v 2115 * has an out-edge to and that is within the affected region 2116 * [y..x]. If we see the vertex x on our travels, stop 2117 * immediately. 2118 */ 2119 TAILQ_INIT(delta); 2120 TAILQ_INSERT_TAIL(delta, y, v_link); 2121 v = y; 2122 n = 1; 2123 gen = g->g_gen; 2124 while (v) { 2125 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2126 if (e->e_to == x) 2127 return -1; 2128 if (e->e_to->v_order < x->v_order 2129 && e->e_to->v_gen != gen) { 2130 e->e_to->v_gen = gen; 2131 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2132 n++; 2133 } 2134 } 2135 v = TAILQ_NEXT(v, v_link); 2136 } 2137 2138 return (n); 2139 } 2140 2141 /* 2142 * Calculate the sub-set of vertices v from the affected region [y..x] 2143 * where v reaches x. Return the number of vertices in this subset. 2144 */ 2145 static int 2146 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2147 struct owner_vertex *y, struct owner_vertex_list *delta) 2148 { 2149 uint32_t gen; 2150 struct owner_vertex *v; 2151 struct owner_edge *e; 2152 int n; 2153 2154 /* 2155 * We start with a set containing just x. Then for each vertex 2156 * v in the set so far unprocessed, we add each vertex that v 2157 * has an in-edge from and that is within the affected region 2158 * [y..x]. 2159 */ 2160 TAILQ_INIT(delta); 2161 TAILQ_INSERT_TAIL(delta, x, v_link); 2162 v = x; 2163 n = 1; 2164 gen = g->g_gen; 2165 while (v) { 2166 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2167 if (e->e_from->v_order > y->v_order 2168 && e->e_from->v_gen != gen) { 2169 e->e_from->v_gen = gen; 2170 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2171 n++; 2172 } 2173 } 2174 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2175 } 2176 2177 return (n); 2178 } 2179 2180 static int 2181 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2182 { 2183 struct owner_vertex *v; 2184 int i, j; 2185 2186 TAILQ_FOREACH(v, set, v_link) { 2187 for (i = n; 2188 i > 0 && indices[i - 1] > v->v_order; i--) 2189 ; 2190 for (j = n - 1; j >= i; j--) 2191 indices[j + 1] = indices[j]; 2192 indices[i] = v->v_order; 2193 n++; 2194 } 2195 2196 return (n); 2197 } 2198 2199 static int 2200 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2201 struct owner_vertex_list *set) 2202 { 2203 struct owner_vertex *v, *vlowest; 2204 2205 while (!TAILQ_EMPTY(set)) { 2206 vlowest = NULL; 2207 TAILQ_FOREACH(v, set, v_link) { 2208 if (!vlowest || v->v_order < vlowest->v_order) 2209 vlowest = v; 2210 } 2211 TAILQ_REMOVE(set, vlowest, v_link); 2212 vlowest->v_order = indices[nextunused]; 2213 g->g_vertices[vlowest->v_order] = vlowest; 2214 nextunused++; 2215 } 2216 2217 return (nextunused); 2218 } 2219 2220 static int 2221 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2222 struct owner_vertex *y) 2223 { 2224 struct owner_edge *e; 2225 struct owner_vertex_list deltaF, deltaB; 2226 int nF, n, vi, i; 2227 int *indices; 2228 int nB __unused; 2229 2230 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2231 2232 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2233 if (e->e_to == y) { 2234 e->e_refs++; 2235 return (0); 2236 } 2237 } 2238 2239 #ifdef LOCKF_DEBUG 2240 if (lockf_debug & 8) { 2241 printf("adding edge %d:", x->v_order); 2242 lf_print_owner(x->v_owner); 2243 printf(" -> %d:", y->v_order); 2244 lf_print_owner(y->v_owner); 2245 printf("\n"); 2246 } 2247 #endif 2248 if (y->v_order < x->v_order) { 2249 /* 2250 * The new edge violates the order. First find the set 2251 * of affected vertices reachable from y (deltaF) and 2252 * the set of affect vertices affected that reach x 2253 * (deltaB), using the graph generation number to 2254 * detect whether we have visited a given vertex 2255 * already. We re-order the graph so that each vertex 2256 * in deltaB appears before each vertex in deltaF. 