1 /*- 2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 3 * Authors: Doug Rabson <dfr@rabson.org> 4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 /*- 28 * Copyright (c) 1982, 1986, 1989, 1993 29 * The Regents of the University of California. All rights reserved. 30 * 31 * This code is derived from software contributed to Berkeley by 32 * Scooter Morris at Genentech Inc. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 4. Neither the name of the University nor the names of its contributors 43 * may be used to endorse or promote products derived from this software 44 * without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_debug_lockf.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/hash.h> 69 #include <sys/kernel.h> 70 #include <sys/limits.h> 71 #include <sys/lock.h> 72 #include <sys/mount.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sx.h> 76 #include <sys/unistd.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/fcntl.h> 80 #include <sys/lockf.h> 81 #include <sys/taskqueue.h> 82 83 #ifdef LOCKF_DEBUG 84 #include <sys/sysctl.h> 85 86 #include <ufs/ufs/quota.h> 87 #include <ufs/ufs/inode.h> 88 89 static int lockf_debug = 0; /* control debug output */ 90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 91 #endif 92 93 MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 94 95 struct owner_edge; 96 struct owner_vertex; 97 struct owner_vertex_list; 98 struct owner_graph; 99 100 #define NOLOCKF (struct lockf_entry *)0 101 #define SELF 0x1 102 #define OTHERS 0x2 103 static void lf_init(void *); 104 static int lf_hash_owner(caddr_t, struct flock *, int); 105 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 106 int); 107 static struct lockf_entry * 108 lf_alloc_lock(struct lock_owner *); 109 static void lf_free_lock(struct lockf_entry *); 110 static int lf_clearlock(struct lockf *, struct lockf_entry *); 111 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 112 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 113 static void lf_free_edge(struct lockf_edge *); 114 static struct lockf_edge * 115 lf_alloc_edge(void); 116 static void lf_alloc_vertex(struct lockf_entry *); 117 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 118 static void lf_remove_edge(struct lockf_edge *); 119 static void lf_remove_outgoing(struct lockf_entry *); 120 static void lf_remove_incoming(struct lockf_entry *); 121 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 122 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 123 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 124 int); 125 static struct lockf_entry * 126 lf_getblock(struct lockf *, struct lockf_entry *); 127 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 128 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 129 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 130 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 131 int all, struct lockf_entry_list *); 132 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 133 struct lockf_entry_list*); 134 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 135 struct lockf_entry_list*); 136 static int lf_setlock(struct lockf *, struct lockf_entry *, 137 struct vnode *, void **cookiep); 138 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 139 static void lf_split(struct lockf *, struct lockf_entry *, 140 struct lockf_entry *, struct lockf_entry_list *); 141 #ifdef LOCKF_DEBUG 142 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 143 struct owner_vertex_list *path); 144 static void graph_check(struct owner_graph *g, int checkorder); 145 static void graph_print_vertices(struct owner_vertex_list *set); 146 #endif 147 static int graph_delta_forward(struct owner_graph *g, 148 struct owner_vertex *x, struct owner_vertex *y, 149 struct owner_vertex_list *delta); 150 static int graph_delta_backward(struct owner_graph *g, 151 struct owner_vertex *x, struct owner_vertex *y, 152 struct owner_vertex_list *delta); 153 static int graph_add_indices(int *indices, int n, 154 struct owner_vertex_list *set); 155 static int graph_assign_indices(struct owner_graph *g, int *indices, 156 int nextunused, struct owner_vertex_list *set); 157 static int graph_add_edge(struct owner_graph *g, 158 struct owner_vertex *x, struct owner_vertex *y); 159 static void graph_remove_edge(struct owner_graph *g, 160 struct owner_vertex *x, struct owner_vertex *y); 161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 162 struct lock_owner *lo); 163 static void graph_free_vertex(struct owner_graph *g, 164 struct owner_vertex *v); 165 static struct owner_graph * graph_init(struct owner_graph *g); 166 #ifdef LOCKF_DEBUG 167 static void lf_print(char *, struct lockf_entry *); 168 static void lf_printlist(char *, struct lockf_entry *); 169 static void lf_print_owner(struct lock_owner *); 170 #endif 171 172 /* 173 * This structure is used to keep track of both local and remote lock 174 * owners. The lf_owner field of the struct lockf_entry points back at 175 * the lock owner structure. Each possible lock owner (local proc for 176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 177 * pair for remote locks) is represented by a unique instance of 178 * struct lock_owner. 179 * 180 * If a lock owner has a lock that blocks some other lock or a lock 181 * that is waiting for some other lock, it also has a vertex in the 182 * owner_graph below. 183 * 184 * Locks: 185 * (s) locked by state->ls_lock 186 * (S) locked by lf_lock_states_lock 187 * (l) locked by lf_lock_owners_lock 188 * (g) locked by lf_owner_graph_lock 189 * (c) const until freeing 190 */ 191 #define LOCK_OWNER_HASH_SIZE 256 192 193 struct lock_owner { 194 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 195 int lo_refs; /* (l) Number of locks referring to this */ 196 int lo_flags; /* (c) Flags passwd to lf_advlock */ 197 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 198 pid_t lo_pid; /* (c) Process Id of the lock owner */ 199 int lo_sysid; /* (c) System Id of the lock owner */ 200 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 201 }; 202 203 LIST_HEAD(lock_owner_list, lock_owner); 204 205 static struct sx lf_lock_states_lock; 206 static struct lockf_list lf_lock_states; /* (S) */ 207 static struct sx lf_lock_owners_lock; 208 static struct lock_owner_list lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */ 209 210 /* 211 * Structures for deadlock detection. 212 * 213 * We have two types of directed graph, the first is the set of locks, 214 * both active and pending on a vnode. Within this graph, active locks 215 * are terminal nodes in the graph (i.e. have no out-going 216 * edges). Pending locks have out-going edges to each blocking active 217 * lock that prevents the lock from being granted and also to each 218 * older pending lock that would block them if it was active. The 219 * graph for each vnode is naturally acyclic; new edges are only ever 220 * added to or from new nodes (either new pending locks which only add 221 * out-going edges or new active locks which only add in-coming edges) 222 * therefore they cannot create loops in the lock graph. 223 * 224 * The second graph is a global graph of lock owners. Each lock owner 225 * is a vertex in that graph and an edge is added to the graph 226 * whenever an edge is added to a vnode graph, with end points 227 * corresponding to owner of the new pending lock and the owner of the 228 * lock upon which it waits. In order to prevent deadlock, we only add 229 * an edge to this graph if the new edge would not create a cycle. 