1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 5 * Authors: Doug Rabson <dfr@rabson.org> 6 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (c) 1982, 1986, 1989, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * This code is derived from software contributed to Berkeley by 34 * Scooter Morris at Genentech Inc. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_debug_lockf.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/hash.h> 71 #include <sys/kernel.h> 72 #include <sys/limits.h> 73 #include <sys/lock.h> 74 #include <sys/mount.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/sx.h> 78 #include <sys/unistd.h> 79 #include <sys/vnode.h> 80 #include <sys/malloc.h> 81 #include <sys/fcntl.h> 82 #include <sys/lockf.h> 83 #include <sys/taskqueue.h> 84 85 #ifdef LOCKF_DEBUG 86 #include <sys/sysctl.h> 87 88 #include <ufs/ufs/extattr.h> 89 #include <ufs/ufs/quota.h> 90 #include <ufs/ufs/ufsmount.h> 91 #include <ufs/ufs/inode.h> 92 93 static int lockf_debug = 0; /* control debug output */ 94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 95 #endif 96 97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 98 99 struct owner_edge; 100 struct owner_vertex; 101 struct owner_vertex_list; 102 struct owner_graph; 103 104 #define NOLOCKF (struct lockf_entry *)0 105 #define SELF 0x1 106 #define OTHERS 0x2 107 static void lf_init(void *); 108 static int lf_hash_owner(caddr_t, struct vnode *, struct flock *, int); 109 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 110 int); 111 static struct lockf_entry * 112 lf_alloc_lock(struct lock_owner *); 113 static int lf_free_lock(struct lockf_entry *); 114 static int lf_clearlock(struct lockf *, struct lockf_entry *); 115 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 116 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 117 static void lf_free_edge(struct lockf_edge *); 118 static struct lockf_edge * 119 lf_alloc_edge(void); 120 static void lf_alloc_vertex(struct lockf_entry *); 121 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 122 static void lf_remove_edge(struct lockf_edge *); 123 static void lf_remove_outgoing(struct lockf_entry *); 124 static void lf_remove_incoming(struct lockf_entry *); 125 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 126 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 127 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 128 int); 129 static struct lockf_entry * 130 lf_getblock(struct lockf *, struct lockf_entry *); 131 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 132 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 133 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 134 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 135 int all, struct lockf_entry_list *); 136 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 137 struct lockf_entry_list*); 138 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 139 struct lockf_entry_list*); 140 static int lf_setlock(struct lockf *, struct lockf_entry *, 141 struct vnode *, void **cookiep); 142 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 143 static void lf_split(struct lockf *, struct lockf_entry *, 144 struct lockf_entry *, struct lockf_entry_list *); 145 #ifdef LOCKF_DEBUG 146 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 147 struct owner_vertex_list *path); 148 static void graph_check(struct owner_graph *g, int checkorder); 149 static void graph_print_vertices(struct owner_vertex_list *set); 150 #endif 151 static int graph_delta_forward(struct owner_graph *g, 152 struct owner_vertex *x, struct owner_vertex *y, 153 struct owner_vertex_list *delta); 154 static int graph_delta_backward(struct owner_graph *g, 155 struct owner_vertex *x, struct owner_vertex *y, 156 struct owner_vertex_list *delta); 157 static int graph_add_indices(int *indices, int n, 158 struct owner_vertex_list *set); 159 static int graph_assign_indices(struct owner_graph *g, int *indices, 160 int nextunused, struct owner_vertex_list *set); 161 static int graph_add_edge(struct owner_graph *g, 162 struct owner_vertex *x, struct owner_vertex *y); 163 static void graph_remove_edge(struct owner_graph *g, 164 struct owner_vertex *x, struct owner_vertex *y); 165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 166 struct lock_owner *lo); 167 static void graph_free_vertex(struct owner_graph *g, 168 struct owner_vertex *v); 169 static struct owner_graph * graph_init(struct owner_graph *g); 170 #ifdef LOCKF_DEBUG 171 static void lf_print(char *, struct lockf_entry *); 172 static void lf_printlist(char *, struct lockf_entry *); 173 static void lf_print_owner(struct lock_owner *); 174 #endif 175 176 /* 177 * This structure is used to keep track of both local and remote lock 178 * owners. The lf_owner field of the struct lockf_entry points back at 179 * the lock owner structure. Each possible lock owner (local proc for 180 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 181 * pair for remote locks) is represented by a unique instance of 182 * struct lock_owner. 183 * 184 * If a lock owner has a lock that blocks some other lock or a lock 185 * that is waiting for some other lock, it also has a vertex in the 186 * owner_graph below. 187 * 188 * Locks: 189 * (s) locked by state->ls_lock 190 * (S) locked by lf_lock_states_lock 191 * (g) locked by lf_owner_graph_lock 192 * (c) const until freeing 193 */ 194 #define LOCK_OWNER_HASH_SIZE 256 195 196 struct lock_owner { 197 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 198 int lo_refs; /* (l) Number of locks referring to this */ 199 int lo_flags; /* (c) Flags passwd to lf_advlock */ 200 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 201 pid_t lo_pid; /* (c) Process Id of the lock owner */ 202 int lo_sysid; /* (c) System Id of the lock owner */ 203 int lo_hash; /* (c) Used to lock the appropriate chain */ 204 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 205 }; 206 207 LIST_HEAD(lock_owner_list, lock_owner); 208 209 struct lock_owner_chain { 210 struct sx lock; 211 struct lock_owner_list list; 212 }; 213 214 static struct sx lf_lock_states_lock; 215 static struct lockf_list lf_lock_states; /* (S) */ 216 static struct lock_owner_chain lf_lock_owners[LOCK_OWNER_HASH_SIZE]; 217 218 /* 219 * Structures for deadlock detection. 220 * 221 * We have two types of directed graph, the first is the set of locks, 222 * both active and pending on a vnode. Within this graph, active locks 223 * are terminal nodes in the graph (i.e. have no out-going 224 * edges). Pending locks have out-going edges to each blocking active 225 * lock that prevents the lock from being granted and also to each 226 * older pending lock that would block them if it was active. The 227 * graph for each vnode is naturally acyclic; new edges are only ever 228 * added to or from new nodes (either new pending locks which only add 229 * out-going edges or new active locks which only add in-coming edges) 230 * therefore they cannot create loops in the lock graph. 231 * 232 * The second graph is a global graph of lock owners. Each lock owner 233 * is a vertex in that graph and an edge is added to the graph 234 * whenever an edge is added to a vnode graph, with end points 235 * corresponding to owner of the new pending lock and the owner of the 236 * lock upon which it waits. In order to prevent deadlock, we only add 237 * an edge to this graph if the new edge would not create a cycle. 238 * 239 * The lock owner graph is topologically sorted, i.e. if a node has 240 * any outgoing edges, then it has an order strictly less than any 241 * node to which it has an outgoing edge. We preserve this ordering 242 * (and detect cycles) on edge insertion using Algorithm PK from the 243 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 244 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 245 * No. 1.7) 246 */ 247 struct owner_vertex; 248 249 struct owner_edge { 250 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 251 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 252 int e_refs; /* (g) number of times added */ 253 struct owner_vertex *e_from; /* (c) out-going from here */ 254 struct owner_vertex *e_to; /* (c) in-coming to here */ 255 }; 256 LIST_HEAD(owner_edge_list, owner_edge); 257 258 struct owner_vertex { 259 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 260 uint32_t v_gen; /* (g) workspace for edge insertion */ 261 int v_order; /* (g) order of vertex in graph */ 262 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 263 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 264 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 265 }; 266 TAILQ_HEAD(owner_vertex_list, owner_vertex); 267 268 struct owner_graph { 269 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 270 int g_size; /* (g) number of vertices */ 271 int g_space; /* (g) space allocated for vertices */ 272 int *g_indexbuf; /* (g) workspace for loop detection */ 273 uint32_t g_gen; /* (g) increment when re-ordering */ 274 }; 275 276 static struct sx lf_owner_graph_lock; 277 static struct owner_graph lf_owner_graph; 278 279 /* 280 * Initialise various structures and locks. 