2257 * 2258 * If x is a member of deltaF, then the new edge would 2259 * create a cycle. Otherwise, we may assume that 2260 * deltaF and deltaB are disjoint. 2261 */ 2262 g->g_gen++; 2263 if (g->g_gen == 0) { 2264 /* 2265 * Generation wrap. 2266 */ 2267 for (vi = 0; vi < g->g_size; vi++) { 2268 g->g_vertices[vi]->v_gen = 0; 2269 } 2270 g->g_gen++; 2271 } 2272 nF = graph_delta_forward(g, x, y, &deltaF); 2273 if (nF < 0) { 2274 #ifdef LOCKF_DEBUG 2275 if (lockf_debug & 8) { 2276 struct owner_vertex_list path; 2277 printf("deadlock: "); 2278 TAILQ_INIT(&path); 2279 graph_reaches(y, x, &path); 2280 graph_print_vertices(&path); 2281 } 2282 #endif 2283 return (EDEADLK); 2284 } 2285 2286 #ifdef LOCKF_DEBUG 2287 if (lockf_debug & 8) { 2288 printf("re-ordering graph vertices\n"); 2289 printf("deltaF = "); 2290 graph_print_vertices(&deltaF); 2291 } 2292 #endif 2293 2294 nB = graph_delta_backward(g, x, y, &deltaB); 2295 2296 #ifdef LOCKF_DEBUG 2297 if (lockf_debug & 8) { 2298 printf("deltaB = "); 2299 graph_print_vertices(&deltaB); 2300 } 2301 #endif 2302 2303 /* 2304 * We first build a set of vertex indices (vertex 2305 * order values) that we may use, then we re-assign 2306 * orders first to those vertices in deltaB, then to 2307 * deltaF. Note that the contents of deltaF and deltaB 2308 * may be partially disordered - we perform an 2309 * insertion sort while building our index set. 2310 */ 2311 indices = g->g_indexbuf; 2312 n = graph_add_indices(indices, 0, &deltaF); 2313 graph_add_indices(indices, n, &deltaB); 2314 2315 /* 2316 * We must also be sure to maintain the relative 2317 * ordering of deltaF and deltaB when re-assigning 2318 * vertices. We do this by iteratively removing the 2319 * lowest ordered element from the set and assigning 2320 * it the next value from our new ordering. 2321 */ 2322 i = graph_assign_indices(g, indices, 0, &deltaB); 2323 graph_assign_indices(g, indices, i, &deltaF); 2324 2325 #ifdef LOCKF_DEBUG 2326 if (lockf_debug & 8) { 2327 struct owner_vertex_list set; 2328 TAILQ_INIT(&set); 2329 for (i = 0; i < nB + nF; i++) 2330 TAILQ_INSERT_TAIL(&set, 2331 g->g_vertices[indices[i]], v_link); 2332 printf("new ordering = "); 2333 graph_print_vertices(&set); 2334 } 2335 #endif 2336 } 2337 2338 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2339 2340 #ifdef LOCKF_DEBUG 2341 if (lockf_debug & 8) { 2342 graph_check(g, TRUE); 2343 } 2344 #endif 2345 2346 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2347 2348 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2349 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2350 e->e_refs = 1; 2351 e->e_from = x; 2352 e->e_to = y; 2353 2354 return (0); 2355 } 2356 2357 /* 2358 * Remove an edge x->y from the graph. 2359 */ 2360 static void 2361 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2362 struct owner_vertex *y) 2363 { 2364 struct owner_edge *e; 2365 2366 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2367 2368 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2369 if (e->e_to == y) 2370 break; 2371 } 2372 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2373 2374 e->e_refs--; 2375 if (e->e_refs == 0) { 2376 #ifdef LOCKF_DEBUG 2377 if (lockf_debug & 8) { 2378 printf("removing edge %d:", x->v_order); 2379 lf_print_owner(x->v_owner); 2380 printf(" -> %d:", y->v_order); 2381 lf_print_owner(y->v_owner); 2382 printf("\n"); 2383 } 2384 #endif 2385 LIST_REMOVE(e, e_outlink); 2386 LIST_REMOVE(e, e_inlink); 2387 free(e, M_LOCKF); 2388 } 2389 } 2390 2391 /* 2392 * Allocate a vertex from the free list. Return ENOMEM if there are 2393 * none. 2394 */ 2395 static struct owner_vertex * 2396 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2397 { 2398 struct owner_vertex *v; 2399 2400 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2401 2402 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2403 