230 * 231 * The lock owner graph is topologically sorted, i.e. if a node has 232 * any outgoing edges, then it has an order strictly less than any 233 * node to which it has an outgoing edge. We preserve this ordering 234 * (and detect cycles) on edge insertion using Algorithm PK from the 235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 237 * No. 1.7) 238 */ 239 struct owner_vertex; 240 241 struct owner_edge { 242 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 243 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 244 int e_refs; /* (g) number of times added */ 245 struct owner_vertex *e_from; /* (c) out-going from here */ 246 struct owner_vertex *e_to; /* (c) in-coming to here */ 247 }; 248 LIST_HEAD(owner_edge_list, owner_edge); 249 250 struct owner_vertex { 251 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 252 uint32_t v_gen; /* (g) workspace for edge insertion */ 253 int v_order; /* (g) order of vertex in graph */ 254 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 255 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 256 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 257 }; 258 TAILQ_HEAD(owner_vertex_list, owner_vertex); 259 260 struct owner_graph { 261 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 262 int g_size; /* (g) number of vertices */ 263 int g_space; /* (g) space allocated for vertices */ 264 int *g_indexbuf; /* (g) workspace for loop detection */ 265 uint32_t g_gen; /* (g) increment when re-ordering */ 266 }; 267 268 static struct sx lf_owner_graph_lock; 269 static struct owner_graph lf_owner_graph; 270 271 /* 272 * Initialise various structures and locks. 273 */ 274 static void 275 lf_init(void *dummy) 276 { 277 int i; 278 279 sx_init(&lf_lock_states_lock, "lock states lock"); 280 LIST_INIT(&lf_lock_states); 281 282 sx_init(&lf_lock_owners_lock, "lock owners lock"); 283 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) 284 LIST_INIT(&lf_lock_owners[i]); 285 286 sx_init(&lf_owner_graph_lock, "owner graph lock"); 287 graph_init(&lf_owner_graph); 288 } 289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 290 291 /* 292 * Generate a hash value for a lock owner. 293 */ 294 static int 295 lf_hash_owner(caddr_t id, struct flock *fl, int flags) 296 { 297 uint32_t h; 298 299 if (flags & F_REMOTE) { 300 h = HASHSTEP(0, fl->l_pid); 301 h = HASHSTEP(h, fl->l_sysid); 302 } else if (flags & F_FLOCK) { 303 h = ((uintptr_t) id) >> 7; 304 } else { 305 struct proc *p = (struct proc *) id; 306 h = HASHSTEP(0, p->p_pid); 307 h = HASHSTEP(h, 0); 308 } 309 310 return (h % LOCK_OWNER_HASH_SIZE); 311 } 312 313 /* 314 * Return true if a lock owner matches the details passed to 315 * lf_advlock. 316 */ 317 static int 318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 319 int flags) 320 { 321 if (flags & F_REMOTE) { 322 return lo->lo_pid == fl->l_pid 323 && lo->lo_sysid == fl->l_sysid; 324 } else { 325 return lo->lo_id == id; 326 } 327 } 328 329 static struct lockf_entry * 330 lf_alloc_lock(struct lock_owner *lo) 331 { 332 struct lockf_entry *lf; 333 334 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 335 336 #ifdef LOCKF_DEBUG 337 if (lockf_debug & 4) 338 printf("Allocated lock %p\n", lf); 339 #endif 340 if (lo) { 341 sx_xlock(&lf_lock_owners_lock); 342 lo->lo_refs++; 343 sx_xunlock(&lf_lock_owners_lock); 344 lf->lf_owner = lo; 345 } 346 347 return (lf); 348 } 349 350 static void 351 lf_free_lock(struct lockf_entry *lock) 352 { 353 /* 354 * Adjust the lock_owner reference count and 355 * reclaim the entry if this is the last lock 356 * for that owner. 