281 */ 282 static void 283 lf_init(void *dummy) 284 { 285 int i; 286 287 sx_init(&lf_lock_states_lock, "lock states lock"); 288 LIST_INIT(&lf_lock_states); 289 290 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 291 sx_init(&lf_lock_owners[i].lock, "lock owners lock"); 292 LIST_INIT(&lf_lock_owners[i].list); 293 } 294 295 sx_init(&lf_owner_graph_lock, "owner graph lock"); 296 graph_init(&lf_owner_graph); 297 } 298 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 299 300 /* 301 * Generate a hash value for a lock owner. 302 */ 303 static int 304 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags) 305 { 306 uint32_t h; 307 308 if (flags & F_REMOTE) { 309 h = HASHSTEP(0, fl->l_pid); 310 h = HASHSTEP(h, fl->l_sysid); 311 } else if (flags & F_FLOCK) { 312 h = ((uintptr_t) id) >> 7; 313 } else { 314 h = ((uintptr_t) vp) >> 7; 315 } 316 317 return (h % LOCK_OWNER_HASH_SIZE); 318 } 319 320 /* 321 * Return true if a lock owner matches the details passed to 322 * lf_advlock. 323 */ 324 static int 325 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 326 int flags) 327 { 328 if (flags & F_REMOTE) { 329 return lo->lo_pid == fl->l_pid 330 && lo->lo_sysid == fl->l_sysid; 331 } else { 332 return lo->lo_id == id; 333 } 334 } 335 336 static struct lockf_entry * 337 lf_alloc_lock(struct lock_owner *lo) 338 { 339 struct lockf_entry *lf; 340 341 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 342 343 #ifdef LOCKF_DEBUG 344 if (lockf_debug & 4) 345 printf("Allocated lock %p\n", lf); 346 #endif 347 if (lo) { 348 sx_xlock(&lf_lock_owners[lo->lo_hash].lock); 349 lo->lo_refs++; 350 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock); 351 lf->lf_owner = lo; 352 } 353 354 return (lf); 355 } 356 357 static int 358 lf_free_lock(struct lockf_entry *lock) 359 { 360 struct sx *chainlock; 361 362 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 363 if (--lock->lf_refs > 0) 364 return (0); 365 /* 366 * Adjust the lock_owner reference count and 367 * reclaim the entry if this is the last lock 368 * for that owner. 369 */ 370 struct lock_owner *lo = lock->lf_owner; 371 if (lo) { 372 KASSERT(LIST_EMPTY(&lock->lf_outedges), 373 ("freeing lock with dependencies")); 374 KASSERT(LIST_EMPTY(&lock->lf_inedges), 375 ("freeing lock with dependants")); 376 chainlock = &lf_lock_owners[lo->lo_hash].lock; 377 sx_xlock(chainlock); 378 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 379 lo->lo_refs--; 380 if (lo->lo_refs == 0) { 381 #ifdef LOCKF_DEBUG 382 if (lockf_debug & 1) 383 printf("lf_free_lock: freeing lock owner %p\n", 384 lo); 385 #endif 386 if (lo->lo_vertex) { 387 sx_xlock(&lf_owner_graph_lock); 388 graph_free_vertex(&lf_owner_graph, 389 lo->lo_vertex); 390 sx_xunlock(&lf_owner_graph_lock); 391 } 392 LIST_REMOVE(lo, lo_link); 393 free(lo, M_LOCKF); 394 #ifdef LOCKF_DEBUG 395 if (lockf_debug & 4) 396 printf("Freed lock owner %p\n", lo); 397 #endif 398 } 399 sx_unlock(chainlock); 400 } 401 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 402 vrele(lock->lf_vnode); 403 lock->lf_vnode = NULL; 404 } 405 #ifdef LOCKF_DEBUG 406 if (lockf_debug & 4) 407 printf("Freed lock %p\n", lock); 408 #endif 409 free(lock, M_LOCKF); 410 return (1); 411 } 412 413 /* 414 * Advisory record locking support 415 */ 416 int 417 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 418 u_quad_t size) 419 { 420 struct lockf *state; 421 struct flock *fl = ap->a_fl; 422 struct lockf_entry *lock; 423 struct vnode *vp = ap->a_vp; 424 caddr_t id = ap->a_id; 425 int flags = ap->a_flags; 426 int hash; 427 struct lock_owner *lo; 428 off_t start, end, oadd; 429 int error; 430 431 /* 432 * Handle the F_UNLKSYS case first - no need to mess about 433 * creating a lock owner for this one. 434 */ 435 if (ap->a_op == F_UNLCKSYS) { 436 lf_clearremotesys(fl->l_sysid); 437 return (0); 438 } 439 440 /* 441 * Convert the flock structure into a start and end. 442 */ 443 switch (fl->l_whence) { 444 445 case SEEK_SET: 446 case SEEK_CUR: 447 /* 448 * Caller is responsible for adding any necessary offset 449 * when SEEK_CUR is used. 450 */ 451 start = fl->l_start; 452 break; 453 454 case SEEK_END: 455 if (size > OFF_MAX || 456 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 457 return (EOVERFLOW); 458 start = size + fl->l_start; 459 break; 460 461 default: 462 return (EINVAL); 463 } 464 if (start < 0) 465 return (EINVAL); 466 if (fl->l_len < 0) { 467 if (start == 0) 468 return (EINVAL); 469 end = start - 1; 470 start += fl->l_len; 471 if (start < 0) 472 return (EINVAL); 473 } else if (fl->l_len == 0) { 474 end = OFF_MAX; 475 } else { 476 oadd = fl->l_len - 1; 477 if (oadd > OFF_MAX - start) 478 return (EOVERFLOW); 479 end = start + oadd; 480 } 481 482 retry_setlock: 483 484 /* 485 * Avoid the common case of unlocking when inode has no locks. 486 */ 487 if (ap->a_op != F_SETLK && (*statep) == NULL) { 488 VI_LOCK(vp); 489 if ((*statep) == NULL) { 490 fl->l_type = F_UNLCK; 491 VI_UNLOCK(vp); 492 return (0); 493 } 494 VI_UNLOCK(vp); 495 } 496 497 /* 498 * Map our arguments to an existing lock owner or create one 499 * if this is the first time we have seen this owner. 500 */ 501 hash = lf_hash_owner(id, vp, fl, flags); 502 sx_xlock(&lf_lock_owners[hash].lock); 503 LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link) 504 if (lf_owner_matches(lo, id, fl, flags)) 505 break; 506 if (!lo) { 507 /* 508 * We initialise the lock with a reference 509 * count which matches the new lockf_entry 510 * structure created below. 511 */ 512 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 513 M_WAITOK|M_ZERO); 514 #ifdef LOCKF_DEBUG 515 if (lockf_debug & 4) 516 printf("Allocated lock owner %p\n", lo); 517 #endif 518 519 lo->lo_refs = 1; 520 lo->lo_flags = flags; 521 lo->lo_id = id; 522 lo->lo_hash = hash; 523 if (flags & F_REMOTE) { 524 lo->lo_pid = fl->l_pid; 525 lo->lo_sysid = fl->l_sysid; 526 } else if (flags & F_FLOCK) { 527 lo->lo_pid = -1; 528 lo->lo_sysid = 0; 529 } else { 530 struct proc *p = (struct proc *) id; 531 lo->lo_pid = p->p_pid; 532 lo->lo_sysid = 0; 533 } 534 lo->lo_vertex = NULL; 535 536 #ifdef LOCKF_DEBUG 537 if (lockf_debug & 1) { 538 printf("lf_advlockasync: new lock owner %p ", lo); 539 lf_print_owner(lo); 540 printf("\n"); 541 } 542 #endif 543 544 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link); 545 } else { 546 /* 547 * We have seen this lock owner before, increase its 548 * reference count to account for the new lockf_entry 549 * structure we create below. 550 */ 551 lo->lo_refs++; 552 } 553 sx_xunlock(&lf_lock_owners[hash].lock); 554 555 /* 556 * Create the lockf structure. We initialise the lf_owner 557 * field here instead of in lf_alloc_lock() to avoid paying 558 * the lf_lock_owners_lock tax twice. 559 */ 560 lock = lf_alloc_lock(NULL); 561 lock->lf_refs = 1; 562 lock->lf_start = start; 563 lock->lf_end = end; 564 lock->lf_owner = lo; 565 lock->lf_vnode = vp; 566 if (flags & F_REMOTE) { 567 /* 568 * For remote locks, the caller may release its ref to 569 * the vnode at any time - we have to ref it here to 570 * prevent it from being recycled unexpectedly. 571 */ 572 vref(vp); 573 } 574 575 /* 576 * XXX The problem is that VTOI is ufs specific, so it will 577 * break LOCKF_DEBUG for all other FS's other than UFS because 578 * it casts the vnode->data ptr to struct inode *. 579 */ 580 /* lock->lf_inode = VTOI(ap->a_vp); */ 581 lock->lf_inode = (struct inode *)0; 582 lock->lf_type = fl->l_type; 583 LIST_INIT(&lock->lf_outedges); 584 LIST_INIT(&lock->lf_inedges); 585 lock->lf_async_task = ap->a_task; 586 lock->lf_flags = ap->a_flags; 587 588 /* 589 * Do the requested operation. First find our state structure 590 * and create a new one if necessary - the caller's *statep 591 * variable and the state's ls_threads count is protected by 592 * the vnode interlock. 593 */ 594 VI_LOCK(vp); 595 if (VN_IS_DOOMED(vp)) { 596 VI_UNLOCK(vp); 597 lf_free_lock(lock); 598 return (ENOENT); 599 } 600 601 /* 602 * Allocate a state structure if necessary. 