if (g->g_size == g->g_space) { 2404 g->g_vertices = realloc(g->g_vertices, 2405 2 * g->g_space * sizeof(struct owner_vertex *), 2406 M_LOCKF, M_WAITOK); 2407 free(g->g_indexbuf, M_LOCKF); 2408 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2409 M_LOCKF, M_WAITOK); 2410 g->g_space = 2 * g->g_space; 2411 } 2412 v->v_order = g->g_size; 2413 v->v_gen = g->g_gen; 2414 g->g_vertices[g->g_size] = v; 2415 g->g_size++; 2416 2417 LIST_INIT(&v->v_outedges); 2418 LIST_INIT(&v->v_inedges); 2419 v->v_owner = lo; 2420 2421 return (v); 2422 } 2423 2424 static void 2425 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2426 { 2427 struct owner_vertex *w; 2428 int i; 2429 2430 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2431 2432 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2433 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2434 2435 /* 2436 * Remove from the graph's array and close up the gap, 2437 * renumbering the other vertices. 2438 */ 2439 for (i = v->v_order + 1; i < g->g_size; i++) { 2440 w = g->g_vertices[i]; 2441 w->v_order--; 2442 g->g_vertices[i - 1] = w; 2443 } 2444 g->g_size--; 2445 2446 free(v, M_LOCKF); 2447 } 2448 2449 static struct owner_graph * 2450 graph_init(struct owner_graph *g) 2451 { 2452 2453 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2454 M_LOCKF, M_WAITOK); 2455 g->g_size = 0; 2456 g->g_space = 10; 2457 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2458 g->g_gen = 0; 2459 2460 return (g); 2461 } 2462 2463 struct kinfo_lockf_linked { 2464 struct kinfo_lockf kl; 2465 struct vnode *vp; 2466 STAILQ_ENTRY(kinfo_lockf_linked) link; 2467 }; 2468 2469 int 2470 vfs_report_lockf(struct mount *mp, struct sbuf *sb) 2471 { 2472 struct lockf *ls; 2473 struct lockf_entry *lf; 2474 struct kinfo_lockf_linked *klf; 2475 struct vnode *vp; 2476 struct ucred *ucred; 2477 char *fullpath, *freepath; 2478 struct stat stt; 2479 STAILQ_HEAD(, kinfo_lockf_linked) locks; 2480 int error, gerror; 2481 2482 STAILQ_INIT(&locks); 2483 sx_slock(&lf_lock_states_lock); 2484 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 2485 sx_slock(&ls->ls_lock); 2486 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 2487 vp = lf->lf_vnode; 2488 if (VN_IS_DOOMED(vp) || vp->v_mount != mp) 2489 continue; 2490 vhold(vp); 2491 klf = malloc(sizeof(struct kinfo_lockf_linked), 2492 M_LOCKF, M_WAITOK | M_ZERO); 2493 klf->vp = vp; 2494 klf->kl.kl_structsize = sizeof(struct kinfo_lockf); 2495 klf->kl.kl_start = lf->lf_start; 2496 klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 : 2497 lf->lf_end - lf->lf_start + 1; 2498 klf->kl.kl_rw = lf->lf_type == F_RDLCK ? 2499 KLOCKF_RW_READ : KLOCKF_RW_WRITE; 2500 if (lf->lf_owner->lo_sysid != 0) { 2501 klf->kl.kl_pid = lf->lf_owner->lo_pid; 2502 klf->kl.kl_sysid = lf->lf_owner->lo_sysid; 2503 klf->kl.kl_type = KLOCKF_TYPE_REMOTE; 2504 } else if (lf->lf_owner->lo_pid == -1) { 2505 klf->kl.kl_pid = -1; 2506 klf->kl.kl_sysid = 0; 2507 klf->kl.kl_type = KLOCKF_TYPE_FLOCK; 2508 } else { 2509 klf->kl.kl_pid = lf->lf_owner->lo_pid; 2510 klf->kl.kl_sysid = 0; 2511 klf->kl.kl_type = KLOCKF_TYPE_PID; 2512 } 2513 STAILQ_INSERT_TAIL(&locks, klf, link); 2514 } 2515 sx_sunlock(&ls->ls_lock); 2516 } 2517 sx_sunlock(&lf_lock_states_lock); 2518 2519 gerror = 0; 2520 ucred = curthread->td_ucred; 2521 while ((klf = STAILQ_FIRST(&locks)) != NULL) { 2522 STAILQ_REMOVE_HEAD(&locks, link); 2523 vp = klf->vp; 2524 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) { 2525 error = prison_canseemount(ucred, vp->v_mount); 2526 if (error == 0) 2527 error = VOP_STAT(vp, &stt, ucred, NOCRED); 2528 VOP_UNLOCK(vp); 2529 if (error == 0) { 2530 klf->kl.kl_file_fsid = stt.st_dev; 2531 klf->kl.kl_file_rdev = stt.st_rdev; 2532 klf->kl.kl_file_fileid = stt.st_ino; 2533 freepath = NULL; 2534 