357 */ 358 struct lock_owner *lo = lock->lf_owner; 359 if (lo) { 360 KASSERT(LIST_EMPTY(&lock->lf_outedges), 361 ("freeing lock with dependancies")); 362 KASSERT(LIST_EMPTY(&lock->lf_inedges), 363 ("freeing lock with dependants")); 364 sx_xlock(&lf_lock_owners_lock); 365 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 366 lo->lo_refs--; 367 if (lo->lo_refs == 0) { 368 #ifdef LOCKF_DEBUG 369 if (lockf_debug & 1) 370 printf("lf_free_lock: freeing lock owner %p\n", 371 lo); 372 #endif 373 if (lo->lo_vertex) { 374 sx_xlock(&lf_owner_graph_lock); 375 graph_free_vertex(&lf_owner_graph, 376 lo->lo_vertex); 377 sx_xunlock(&lf_owner_graph_lock); 378 } 379 LIST_REMOVE(lo, lo_link); 380 free(lo, M_LOCKF); 381 #ifdef LOCKF_DEBUG 382 if (lockf_debug & 4) 383 printf("Freed lock owner %p\n", lo); 384 #endif 385 } 386 sx_unlock(&lf_lock_owners_lock); 387 } 388 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 389 vrele(lock->lf_vnode); 390 lock->lf_vnode = NULL; 391 } 392 #ifdef LOCKF_DEBUG 393 if (lockf_debug & 4) 394 printf("Freed lock %p\n", lock); 395 #endif 396 free(lock, M_LOCKF); 397 } 398 399 /* 400 * Advisory record locking support 401 */ 402 int 403 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 404 u_quad_t size) 405 { 406 struct lockf *state, *freestate = NULL; 407 struct flock *fl = ap->a_fl; 408 struct lockf_entry *lock; 409 struct vnode *vp = ap->a_vp; 410 caddr_t id = ap->a_id; 411 int flags = ap->a_flags; 412 int hash; 413 struct lock_owner *lo; 414 off_t start, end, oadd; 415 int error; 416 417 /* 418 * Handle the F_UNLKSYS case first - no need to mess about 419 * creating a lock owner for this one. 420 */ 421 if (ap->a_op == F_UNLCKSYS) { 422 lf_clearremotesys(fl->l_sysid); 423 return (0); 424 } 425 426 /* 427 * Convert the flock structure into a start and end. 428 */ 429 switch (fl->l_whence) { 430 431 case SEEK_SET: 432 case SEEK_CUR: 433 /* 434 * Caller is responsible for adding any necessary offset 435 * when SEEK_CUR is used. 436 */ 437 start = fl->l_start; 438 break; 439 440 case SEEK_END: 441 if (size > OFF_MAX || 442 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 443 return (EOVERFLOW); 444 start = size + fl->l_start; 445 break; 446 447 default: 448 return (EINVAL); 449 } 450 if (start < 0) 451 return (EINVAL); 452 if (fl->l_len < 0) { 453 if (start == 0) 454 return (EINVAL); 455 end = start - 1; 456 start += fl->l_len; 457 if (start < 0) 458 return (EINVAL); 459 } else if (fl->l_len == 0) { 460 end = OFF_MAX; 461 } else { 462 oadd = fl->l_len - 1; 463 if (oadd > OFF_MAX - start) 464 return (EOVERFLOW); 465 end = start + oadd; 466 } 467 /* 468 * Avoid the common case of unlocking when inode has no locks. 469 */ 470 if ((*statep) == NULL || LIST_EMPTY(&(*statep)->ls_active)) { 471 if (ap->a_op != F_SETLK) { 472 fl->l_type = F_UNLCK; 473 return (0); 474 } 475 } 476 477 /* 478 * Map our arguments to an existing lock owner or create one 479 * if this is the first time we have seen this owner. 480 */ 481 hash = lf_hash_owner(id, fl, flags); 482 sx_xlock(&lf_lock_owners_lock); 483 LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link) 484 if (lf_owner_matches(lo, id, fl, flags)) 485 break; 486 if (!lo) { 487 /* 488 * We initialise the lock with a reference 489 * count which matches the new lockf_entry 490 * structure created below. 491 */ 492 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 493 M_WAITOK|M_ZERO); 494 #ifdef LOCKF_DEBUG 495 if (lockf_debug & 4) 496 printf("Allocated lock owner %p\n", lo); 497 #endif 498 499 lo->lo_refs = 1; 500 lo->lo_flags = flags; 501 lo->lo_id = id; 502 if (flags & F_REMOTE) { 503 lo->lo_pid = fl->l_pid; 504 lo->lo_sysid = fl->l_sysid; 505 } else if (flags & F_FLOCK) { 506 lo->lo_pid = -1; 507 lo->lo_sysid = 0; 508 } else { 509 struct proc *p = (struct proc *) id; 510 lo->lo_pid = p->p_pid; 511 lo->lo_sysid = 0; 512 } 513 lo->lo_vertex = NULL; 514 515 #ifdef LOCKF_DEBUG 516 if (lockf_debug & 1) { 517 printf("lf_advlockasync: new lock owner %p ", lo); 518 lf_print_owner(lo); 519 printf("\n"); 520 } 521 #endif 522 523 LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link); 524 } else { 525 /* 526 * We have seen this lock owner before, increase its 527 * reference count to account for the new lockf_entry 528 * structure we create below. 