603 */ 604 state = *statep; 605 if (state == NULL) { 606 struct lockf *ls; 607 608 VI_UNLOCK(vp); 609 610 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 611 sx_init(&ls->ls_lock, "ls_lock"); 612 LIST_INIT(&ls->ls_active); 613 LIST_INIT(&ls->ls_pending); 614 ls->ls_threads = 1; 615 616 sx_xlock(&lf_lock_states_lock); 617 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 618 sx_xunlock(&lf_lock_states_lock); 619 620 /* 621 * Cope if we lost a race with some other thread while 622 * trying to allocate memory. 623 */ 624 VI_LOCK(vp); 625 if (VN_IS_DOOMED(vp)) { 626 VI_UNLOCK(vp); 627 sx_xlock(&lf_lock_states_lock); 628 LIST_REMOVE(ls, ls_link); 629 sx_xunlock(&lf_lock_states_lock); 630 sx_destroy(&ls->ls_lock); 631 free(ls, M_LOCKF); 632 lf_free_lock(lock); 633 return (ENOENT); 634 } 635 if ((*statep) == NULL) { 636 state = *statep = ls; 637 VI_UNLOCK(vp); 638 } else { 639 state = *statep; 640 state->ls_threads++; 641 VI_UNLOCK(vp); 642 643 sx_xlock(&lf_lock_states_lock); 644 LIST_REMOVE(ls, ls_link); 645 sx_xunlock(&lf_lock_states_lock); 646 sx_destroy(&ls->ls_lock); 647 free(ls, M_LOCKF); 648 } 649 } else { 650 state->ls_threads++; 651 VI_UNLOCK(vp); 652 } 653 654 sx_xlock(&state->ls_lock); 655 /* 656 * Recheck the doomed vnode after state->ls_lock is 657 * locked. lf_purgelocks() requires that no new threads add 658 * pending locks when vnode is marked by VIRF_DOOMED flag. 659 */ 660 VI_LOCK(vp); 661 if (VN_IS_DOOMED(vp)) { 662 state->ls_threads--; 663 wakeup(state); 664 VI_UNLOCK(vp); 665 sx_xunlock(&state->ls_lock); 666 lf_free_lock(lock); 667 return (ENOENT); 668 } 669 VI_UNLOCK(vp); 670 671 switch (ap->a_op) { 672 case F_SETLK: 673 error = lf_setlock(state, lock, vp, ap->a_cookiep); 674 break; 675 676 case F_UNLCK: 677 error = lf_clearlock(state, lock); 678 lf_free_lock(lock); 679 break; 680 681 case F_GETLK: 682 error = lf_getlock(state, lock, fl); 683 lf_free_lock(lock); 684 break; 685 686 case F_CANCEL: 687 if (ap->a_cookiep) 688 error = lf_cancel(state, lock, *ap->a_cookiep); 689 else 690 error = EINVAL; 691 lf_free_lock(lock); 692 break; 693 694 default: 695 lf_free_lock(lock); 696 error = EINVAL; 697 break; 698 } 699 700 #ifdef DIAGNOSTIC 701 /* 702 * Check for some can't happen stuff. In this case, the active 703 * lock list becoming disordered or containing mutually 704 * blocking locks. We also check the pending list for locks 705 * which should be active (i.e. have no out-going edges). 706 */ 707 LIST_FOREACH(lock, &state->ls_active, lf_link) { 708 struct lockf_entry *lf; 709 if (LIST_NEXT(lock, lf_link)) 710 KASSERT((lock->lf_start 711 <= LIST_NEXT(lock, lf_link)->lf_start), 712 ("locks disordered")); 713 LIST_FOREACH(lf, &state->ls_active, lf_link) { 714 if (lock == lf) 715 break; 716 KASSERT(!lf_blocks(lock, lf), 717 ("two conflicting active locks")); 718 if (lock->lf_owner == lf->lf_owner) 719 KASSERT(!lf_overlaps(lock, lf), 720 ("two overlapping locks from same owner")); 721 } 722 } 723 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 724 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 725 ("pending lock which should be active")); 726 } 727 #endif 728 sx_xunlock(&state->ls_lock); 729 730 VI_LOCK(vp); 731 732 state->ls_threads--; 733 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 734 KASSERT(LIST_EMPTY(&state->ls_pending), 735 ("freeable state with pending locks")); 736 } else { 737 wakeup(state); 738 } 739 740 VI_UNLOCK(vp); 741 742 if (error == EDOOFUS) { 743 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 744 goto retry_setlock; 745 } 746 return (error); 747 } 748 749 int 750 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 751 { 752 struct vop_advlockasync_args a; 753 754 a.a_vp = ap->a_vp; 755 a.a_id = ap->a_id; 756 a.a_op = ap->a_op; 757 a.a_fl = ap->a_fl; 758 a.a_flags = ap->a_flags; 759 a.a_task = NULL; 760 a.a_cookiep = NULL; 761 762 return (lf_advlockasync(&a, statep, size)); 763 } 764 765 void 766 lf_purgelocks(struct vnode *vp, struct lockf **statep) 767 { 768 struct lockf *state; 769 struct lockf_entry *lock, *nlock; 770 771 /* 772 * For this to work correctly, the caller must ensure that no 773 * other threads enter the locking system for this vnode, 774 * e.g. by checking VIRF_DOOMED. We wake up any threads that are 775 * sleeping waiting for locks on this vnode and then free all 776 * the remaining locks. 777 */ 778 VI_LOCK(vp); 779 KASSERT(VN_IS_DOOMED(vp), 780 ("lf_purgelocks: vp %p has not vgone yet", vp)); 781 state = *statep; 782 if (state == NULL) { 783 VI_UNLOCK(vp); 784 return; 785 } 786 *statep = NULL; 787 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 788 KASSERT(LIST_EMPTY(&state->ls_pending), 789 ("freeing state with pending locks")); 790 VI_UNLOCK(vp); 791 goto out_free; 792 } 793 state->ls_threads++; 794 VI_UNLOCK(vp); 795 796 sx_xlock(&state->ls_lock); 797 sx_xlock(&lf_owner_graph_lock); 798 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 799 LIST_REMOVE(lock, lf_link); 800 lf_remove_outgoing(lock); 801 lf_remove_incoming(lock); 802 803 /* 804 * If its an async lock, we can just free it 805 * here, otherwise we let the sleeping thread 806 * free it. 807 */ 808 if (lock->lf_async_task) { 809 lf_free_lock(lock); 810 } else { 811 lock->lf_flags |= F_INTR; 812 wakeup(lock); 813 } 814 } 815 sx_xunlock(&lf_owner_graph_lock); 816 sx_xunlock(&state->ls_lock); 817 818 /* 819 * Wait for all other threads, sleeping and otherwise 820 * to leave. 821 */ 822 VI_LOCK(vp); 823 while (state->ls_threads > 1) 824 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 825 VI_UNLOCK(vp); 826 827 /* 828 * We can just free all the active locks since they 829 * will have no dependencies (we removed them all 830 * above). We don't need to bother locking since we 831 * are the last thread using this state structure. 832 */ 833 KASSERT(LIST_EMPTY(&state->ls_pending), 834 ("lock pending for %p", state)); 835 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 836 LIST_REMOVE(lock, lf_link); 837 lf_free_lock(lock); 838 } 839 out_free: 840 sx_xlock(&lf_lock_states_lock); 841 LIST_REMOVE(state, ls_link); 842 sx_xunlock(&lf_lock_states_lock); 843 sx_destroy(&state->ls_lock); 844 free(state, M_LOCKF); 845 } 846 847 /* 848 * Return non-zero if locks 'x' and 'y' overlap. 849 */ 850 static int 851 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 852 { 853 854 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 855 } 856 857 /* 858 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 859 */ 860 static int 861 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 862 { 863 864 return x->lf_owner != y->lf_owner 865 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 866 && lf_overlaps(x, y); 867 } 868 869 /* 870 * Allocate a lock edge from the free list 871 */ 872 static struct lockf_edge * 873 lf_alloc_edge(void) 874 { 875 876 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 877 } 878 879 /* 880 * Free a lock edge. 881 */ 882 static void 883 lf_free_edge(struct lockf_edge *e) 884 { 885 886 free(e, M_LOCKF); 887 } 888 889 /* 890 * Ensure that the lock's owner has a corresponding vertex in the 891 * owner graph. 892 */ 893 static void 894 lf_alloc_vertex(struct lockf_entry *lock) 895 { 896 struct owner_graph *g = &lf_owner_graph; 897 898 if (!lock->lf_owner->lo_vertex) 899 lock->lf_owner->lo_vertex = 900 graph_alloc_vertex(g, lock->lf_owner); 901 } 902 903 /* 904 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 905 * the new edge would cause a cycle in the owner graph. 906 */ 907 static int 908 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 909 { 910 struct owner_graph *g = &lf_owner_graph; 911 struct lockf_edge *e; 912 int error; 913 914 #ifdef DIAGNOSTIC 915 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 916 KASSERT(e->le_to != y, ("adding lock edge twice")); 917 #endif 918 919 /* 920 * Make sure the two owners have entries in the owner graph. 921 */ 922 lf_alloc_vertex(x); 923 lf_alloc_vertex(y); 924 925 error = graph_add_edge(g, x->lf_owner->lo_vertex, 926 y->lf_owner->lo_vertex); 927 if (error) 928 return (error); 929 930 e = lf_alloc_edge(); 931 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 932 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 933 e->le_from = x; 934 e->le_to = y; 935 936 return (0); 937 } 938 939 /* 940 * Remove an edge from the lock graph. 