fullpath = "-"; 2535 error = vn_fullpath(vp, &fullpath, &freepath); 2536 if (error == 0) 2537 strlcpy(klf->kl.kl_path, fullpath, 2538 sizeof(klf->kl.kl_path)); 2539 free(freepath, M_TEMP); 2540 if (sbuf_bcat(sb, &klf->kl, 2541 klf->kl.kl_structsize) != 0) { 2542 gerror = sbuf_error(sb); 2543 } 2544 } 2545 } 2546 vdrop(vp); 2547 free(klf, M_LOCKF); 2548 } 2549 2550 return (gerror); 2551 } 2552 2553 static int 2554 sysctl_kern_lockf_run(struct sbuf *sb) 2555 { 2556 struct mount *mp; 2557 int error; 2558 2559 error = 0; 2560 mtx_lock(&mountlist_mtx); 2561 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2562 error = vfs_busy(mp, MBF_MNTLSTLOCK); 2563 if (error != 0) 2564 continue; 2565 error = mp->mnt_op->vfs_report_lockf(mp, sb); 2566 mtx_lock(&mountlist_mtx); 2567 vfs_unbusy(mp); 2568 if (error != 0) 2569 break; 2570 } 2571 mtx_unlock(&mountlist_mtx); 2572 return (error); 2573 } 2574 2575 static int 2576 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS) 2577 { 2578 struct sbuf sb; 2579 int error, error2; 2580 2581 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req); 2582 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2583 error = sysctl_kern_lockf_run(&sb); 2584 error2 = sbuf_finish(&sb); 2585 sbuf_delete(&sb); 2586 return (error != 0 ? error : error2); 2587 } 2588 SYSCTL_PROC(_kern, KERN_LOCKF, lockf, 2589 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2590 0, 0, sysctl_kern_lockf, "S,lockf", 2591 "Advisory locks table"); 2592 2593 #ifdef LOCKF_DEBUG 2594 /* 2595 * Print description of a lock owner 2596 */ 2597 static void 2598 lf_print_owner(struct lock_owner *lo) 2599 { 2600 2601 if (lo->lo_flags & F_REMOTE) { 2602 printf("remote pid %d, system %d", 2603 lo->lo_pid, lo->lo_sysid); 2604 } else if (lo->lo_flags & F_FLOCK) { 2605 printf("file %p", lo->lo_id); 2606 } else { 2607 printf("local pid %d", lo->lo_pid); 2608 } 2609 } 2610 2611 /* 2612 * Print out a lock. 2613 */ 2614 static void 2615 lf_print(char *tag, struct lockf_entry *lock) 2616 { 2617 2618 printf("%s: lock %p for ", tag, (void *)lock); 2619 lf_print_owner(lock->lf_owner); 2620 printf("\nvnode %p", lock->lf_vnode); 2621 VOP_PRINT(lock->lf_vnode); 2622 printf(" %s, start %jd, end ", 2623 lock->lf_type == F_RDLCK ? "shared" : 2624 lock->lf_type == F_WRLCK ? "exclusive" : 2625 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2626 (intmax_t)lock->lf_start); 2627 if (lock->lf_end == OFF_MAX) 2628 printf("EOF"); 2629 else 2630 printf("%jd", (intmax_t)lock->lf_end); 2631 if (!LIST_EMPTY(&lock->lf_outedges)) 2632 printf(" block %p\n", 2633 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2634 else 2635 printf("\n"); 2636 } 2637 2638 static void 2639 lf_printlist(char *tag, struct lockf_entry *lock) 2640 { 2641 struct lockf_entry *lf, *blk; 2642 struct lockf_edge *e; 2643 2644 printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode); 2645 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2646 printf("\tlock %p for ",(void *)lf); 2647 lf_print_owner(lock->lf_owner); 2648 printf(", %s, start %jd, end %jd", 2649 lf->lf_type == F_RDLCK ? "shared" : 2650 lf->lf_type == F_WRLCK ? "exclusive" : 2651 lf->lf_type == F_UNLCK ? "unlock" : 2652 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2653 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2654 blk = e->le_to; 2655 printf("\n\t\tlock request %p for ", (void *)blk); 2656 lf_print_owner(blk->lf_owner); 2657 printf(", %s, start %jd, end %jd", 2658 blk->lf_type == F_RDLCK ? "shared" : 2659 blk->lf_type == F_WRLCK ? "exclusive" : 2660 blk->lf_type == F_UNLCK ? "unlock" : 2661 "unknown", (intmax_t)blk->lf_start, 2662 (intmax_t)blk->lf_end); 2663 if (!LIST_EMPTY(&blk->lf_inedges)) 2664 panic("lf_printlist: bad list"); 2665 } 2666 printf("\n"); 2667 } 2668 } 2669 #endif /* LOCKF_DEBUG */ 2670