941 */ 942 static void 943 lf_remove_edge(struct lockf_edge *e) 944 { 945 struct owner_graph *g = &lf_owner_graph; 946 struct lockf_entry *x = e->le_from; 947 struct lockf_entry *y = e->le_to; 948 949 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 950 LIST_REMOVE(e, le_outlink); 951 LIST_REMOVE(e, le_inlink); 952 e->le_from = NULL; 953 e->le_to = NULL; 954 lf_free_edge(e); 955 } 956 957 /* 958 * Remove all out-going edges from lock x. 959 */ 960 static void 961 lf_remove_outgoing(struct lockf_entry *x) 962 { 963 struct lockf_edge *e; 964 965 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 966 lf_remove_edge(e); 967 } 968 } 969 970 /* 971 * Remove all in-coming edges from lock x. 972 */ 973 static void 974 lf_remove_incoming(struct lockf_entry *x) 975 { 976 struct lockf_edge *e; 977 978 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 979 lf_remove_edge(e); 980 } 981 } 982 983 /* 984 * Walk the list of locks for the file and create an out-going edge 985 * from lock to each blocking lock. 986 */ 987 static int 988 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 989 { 990 struct lockf_entry *overlap; 991 int error; 992 993 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 994 /* 995 * We may assume that the active list is sorted by 996 * lf_start. 997 */ 998 if (overlap->lf_start > lock->lf_end) 999 break; 1000 if (!lf_blocks(lock, overlap)) 1001 continue; 1002 1003 /* 1004 * We've found a blocking lock. Add the corresponding 1005 * edge to the graphs and see if it would cause a 1006 * deadlock. 1007 */ 1008 error = lf_add_edge(lock, overlap); 1009 1010 /* 1011 * The only error that lf_add_edge returns is EDEADLK. 1012 * Remove any edges we added and return the error. 1013 */ 1014 if (error) { 1015 lf_remove_outgoing(lock); 1016 return (error); 1017 } 1018 } 1019 1020 /* 1021 * We also need to add edges to sleeping locks that block 1022 * us. This ensures that lf_wakeup_lock cannot grant two 1023 * mutually blocking locks simultaneously and also enforces a 1024 * 'first come, first served' fairness model. Note that this 1025 * only happens if we are blocked by at least one active lock 1026 * due to the call to lf_getblock in lf_setlock below. 1027 */ 1028 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1029 if (!lf_blocks(lock, overlap)) 1030 continue; 1031 /* 1032 * We've found a blocking lock. Add the corresponding 1033 * edge to the graphs and see if it would cause a 1034 * deadlock. 1035 */ 1036 error = lf_add_edge(lock, overlap); 1037 1038 /* 1039 * The only error that lf_add_edge returns is EDEADLK. 1040 * Remove any edges we added and return the error. 1041 */ 1042 if (error) { 1043 lf_remove_outgoing(lock); 1044 return (error); 1045 } 1046 } 1047 1048 return (0); 1049 } 1050 1051 /* 1052 * Walk the list of pending locks for the file and create an in-coming 1053 * edge from lock to each blocking lock. 1054 */ 1055 static int 1056 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1057 { 1058 struct lockf_entry *overlap; 1059 int error; 1060 1061 sx_assert(&state->ls_lock, SX_XLOCKED); 1062 if (LIST_EMPTY(&state->ls_pending)) 1063 return (0); 1064 1065 error = 0; 1066 sx_xlock(&lf_owner_graph_lock); 1067 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1068 if (!lf_blocks(lock, overlap)) 1069 continue; 1070 1071 /* 1072 * We've found a blocking lock. Add the corresponding 1073 * edge to the graphs and see if it would cause a 1074 * deadlock. 1075 */ 1076 error = lf_add_edge(overlap, lock); 1077 1078 /* 1079 * The only error that lf_add_edge returns is EDEADLK. 1080 * Remove any edges we added and return the error. 1081 */ 1082 if (error) { 1083 lf_remove_incoming(lock); 1084 break; 1085 } 1086 } 1087 sx_xunlock(&lf_owner_graph_lock); 1088 return (error); 1089 } 1090 1091 /* 1092 * Insert lock into the active list, keeping list entries ordered by 1093 * increasing values of lf_start. 1094 */ 1095 static void 1096 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1097 { 1098 struct lockf_entry *lf, *lfprev; 1099 1100 if (LIST_EMPTY(&state->ls_active)) { 1101 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1102 return; 1103 } 1104 1105 lfprev = NULL; 1106 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1107 if (lf->lf_start > lock->lf_start) { 1108 LIST_INSERT_BEFORE(lf, lock, lf_link); 1109 return; 1110 } 1111 lfprev = lf; 1112 } 1113 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1114 } 1115 1116 /* 1117 * Wake up a sleeping lock and remove it from the pending list now 1118 * that all its dependencies have been resolved. The caller should 1119 * arrange for the lock to be added to the active list, adjusting any 1120 * existing locks for the same owner as needed. 1121 */ 1122 static void 1123 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1124 { 1125 1126 /* 1127 * Remove from ls_pending list and wake up the caller 1128 * or start the async notification, as appropriate. 1129 */ 1130 LIST_REMOVE(wakelock, lf_link); 1131 #ifdef LOCKF_DEBUG 1132 if (lockf_debug & 1) 1133 lf_print("lf_wakeup_lock: awakening", wakelock); 1134 #endif /* LOCKF_DEBUG */ 1135 if (wakelock->lf_async_task) { 1136 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1137 } else { 1138 wakeup(wakelock); 1139 } 1140 } 1141 1142 /* 1143 * Re-check all dependent locks and remove edges to locks that we no 1144 * longer block. If 'all' is non-zero, the lock has been removed and 1145 * we must remove all the dependencies, otherwise it has simply been 1146 * reduced but remains active. Any pending locks which have been been 1147 * unblocked are added to 'granted' 1148 */ 1149 static void 1150 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1151 struct lockf_entry_list *granted) 1152 { 1153 struct lockf_edge *e, *ne; 1154 struct lockf_entry *deplock; 1155 1156 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1157 deplock = e->le_from; 1158 if (all || !lf_blocks(lock, deplock)) { 1159 sx_xlock(&lf_owner_graph_lock); 1160 lf_remove_edge(e); 1161 sx_xunlock(&lf_owner_graph_lock); 1162 if (LIST_EMPTY(&deplock->lf_outedges)) { 1163 lf_wakeup_lock(state, deplock); 1164 LIST_INSERT_HEAD(granted, deplock, lf_link); 1165 } 1166 } 1167 } 1168 } 1169 1170 /* 1171 * Set the start of an existing active lock, updating dependencies and 1172 * adding any newly woken locks to 'granted'. 1173 */ 1174 static void 1175 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1176 struct lockf_entry_list *granted) 1177 { 1178 1179 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1180 lock->lf_start = new_start; 1181 LIST_REMOVE(lock, lf_link); 1182 lf_insert_lock(state, lock); 1183 lf_update_dependancies(state, lock, FALSE, granted); 1184 } 1185 1186 /* 1187 * Set the end of an existing active lock, updating dependencies and 1188 * adding any newly woken locks to 'granted'. 1189 */ 1190 static void 1191 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1192 struct lockf_entry_list *granted) 1193 { 1194 1195 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1196 lock->lf_end = new_end; 1197 lf_update_dependancies(state, lock, FALSE, granted); 1198 } 1199 1200 /* 1201 * Add a lock to the active list, updating or removing any current 1202 * locks owned by the same owner and processing any pending locks that 1203 * become unblocked as a result. This code is also used for unlock 1204 * since the logic for updating existing locks is identical. 1205 * 1206 * As a result of processing the new lock, we may unblock existing 1207 * pending locks as a result of downgrading/unlocking. We simply 1208 * activate the newly granted locks by looping. 1209 * 1210 * Since the new lock already has its dependencies set up, we always 1211 * add it to the list (unless its an unlock request). This may 1212 * fragment the lock list in some pathological cases but its probably 1213 * not a real problem. 1214 */ 1215 static void 1216 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1217 { 1218 struct lockf_entry *overlap, *lf; 1219 struct lockf_entry_list granted; 1220 int ovcase; 1221 1222 LIST_INIT(&granted); 1223 LIST_INSERT_HEAD(&granted, lock, lf_link); 1224 1225 while (!LIST_EMPTY(&granted)) { 1226 lock = LIST_FIRST(&granted); 1227 LIST_REMOVE(lock, lf_link); 1228 1229 /* 1230 * Skip over locks owned by other processes. Handle 1231 * any locks that overlap and are owned by ourselves. 1232 */ 1233 overlap = LIST_FIRST(&state->ls_active); 1234 for (;;) { 1235 ovcase = lf_findoverlap(&overlap, lock, SELF); 1236 1237 #ifdef LOCKF_DEBUG 1238 if (ovcase && (lockf_debug & 2)) { 1239 printf("lf_setlock: overlap %d", ovcase); 1240 lf_print("", overlap); 1241 } 1242 #endif 1243 /* 1244 * Six cases: 1245 * 0) no overlap 1246 * 1) overlap == lock 1247 * 2) overlap contains lock 1248 * 3) lock contains overlap 1249 * 4) overlap starts before lock 1250 * 5) overlap ends after lock 1251 */ 1252 switch (ovcase) { 1253 case 0: /* no overlap */ 1254 break; 1255 1256 case 1: /* overlap == lock */ 1257 /* 1258 * We have already setup the 1259 * dependants for the new lock, taking 1260 * into account a possible downgrade 1261 * or unlock. Remove the old lock. 1262 */ 1263 LIST_REMOVE(overlap, lf_link); 1264 lf_update_dependancies(state, overlap, TRUE, 1265 &granted); 1266 lf_free_lock(overlap); 1267 break; 1268 1269 case 2: /* overlap contains lock */ 1270 /* 1271 * Just split the existing lock. 1272 */ 1273 lf_split(state, overlap, lock, &granted); 1274 break; 1275 1276 case 3: /* lock contains overlap */ 1277 /* 1278 * Delete the overlap and advance to 1279 * the next entry in the list. 1280 */ 1281 lf = LIST_NEXT(overlap, lf_link); 1282 LIST_REMOVE(overlap, lf_link); 1283 lf_update_dependancies(state, overlap, TRUE, 1284 &granted); 1285 lf_free_lock(overlap); 1286 overlap = lf; 1287 continue; 1288 1289 case 4: /* overlap starts before lock */ 1290 /* 1291 * Just update the overlap end and 1292 * move on. 1293 */ 1294 lf_set_end(state, overlap, lock->lf_start - 1, 1295 &granted); 1296 overlap = LIST_NEXT(overlap, lf_link); 1297 continue; 1298 1299 case 5: /* overlap ends after lock */ 1300 /* 1301 * Change the start of overlap and 1302 * re-insert. 1303 */ 1304 lf_set_start(state, overlap, lock->lf_end + 1, 1305 &granted); 1306 break; 1307 } 1308 break; 1309 } 1310 #ifdef LOCKF_DEBUG 1311 if (lockf_debug & 1) { 1312 if (lock->lf_type != F_UNLCK) 1313 lf_print("lf_activate_lock: activated", lock); 1314 else 1315 lf_print("lf_activate_lock: unlocked", lock); 1316 lf_printlist("lf_activate_lock", lock); 1317 } 1318 #endif /* LOCKF_DEBUG */ 1319 if (lock->lf_type != F_UNLCK) 1320 lf_insert_lock(state, lock); 1321 } 1322 } 1323 1324 /* 1325 * Cancel a pending lock request, either as a result of a signal or a 1326 * cancel request for an async lock. 1327 */ 1328 static void 1329 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1330 { 1331 struct lockf_entry_list granted; 1332 1333 /* 1334 * Note it is theoretically possible that cancelling this lock 1335 * may allow some other pending lock to become 1336 * active. Consider this case: 1337 * 1338 * Owner Action Result Dependencies 1339 * 1340 * A: lock [0..0] succeeds 1341 * B: lock [2..2] succeeds 1342 * C: lock [1..2] blocked C->B 1343 * D: lock [0..1] blocked C->B,D->A,D->C 1344 * A: unlock [0..0] C->B,D->C 1345 * C: cancel [1..2] 1346 */ 1347 1348 LIST_REMOVE(lock, lf_link); 1349 1350 /* 1351 * Removing out-going edges is simple. 1352 */ 1353 sx_xlock(&lf_owner_graph_lock); 1354 lf_remove_outgoing(lock); 1355 sx_xunlock(&lf_owner_graph_lock); 1356 1357 /* 1358 * Removing in-coming edges may allow some other lock to 1359 * become active - we use lf_update_dependancies to figure 1360 * this out. 1361 */ 1362 LIST_INIT(&granted); 1363 lf_update_dependancies(state, lock, TRUE, &granted); 1364 lf_free_lock(lock); 1365 1366 /* 1367 * Feed any newly active locks to lf_activate_lock. 1368 */ 1369 while (!LIST_EMPTY(&granted)) { 1370 lock = LIST_FIRST(&granted); 1371 LIST_REMOVE(lock, lf_link); 1372 lf_activate_lock(state, lock); 1373 } 1374 } 1375 1376 /* 1377 * Set a byte-range lock. 1378 */ 1379 static int 1380 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1381 void **cookiep) 1382 { 1383 static char lockstr[] = "lockf"; 1384 int error, priority, stops_deferred; 1385 1386 #ifdef LOCKF_DEBUG 1387 if (lockf_debug & 1) 1388 lf_print("lf_setlock", lock); 1389 #endif /* LOCKF_DEBUG */ 1390 1391 /* 1392 * Set the priority 1393 */ 1394 priority = PLOCK; 1395 if (lock->lf_type == F_WRLCK) 1396 priority += 4; 1397 if (!(lock->lf_flags & F_NOINTR)) 1398 priority |= PCATCH; 1399 /* 1400 * Scan lock list for this file looking for locks that would block us. 1401 */ 1402 if (lf_getblock(state, lock)) { 1403 /* 1404 * Free the structure and return if nonblocking. 1405 */ 1406 if ((lock->lf_flags & F_WAIT) == 0 1407 && lock->lf_async_task == NULL) { 1408 lf_free_lock(lock); 1409 error = EAGAIN; 1410 goto out; 1411 } 1412 1413 /* 1414 * For flock type locks, we must first remove 1415 * any shared locks that we hold before we sleep 1416 * waiting for an exclusive lock. 1417 */ 1418 if ((lock->lf_flags & F_FLOCK) && 1419 lock->lf_type == F_WRLCK) { 1420 lock->lf_type = F_UNLCK; 1421 lf_activate_lock(state, lock); 1422 lock->lf_type = F_WRLCK; 1423 } 1424 1425 /* 1426 * We are blocked. Create edges to each blocking lock, 1427 * checking for deadlock using the owner graph. For 1428 * simplicity, we run deadlock detection for all 1429 * locks, posix and otherwise. 1430 */ 1431 sx_xlock(&lf_owner_graph_lock); 1432 error = lf_add_outgoing(state, lock); 1433 sx_xunlock(&lf_owner_graph_lock); 1434 1435 if (error) { 1436 #ifdef LOCKF_DEBUG 1437 if (lockf_debug & 1) 1438 lf_print("lf_setlock: deadlock", lock); 1439 #endif 1440 lf_free_lock(lock); 1441 goto out; 1442 } 1443 1444 /* 1445 * We have added edges to everything that blocks 1446 * us. Sleep until they all go away. 1447 */ 1448 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1449 #ifdef LOCKF_DEBUG 1450 if (lockf_debug & 1) { 1451 struct lockf_edge *e; 1452 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1453 lf_print("lf_setlock: blocking on", e->le_to); 1454 lf_printlist("lf_setlock", e->le_to); 1455 } 1456 } 1457 #endif /* LOCKF_DEBUG */ 1458 1459 if ((lock->lf_flags & F_WAIT) == 0) { 1460 /* 1461 * The caller requested async notification - 1462 * this callback happens when the blocking 1463 * lock is released, allowing the caller to 1464 * make another attempt to take the lock. 1465 */ 1466 *cookiep = (void *) lock; 1467 error = EINPROGRESS; 1468 goto out; 1469 } 1470 1471 lock->lf_refs++; 1472 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART); 1473 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1474 sigallowstop(stops_deferred); 1475 if (lf_free_lock(lock)) { 1476 error = EDOOFUS; 1477 goto out; 1478 } 1479 1480 /* 1481 * We may have been awakened by a signal and/or by a 1482 * debugger continuing us (in which cases we must 1483 * remove our lock graph edges) and/or by another 1484 * process releasing a lock (in which case our edges 1485 * have already been removed and we have been moved to 1486 * the active list). We may also have been woken by 1487 * lf_purgelocks which we report to the caller as 1488 * EINTR. In that case, lf_purgelocks will have 1489 * removed our lock graph edges. 1490 * 1491 * Note that it is possible to receive a signal after 1492 * we were successfully woken (and moved to the active 1493 * list) but before we resumed execution. In this 1494 * case, our lf_outedges list will be clear. We 1495 * pretend there was no error. 1496 * 1497 * Note also, if we have been sleeping long enough, we 1498 * may now have incoming edges from some newer lock 1499 * which is waiting behind us in the queue. 1500 */ 1501 if (lock->lf_flags & F_INTR) { 1502 error = EINTR; 1503 lf_free_lock(lock); 1504 goto out; 1505 } 1506 if (LIST_EMPTY(&lock->lf_outedges)) { 1507 error = 0; 1508 } else { 1509 lf_cancel_lock(state, lock); 1510 goto out; 1511 } 1512 #ifdef LOCKF_DEBUG 1513 if (lockf_debug & 1) { 1514 lf_print("lf_setlock: granted", lock); 1515 } 1516 #endif 1517 goto out; 1518 } 1519 /* 1520 * It looks like we are going to grant the lock. First add 1521 * edges from any currently pending lock that the new lock 1522 * would block. 1523 */ 1524 error = lf_add_incoming(state, lock); 1525 if (error) { 1526 #ifdef LOCKF_DEBUG 1527 if (lockf_debug & 1) 1528 lf_print("lf_setlock: deadlock", lock); 1529 #endif 1530 lf_free_lock(lock); 1531 goto out; 1532 } 1533 1534 /* 1535 * No blocks!! Add the lock. Note that we will 1536 * downgrade or upgrade any overlapping locks this 1537 * process already owns. 1538 */ 1539 lf_activate_lock(state, lock); 1540 error = 0; 1541 out: 1542 return (error); 1543 } 1544 1545 /* 1546 * Remove a byte-range lock on an inode. 1547 * 1548 * Generally, find the lock (or an overlap to that lock) 1549 * and remove it (or shrink it), then wakeup anyone we can. 1550 */ 1551 static int 1552 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1553 { 1554 struct lockf_entry *overlap; 1555 1556 overlap = LIST_FIRST(&state->ls_active); 1557 1558 if (overlap == NOLOCKF) 1559 return (0); 1560 #ifdef LOCKF_DEBUG 1561 if (unlock->lf_type != F_UNLCK) 1562 panic("lf_clearlock: bad type"); 1563 if (lockf_debug & 1) 1564 lf_print("lf_clearlock", unlock); 1565 #endif /* LOCKF_DEBUG */ 1566 1567 lf_activate_lock(state, unlock); 1568 1569 return (0); 1570 } 1571 1572 /* 1573 * Check whether there is a blocking lock, and if so return its 1574 * details in '*fl'. 1575 */ 1576 static int 1577 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1578 { 1579 struct lockf_entry *block; 1580 1581 #ifdef LOCKF_DEBUG 1582 if (lockf_debug & 1) 1583 lf_print("lf_getlock", lock); 1584 #endif /* LOCKF_DEBUG */ 1585 1586 if ((block = lf_getblock(state, lock))) { 1587 fl->l_type = block->lf_type; 1588 fl->l_whence = SEEK_SET; 1589 fl->l_start = block->lf_start; 1590 if (block->lf_end == OFF_MAX) 1591 fl->l_len = 0; 1592 else 1593 fl->l_len = block->lf_end - block->lf_start + 1; 1594 fl->l_pid = block->lf_owner->lo_pid; 1595 fl->l_sysid = block->lf_owner->lo_sysid; 1596 } else { 1597 fl->l_type = F_UNLCK; 1598 } 1599 return (0); 1600 } 1601 1602 /* 1603 * Cancel an async lock request. 1604 */ 1605 static int 1606 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1607 { 1608 struct lockf_entry *reallock; 1609 1610 /* 1611 * We need to match this request with an existing lock 1612 * request. 1613 */ 1614 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1615 if ((void *) reallock == cookie) { 1616 /* 1617 * Double-check that this lock looks right 1618 * (maybe use a rolling ID for the cancel 1619 * cookie instead?) 1620 */ 1621 if (!(reallock->lf_vnode == lock->lf_vnode 1622 && reallock->lf_start == lock->lf_start 1623 && reallock->lf_end == lock->lf_end)) { 1624 return (ENOENT); 1625 } 1626 1627 /* 1628 * Make sure this lock was async and then just 1629 * remove it from its wait lists. 1630 */ 1631 if (!reallock->lf_async_task) { 1632 return (ENOENT); 1633 } 1634 1635 /* 1636 * Note that since any other thread must take 1637 * state->ls_lock before it can possibly 1638 * trigger the async callback, we are safe 1639 * from a race with lf_wakeup_lock, i.e. we 1640 * can free the lock (actually our caller does 1641 * this). 1642 */ 1643 lf_cancel_lock(state, reallock); 1644 return (0); 1645 } 1646 } 1647 1648 /* 1649 * We didn't find a matching lock - not much we can do here. 1650 */ 1651 return (ENOENT); 1652 } 1653 1654 /* 1655 * Walk the list of locks for an inode and 1656 * return the first blocking lock. 1657 */ 1658 static struct lockf_entry * 1659 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1660 { 1661 struct lockf_entry *overlap; 1662 1663 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1664 /* 1665 * We may assume that the active list is sorted by 1666 * lf_start. 1667 */ 1668 if (overlap->lf_start > lock->lf_end) 1669 break; 1670 if (!lf_blocks(lock, overlap)) 1671 continue; 1672 return (overlap); 1673 } 1674 return (NOLOCKF); 1675 } 1676 1677 /* 1678 * Walk the list of locks for an inode to find an overlapping lock (if 1679 * any) and return a classification of that overlap. 1680 * 1681 * Arguments: 1682 * *overlap The place in the lock list to start looking 1683 * lock The lock which is being tested 1684 * type Pass 'SELF' to test only locks with the same 1685 * owner as lock, or 'OTHER' to test only locks 1686 * with a different owner 1687 * 1688 * Returns one of six values: 1689 * 0) no overlap 1690 * 1) overlap == lock 1691 * 2) overlap contains lock 1692 * 3) lock contains overlap 1693 * 4) overlap starts before lock 1694 * 5) overlap ends after lock 1695 * 1696 * If there is an overlapping lock, '*overlap' is set to point at the 1697 * overlapping lock. 1698 * 1699 * NOTE: this returns only the FIRST overlapping lock. There 1700 * may be more than one. 1701 */ 1702 static int 1703 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1704 { 1705 struct lockf_entry *lf; 1706 off_t start, end; 1707 int res; 1708 1709 if ((*overlap) == NOLOCKF) { 1710 return (0); 1711 } 1712 #ifdef LOCKF_DEBUG 1713 if (lockf_debug & 2) 1714 lf_print("lf_findoverlap: looking for overlap in", lock); 1715 #endif /* LOCKF_DEBUG */ 1716 start = lock->lf_start; 1717 end = lock->lf_end; 1718 res = 0; 1719 while (*overlap) { 1720 lf = *overlap; 1721 if (lf->lf_start > end) 1722 break; 1723 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1724 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1725 *overlap = LIST_NEXT(lf, lf_link); 1726 continue; 1727 } 1728 #ifdef LOCKF_DEBUG 1729 if (lockf_debug & 2) 1730 lf_print("\tchecking", lf); 1731 #endif /* LOCKF_DEBUG */ 1732 /* 1733 * OK, check for overlap 1734 * 1735 * Six cases: 1736 * 0) no overlap 1737 * 1) overlap == lock 1738 * 2) overlap contains lock 1739 * 3) lock contains overlap 1740 * 4) overlap starts before lock 1741 * 5) overlap ends after lock 1742 */ 1743 if (start > lf->lf_end) { 1744 /* Case 0 */ 1745 #ifdef LOCKF_DEBUG 1746 if (lockf_debug & 2) 1747 printf("no overlap\n"); 1748 #endif /* LOCKF_DEBUG */ 1749 *overlap = LIST_NEXT(lf, lf_link); 1750 continue; 1751 } 1752 if (lf->lf_start == start && lf->lf_end == end) { 1753 /* Case 1 */ 1754 #ifdef LOCKF_DEBUG 1755 if (lockf_debug & 2) 1756 printf("overlap == lock\n"); 1757 #endif /* LOCKF_DEBUG */ 1758 res = 1; 1759 break; 1760 } 1761 if (lf->lf_start <= start && lf->lf_end >= end) { 1762 /* Case 2 */ 1763 #ifdef LOCKF_DEBUG 1764 if (lockf_debug & 2) 1765 printf("overlap contains lock\n"); 1766 #endif /* LOCKF_DEBUG */ 1767 res = 2; 1768 break; 1769 } 1770 if (start <= lf->lf_start && end >= lf->lf_end) { 1771 /* Case 3 */ 1772 #ifdef LOCKF_DEBUG 1773 if (lockf_debug & 2) 1774 printf("lock contains overlap\n"); 1775 #endif /* LOCKF_DEBUG */ 1776 res = 3; 1777 break; 1778 } 1779 if (lf->lf_start < start && lf->lf_end >= start) { 1780 /* Case 4 */ 1781 #ifdef LOCKF_DEBUG 1782 if (lockf_debug & 2) 1783 printf("overlap starts before lock\n"); 1784 #endif /* LOCKF_DEBUG */ 1785 res = 4; 1786 break; 1787 } 1788 if (lf->lf_start > start && lf->lf_end > end) { 1789 /* Case 5 */ 1790 #ifdef LOCKF_DEBUG 1791 if (lockf_debug & 2) 1792 printf("overlap ends after lock\n"); 1793 #endif /* LOCKF_DEBUG */ 1794 res = 5; 1795 break; 1796 } 1797 panic("lf_findoverlap: default"); 1798 } 1799 return (res); 1800 } 1801 1802 /* 1803 * Split an the existing 'lock1', based on the extent of the lock 1804 * described by 'lock2'. The existing lock should cover 'lock2' 1805 * entirely. 1806 * 1807 * Any pending locks which have been been unblocked are added to 1808 * 'granted' 1809 */ 1810 static void 1811 lf_split(struct lockf *state, struct lockf_entry *lock1, 1812 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1813 { 1814 struct lockf_entry *splitlock; 1815 1816 #ifdef LOCKF_DEBUG 1817 if (lockf_debug & 2) { 1818 lf_print("lf_split", lock1); 1819 lf_print("splitting from", lock2); 1820 } 1821 #endif /* LOCKF_DEBUG */ 1822 /* 1823 * Check to see if we don't need to split at all. 1824 */ 1825 if (lock1->lf_start == lock2->lf_start) { 1826 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1827 return; 1828 } 1829 if (lock1->lf_end == lock2->lf_end) { 1830 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1831 return; 1832 } 1833 /* 1834 * Make a new lock consisting of the last part of 1835 * the encompassing lock. 1836 */ 1837 splitlock = lf_alloc_lock(lock1->lf_owner); 1838 memcpy(splitlock, lock1, sizeof *splitlock); 1839 splitlock->lf_refs = 1; 1840 if (splitlock->lf_flags & F_REMOTE) 1841 vref(splitlock->lf_vnode); 1842 1843 /* 1844 * This cannot cause a deadlock since any edges we would add 1845 * to splitlock already exist in lock1. We must be sure to add 1846 * necessary dependencies to splitlock before we reduce lock1 1847 * otherwise we may accidentally grant a pending lock that 1848 * was blocked by the tail end of lock1. 1849 */ 1850 splitlock->lf_start = lock2->lf_end + 1; 1851 LIST_INIT(&splitlock->lf_outedges); 1852 LIST_INIT(&splitlock->lf_inedges); 1853 lf_add_incoming(state, splitlock); 1854 1855 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1856 1857 /* 1858 * OK, now link it in 1859 */ 1860 lf_insert_lock(state, splitlock); 1861 } 1862 1863 struct lockdesc { 1864 STAILQ_ENTRY(lockdesc) link; 1865 struct vnode *vp; 1866 struct flock fl; 1867 }; 1868 STAILQ_HEAD(lockdesclist, lockdesc); 1869 1870 int 1871 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1872 { 1873 struct lockf *ls; 1874 struct lockf_entry *lf; 1875 struct lockdesc *ldesc; 1876 struct lockdesclist locks; 1877 int error; 1878 1879 /* 1880 * In order to keep the locking simple, we iterate over the 1881 * active lock lists to build a list of locks that need 1882 * releasing. We then call the iterator for each one in turn. 1883 * 1884 * We take an extra reference to the vnode for the duration to 1885 * make sure it doesn't go away before we are finished. 1886 */ 1887 STAILQ_INIT(&locks); 1888 sx_xlock(&lf_lock_states_lock); 1889 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1890 sx_xlock(&ls->ls_lock); 1891 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1892 if (lf->lf_owner->lo_sysid != sysid) 1893 continue; 1894 1895 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1896 M_WAITOK); 1897 ldesc->vp = lf->lf_vnode; 1898 vref(ldesc->vp); 1899 ldesc->fl.l_start = lf->lf_start; 1900 if (lf->lf_end == OFF_MAX) 1901 ldesc->fl.l_len = 0; 1902 else 1903 ldesc->fl.l_len = 1904 lf->lf_end - lf->lf_start + 1; 1905 ldesc->fl.l_whence = SEEK_SET; 1906 ldesc->fl.l_type = F_UNLCK; 1907 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1908 ldesc->fl.l_sysid = sysid; 1909 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1910 } 1911 sx_xunlock(&ls->ls_lock); 1912 } 1913 sx_xunlock(&lf_lock_states_lock); 1914 1915 /* 1916 * Call the iterator function for each lock in turn. If the 1917 * iterator returns an error code, just free the rest of the 1918 * lockdesc structures. 1919 */ 1920 error = 0; 1921 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1922 STAILQ_REMOVE_HEAD(&locks, link); 1923 if (!error) 1924 error = fn(ldesc->vp, &ldesc->fl, arg); 1925 vrele(ldesc->vp); 1926 free(ldesc, M_LOCKF); 1927 } 1928 1929 return (error); 1930 } 1931 1932 int 1933 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1934 { 1935 struct lockf *ls; 1936 struct lockf_entry *lf; 1937 struct lockdesc *ldesc; 1938 struct lockdesclist locks; 1939 int error; 1940 1941 /* 1942 * In order to keep the locking simple, we iterate over the 1943 * active lock lists to build a list of locks that need 1944 * releasing. We then call the iterator for each one in turn. 1945 * 1946 * We take an extra reference to the vnode for the duration to 1947 * make sure it doesn't go away before we are finished. 1948 */ 1949 STAILQ_INIT(&locks); 1950 VI_LOCK(vp); 1951 ls = vp->v_lockf; 1952 if (!ls) { 1953 VI_UNLOCK(vp); 1954 return (0); 1955 } 1956 ls->ls_threads++; 1957 VI_UNLOCK(vp); 1958 1959 sx_xlock(&ls->ls_lock); 1960 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1961 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1962 M_WAITOK); 1963 ldesc->vp = lf->lf_vnode; 1964 vref(ldesc->vp); 1965 ldesc->fl.l_start = lf->lf_start; 1966 if (lf->lf_end == OFF_MAX) 1967 ldesc->fl.l_len = 0; 1968 else 1969 ldesc->fl.l_len = 1970 lf->lf_end - lf->lf_start + 1; 1971 ldesc->fl.l_whence = SEEK_SET; 1972 ldesc->fl.l_type = F_UNLCK; 1973 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1974 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1975 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1976 } 1977 sx_xunlock(&ls->ls_lock); 1978 VI_LOCK(vp); 1979 ls->ls_threads--; 1980 wakeup(ls); 1981 VI_UNLOCK(vp); 1982 1983 /* 1984 * Call the iterator function for each lock in turn. If the 1985 * iterator returns an error code, just free the rest of the 1986 * lockdesc structures. 1987 */ 1988 error = 0; 1989 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1990 STAILQ_REMOVE_HEAD(&locks, link); 1991 if (!error) 1992 error = fn(ldesc->vp, &ldesc->fl, arg); 1993 vrele(ldesc->vp); 1994 free(ldesc, M_LOCKF); 1995 } 1996 1997 return (error); 1998 } 1999 2000 static int 2001 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 2002 { 2003 2004 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 2005 return (0); 2006 } 2007 2008 void 2009 lf_clearremotesys(int sysid) 2010 { 2011 2012 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2013 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2014 } 2015 2016 int 2017 lf_countlocks(int sysid) 2018 { 2019 int i; 2020 struct lock_owner *lo; 2021 int count; 2022 2023 count = 0; 2024 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 2025 sx_xlock(&lf_lock_owners[i].lock); 2026 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link) 2027 if (lo->lo_sysid == sysid) 2028 count += lo->lo_refs; 2029 sx_xunlock(&lf_lock_owners[i].lock); 2030 } 2031 2032 return (count); 2033 } 2034 2035 #ifdef LOCKF_DEBUG 2036 2037 /* 2038 * Return non-zero if y is reachable from x using a brute force 2039 * search. If reachable and path is non-null, return the route taken 2040 * in path. 2041 */ 2042 static int 2043 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2044 struct owner_vertex_list *path) 2045 { 2046 struct owner_edge *e; 2047 2048 if (x == y) { 2049 if (path) 2050 TAILQ_INSERT_HEAD(path, x, v_link); 2051 return 1; 2052 } 2053 2054 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2055 if (graph_reaches(e->e_to, y, path)) { 2056 if (path) 2057 TAILQ_INSERT_HEAD(path, x, v_link); 2058 return 1; 2059 } 2060 } 2061 return 0; 2062 } 2063 2064 /* 2065 * Perform consistency checks on the graph. Make sure the values of 2066 * v_order are correct. If checkorder is non-zero, check no vertex can 2067 * reach any other vertex with a smaller order. 2068 */ 2069 static void 2070 graph_check(struct owner_graph *g, int checkorder) 2071 { 2072 int i, j; 2073 2074 for (i = 0; i < g->g_size; i++) { 2075 if (!g->g_vertices[i]->v_owner) 2076 continue; 2077 KASSERT(g->g_vertices[i]->v_order == i, 2078 ("lock graph vertices disordered")); 2079 if (checkorder) { 2080 for (j = 0; j < i; j++) { 2081 if (!g->g_vertices[j]->v_owner) 2082 continue; 2083 KASSERT(!graph_reaches(g->g_vertices[i], 2084 g->g_vertices[j], NULL), 2085 ("lock graph vertices disordered")); 2086 } 2087 } 2088 } 2089 } 2090 2091 static void 2092 graph_print_vertices(struct owner_vertex_list *set) 2093 { 2094 struct owner_vertex *v; 2095 2096 printf("{ "); 2097 TAILQ_FOREACH(v, set, v_link) { 2098 printf("%d:", v->v_order); 2099 lf_print_owner(v->v_owner); 2100 if (TAILQ_NEXT(v, v_link)) 2101 printf(", "); 2102 } 2103 printf(" }\n"); 2104 } 2105 2106 #endif 2107 2108 /* 2109 * Calculate the sub-set of vertices v from the affected region [y..x] 2110 * where v is reachable from y. Return -1 if a loop was detected 2111 * (i.e. x is reachable from y, otherwise the number of vertices in 2112 * this subset. 2113 */ 2114 static int 2115 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2116 struct owner_vertex *y, struct owner_vertex_list *delta) 2117 { 2118 uint32_t gen; 2119 struct owner_vertex *v; 2120 struct owner_edge *e; 2121 int n; 2122 2123 /* 2124 * We start with a set containing just y. Then for each vertex 2125 * v in the set so far unprocessed, we add each vertex that v 2126 * has an out-edge to and that is within the affected region 2127 * [y..x]. If we see the vertex x on our travels, stop 2128 * immediately. 2129 */ 2130 TAILQ_INIT(delta); 2131 TAILQ_INSERT_TAIL(delta, y, v_link); 2132 v = y; 2133 n = 1; 2134 gen = g->g_gen; 2135 while (v) { 2136 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2137 if (e->e_to == x) 2138 return -1; 2139 if (e->e_to->v_order < x->v_order 2140 && e->e_to->v_gen != gen) { 2141 e->e_to->v_gen = gen; 2142 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2143 n++; 2144 } 2145 } 2146 v = TAILQ_NEXT(v, v_link); 2147 } 2148 2149 return (n); 2150 } 2151 2152 /* 2153 * Calculate the sub-set of vertices v from the affected region [y..x] 2154 * where v reaches x. Return the number of vertices in this subset. 2155 */ 2156 static int 2157 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2158 struct owner_vertex *y, struct owner_vertex_list *delta) 2159 { 2160 uint32_t gen; 2161 struct owner_vertex *v; 2162 struct owner_edge *e; 2163 int n; 2164 2165 /* 2166 * We start with a set containing just x. Then for each vertex 2167 * v in the set so far unprocessed, we add each vertex that v 2168 * has an in-edge from and that is within the affected region 2169 * [y..x]. 2170 */ 2171 TAILQ_INIT(delta); 2172 TAILQ_INSERT_TAIL(delta, x, v_link); 2173 v = x; 2174 n = 1; 2175 gen = g->g_gen; 2176 while (v) { 2177 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2178 if (e->e_from->v_order > y->v_order 2179 && e->e_from->v_gen != gen) { 2180 e->e_from->v_gen = gen; 2181 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2182 n++; 2183 } 2184 } 2185 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2186 } 2187 2188 return (n); 2189 } 2190 2191 static int 2192 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2193 { 2194 struct owner_vertex *v; 2195 int i, j; 2196 2197 TAILQ_FOREACH(v, set, v_link) { 2198 for (i = n; 2199 i > 0 && indices[i - 1] > v->v_order; i--) 2200 ; 2201 for (j = n - 1; j >= i; j--) 2202 indices[j + 1] = indices[j]; 2203 indices[i] = v->v_order; 2204 n++; 2205 } 2206 2207 return (n); 2208 } 2209 2210 static int 2211 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2212 struct owner_vertex_list *set) 2213 { 2214 struct owner_vertex *v, *vlowest; 2215 2216 while (!TAILQ_EMPTY(set)) { 2217 vlowest = NULL; 2218 TAILQ_FOREACH(v, set, v_link) { 2219 if (!vlowest || v->v_order < vlowest->v_order) 2220 vlowest = v; 2221 } 2222 TAILQ_REMOVE(set, vlowest, v_link); 2223 vlowest->v_order = indices[nextunused]; 2224 g->g_vertices[vlowest->v_order] = vlowest; 2225 nextunused++; 2226 } 2227 2228 return (nextunused); 2229 } 2230 2231 static int 2232 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2233 struct owner_vertex *y) 2234 { 2235 struct owner_edge *e; 2236 struct owner_vertex_list deltaF, deltaB; 2237 int nF, n, vi, i; 2238 int *indices; 2239 int nB __unused; 2240 2241 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2242 2243 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2244 if (e->e_to == y) { 2245 e->e_refs++; 2246 return (0); 2247 } 2248 } 2249 2250 #ifdef LOCKF_DEBUG 2251 if (lockf_debug & 8) { 2252 printf("adding edge %d:", x->v_order); 2253 lf_print_owner(x->v_owner); 2254 printf(" -> %d:", y->v_order); 2255 lf_print_owner(y->v_owner); 2256 printf("\n"); 2257 } 2258 #endif 2259 if (y->v_order < x->v_order) { 2260 /* 2261 * The new edge violates the order. First find the set 2262 * of affected vertices reachable from y (deltaF) and 2263 * the set of affect vertices affected that reach x 2264 * (deltaB), using the graph generation number to 2265 * detect whether we have visited a given vertex 2266 * already. We re-order the graph so that each vertex 2267 * in deltaB appears before each vertex in deltaF. 2268 * 2269 * If x is a member of deltaF, then the new edge would 2270 * create a cycle. Otherwise, we may assume that 2271 * deltaF and deltaB are disjoint. 2272 */ 2273 g->g_gen++; 2274 if (g->g_gen == 0) { 2275 /* 2276 * Generation wrap. 2277 */ 2278 for (vi = 0; vi < g->g_size; vi++) { 2279 g->g_vertices[vi]->v_gen = 0; 2280 } 2281 g->g_gen++; 2282 } 2283 nF = graph_delta_forward(g, x, y, &deltaF); 2284 if (nF < 0) { 2285 #ifdef LOCKF_DEBUG 2286 if (lockf_debug & 8) { 2287 struct owner_vertex_list path; 2288 printf("deadlock: "); 2289 TAILQ_INIT(&path); 2290 graph_reaches(y, x, &path); 2291 graph_print_vertices(&path); 2292 } 2293 #endif 2294 return (EDEADLK); 2295 } 2296 2297 #ifdef LOCKF_DEBUG 2298 if (lockf_debug & 8) { 2299 printf("re-ordering graph vertices\n"); 2300 printf("deltaF = "); 2301 graph_print_vertices(&deltaF); 2302 } 2303 #endif 2304 2305 nB = graph_delta_backward(g, x, y, &deltaB); 2306 2307 #ifdef LOCKF_DEBUG 2308 if (lockf_debug & 8) { 2309 printf("deltaB = "); 2310 graph_print_vertices(&deltaB); 2311 } 2312 #endif 2313 2314 /* 2315 * We first build a set of vertex indices (vertex 2316 * order values) that we may use, then we re-assign 2317 * orders first to those vertices in deltaB, then to 2318 * deltaF. Note that the contents of deltaF and deltaB 2319 * may be partially disordered - we perform an 2320 * insertion sort while building our index set. 2321 */ 2322 indices = g->g_indexbuf; 2323 n = graph_add_indices(indices, 0, &deltaF); 2324 graph_add_indices(indices, n, &deltaB); 2325 2326 /* 2327 * We must also be sure to maintain the relative 2328 * ordering of deltaF and deltaB when re-assigning 2329 * vertices. We do this by iteratively removing the 2330 * lowest ordered element from the set and assigning 2331 * it the next value from our new ordering. 2332 */ 2333 i = graph_assign_indices(g, indices, 0, &deltaB); 2334 graph_assign_indices(g, indices, i, &deltaF); 2335 2336 #ifdef LOCKF_DEBUG 2337 if (lockf_debug & 8) { 2338 struct owner_vertex_list set; 2339 TAILQ_INIT(&set); 2340 for (i = 0; i < nB + nF; i++) 2341 TAILQ_INSERT_TAIL(&set, 2342 g->g_vertices[indices[i]], v_link); 2343 printf("new ordering = "); 2344 graph_print_vertices(&set); 2345 } 2346 #endif 2347 } 2348 2349 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2350 2351 #ifdef LOCKF_DEBUG 2352 if (lockf_debug & 8) { 2353 graph_check(g, TRUE); 2354 } 2355 #endif 2356 2357 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2358 2359 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2360 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2361 e->e_refs = 1; 2362 e->e_from = x; 2363 e->e_to = y; 2364 2365 return (0); 2366 } 2367 2368 /* 2369 * Remove an edge x->y from the graph. 2370 */ 2371 static void 2372 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2373 struct owner_vertex *y) 2374 { 2375 struct owner_edge *e; 2376 2377 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2378 2379 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2380 if (e->e_to == y) 2381 break; 2382 } 2383 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2384 2385 e->e_refs--; 2386 if (e->e_refs == 0) { 2387 #ifdef LOCKF_DEBUG 2388 if (lockf_debug & 8) { 2389 printf("removing edge %d:", x->v_order); 2390 lf_print_owner(x->v_owner); 2391 printf(" -> %d:", y->v_order); 2392 lf_print_owner(y->v_owner); 2393 printf("\n"); 2394 } 2395 #endif 2396 LIST_REMOVE(e, e_outlink); 2397 LIST_REMOVE(e, e_inlink); 2398 free(e, M_LOCKF); 2399 } 2400 } 2401 2402 /* 2403 * Allocate a vertex from the free list. Return ENOMEM if there are 2404 * none. 2405 */ 2406 static struct owner_vertex * 2407 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2408 { 2409 struct owner_vertex *v; 2410 2411 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2412 2413 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2414 if (g->g_size == g->g_space) { 2415 g->g_vertices = realloc(g->g_vertices, 2416 2 * g->g_space * sizeof(struct owner_vertex *), 2417 M_LOCKF, M_WAITOK); 2418 free(g->g_indexbuf, M_LOCKF); 2419 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2420 M_LOCKF, M_WAITOK); 2421 g->g_space = 2 * g->g_space; 2422 } 2423 v->v_order = g->g_size; 2424 v->v_gen = g->g_gen; 2425 g->g_vertices[g->g_size] = v; 2426 g->g_size++; 2427 2428 LIST_INIT(&v->v_outedges); 2429 LIST_INIT(&v->v_inedges); 2430 v->v_owner = lo; 2431 2432 return (v); 2433 } 2434 2435 static void 2436 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2437 { 2438 struct owner_vertex *w; 2439 int i; 2440 2441 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2442 2443 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2444 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2445 2446 /* 2447 * Remove from the graph's array and close up the gap, 2448 * renumbering the other vertices. 2449 */ 2450 for (i = v->v_order + 1; i < g->g_size; i++) { 2451 w = g->g_vertices[i]; 2452 w->v_order--; 2453 g->g_vertices[i - 1] = w; 2454 } 2455 g->g_size--; 2456 2457 free(v, M_LOCKF); 2458 } 2459 2460 static struct owner_graph * 2461 graph_init(struct owner_graph *g) 2462 { 2463 2464 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2465 M_LOCKF, M_WAITOK); 2466 g->g_size = 0; 2467 g->g_space = 10; 2468 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2469 g->g_gen = 0; 2470 2471 return (g); 2472 } 2473 2474 #ifdef LOCKF_DEBUG 2475 /* 2476 * Print description of a lock owner 2477 */ 2478 static void 2479 lf_print_owner(struct lock_owner *lo) 2480 { 2481 2482 if (lo->lo_flags & F_REMOTE) { 2483 printf("remote pid %d, system %d", 2484 lo->lo_pid, lo->lo_sysid); 2485 } else if (lo->lo_flags & F_FLOCK) { 2486 printf("file %p", lo->lo_id); 2487 } else { 2488 printf("local pid %d", lo->lo_pid); 2489 } 2490 } 2491 2492 /* 2493 * Print out a lock. 2494 */ 2495 static void 2496 lf_print(char *tag, struct lockf_entry *lock) 2497 { 2498 2499 printf("%s: lock %p for ", tag, (void *)lock); 2500 lf_print_owner(lock->lf_owner); 2501 if (lock->lf_inode != (struct inode *)0) 2502 printf(" in ino %ju on dev <%s>,", 2503 (uintmax_t)lock->lf_inode->i_number, 2504 devtoname(ITODEV(lock->lf_inode))); 2505 printf(" %s, start %jd, end ", 2506 lock->lf_type == F_RDLCK ? "shared" : 2507 lock->lf_type == F_WRLCK ? "exclusive" : 2508 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2509 (intmax_t)lock->lf_start); 2510 if (lock->lf_end == OFF_MAX) 2511 printf("EOF"); 2512 else 2513 printf("%jd", (intmax_t)lock->lf_end); 2514 if (!LIST_EMPTY(&lock->lf_outedges)) 2515 printf(" block %p\n", 2516 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2517 else 2518 printf("\n"); 2519 } 2520 2521 static void 2522 lf_printlist(char *tag, struct lockf_entry *lock) 2523 { 2524 struct lockf_entry *lf, *blk; 2525 struct lockf_edge *e; 2526 2527 if (lock->lf_inode == (struct inode *)0) 2528 return; 2529 2530 printf("%s: Lock list for ino %ju on dev <%s>:\n", 2531 tag, (uintmax_t)lock->lf_inode->i_number, 2532 devtoname(ITODEV(lock->lf_inode))); 2533 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2534 printf("\tlock %p for ",(void *)lf); 2535 lf_print_owner(lock->lf_owner); 2536 printf(", %s, start %jd, end %jd", 2537 lf->lf_type == F_RDLCK ? "shared" : 2538 lf->lf_type == F_WRLCK ? "exclusive" : 2539 lf->lf_type == F_UNLCK ? "unlock" : 2540 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2541 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2542 blk = e->le_to; 2543 printf("\n\t\tlock request %p for ", (void *)blk); 2544 lf_print_owner(blk->lf_owner); 2545 printf(", %s, start %jd, end %jd", 2546 blk->lf_type == F_RDLCK ? "shared" : 2547 blk->lf_type == F_WRLCK ? "exclusive" : 2548 blk->lf_type == F_UNLCK ? "unlock" : 2549 "unknown", (intmax_t)blk->lf_start, 2550 (intmax_t)blk->lf_end); 2551 if (!LIST_EMPTY(&blk->lf_inedges)) 2552 panic("lf_printlist: bad list"); 2553 } 2554 printf("\n"); 2555 } 2556 } 2557 #endif /* LOCKF_DEBUG */ 2558