529 */ 530 lo->lo_refs++; 531 } 532 sx_xunlock(&lf_lock_owners_lock); 533 534 /* 535 * Create the lockf structure. We initialise the lf_owner 536 * field here instead of in lf_alloc_lock() to avoid paying 537 * the lf_lock_owners_lock tax twice. 538 */ 539 lock = lf_alloc_lock(NULL); 540 lock->lf_start = start; 541 lock->lf_end = end; 542 lock->lf_owner = lo; 543 lock->lf_vnode = vp; 544 if (flags & F_REMOTE) { 545 /* 546 * For remote locks, the caller may release its ref to 547 * the vnode at any time - we have to ref it here to 548 * prevent it from being recycled unexpectedly. 549 */ 550 vref(vp); 551 } 552 553 /* 554 * XXX The problem is that VTOI is ufs specific, so it will 555 * break LOCKF_DEBUG for all other FS's other than UFS because 556 * it casts the vnode->data ptr to struct inode *. 557 */ 558 /* lock->lf_inode = VTOI(ap->a_vp); */ 559 lock->lf_inode = (struct inode *)0; 560 lock->lf_type = fl->l_type; 561 LIST_INIT(&lock->lf_outedges); 562 LIST_INIT(&lock->lf_inedges); 563 lock->lf_async_task = ap->a_task; 564 lock->lf_flags = ap->a_flags; 565 566 /* 567 * Do the requested operation. First find our state structure 568 * and create a new one if necessary - the caller's *statep 569 * variable and the state's ls_threads count is protected by 570 * the vnode interlock. 571 */ 572 VI_LOCK(vp); 573 if (vp->v_iflag & VI_DOOMED) { 574 VI_UNLOCK(vp); 575 lf_free_lock(lock); 576 return (ENOENT); 577 } 578 579 /* 580 * Allocate a state structure if necessary. 581 */ 582 state = *statep; 583 if (state == NULL) { 584 struct lockf *ls; 585 586 VI_UNLOCK(vp); 587 588 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 589 sx_init(&ls->ls_lock, "ls_lock"); 590 LIST_INIT(&ls->ls_active); 591 LIST_INIT(&ls->ls_pending); 592 ls->ls_threads = 1; 593 594 sx_xlock(&lf_lock_states_lock); 595 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 596 sx_xunlock(&lf_lock_states_lock); 597 598 /* 599 * Cope if we lost a race with some other thread while 600 * trying to allocate memory. 601 */ 602 VI_LOCK(vp); 603 if (vp->v_iflag & VI_DOOMED) { 604 VI_UNLOCK(vp); 605 sx_xlock(&lf_lock_states_lock); 606 LIST_REMOVE(ls, ls_link); 607 sx_xunlock(&lf_lock_states_lock); 608 sx_destroy(&ls->ls_lock); 609 free(ls, M_LOCKF); 610 lf_free_lock(lock); 611 return (ENOENT); 612 } 613 if ((*statep) == NULL) { 614 state = *statep = ls; 615 VI_UNLOCK(vp); 616 } else { 617 state = *statep; 618 state->ls_threads++; 619 VI_UNLOCK(vp); 620 621 sx_xlock(&lf_lock_states_lock); 622 LIST_REMOVE(ls, ls_link); 623 sx_xunlock(&lf_lock_states_lock); 624 sx_destroy(&ls->ls_lock); 625 free(ls, M_LOCKF); 626 } 627 } else { 628 state->ls_threads++; 629 VI_UNLOCK(vp); 630 } 631 632 sx_xlock(&state->ls_lock); 633 switch(ap->a_op) { 634 case F_SETLK: 635 error = lf_setlock(state, lock, vp, ap->a_cookiep); 636 break; 637 638 case F_UNLCK: 639 error = lf_clearlock(state, lock); 640 lf_free_lock(lock); 641 break; 642 643 case F_GETLK: 644 error = lf_getlock(state, lock, fl); 645 lf_free_lock(lock); 646 break; 647 648 case F_CANCEL: 649 if (ap->a_cookiep) 650 error = lf_cancel(state, lock, *ap->a_cookiep); 651 else 652 error = EINVAL; 653 lf_free_lock(lock); 654 break; 655 656 default: 657 lf_free_lock(lock); 658 error = EINVAL; 659 break; 660 } 661 662 #ifdef INVARIANTS 663 /* 664 * Check for some can't happen stuff. In this case, the active 665 * lock list becoming disordered or containing mutually 666 * blocking locks. We also check the pending list for locks 667 * which should be active (i.e. have no out-going edges). 668 */ 669 LIST_FOREACH(lock, &state->ls_active, lf_link) { 670 struct lockf_entry *lf; 671 if (LIST_NEXT(lock, lf_link)) 672 KASSERT((lock->lf_start 673 <= LIST_NEXT(lock, lf_link)->lf_start), 674 ("locks disordered")); 675 LIST_FOREACH(lf, &state->ls_active, lf_link) { 676 if (lock == lf) 677 break; 678 KASSERT(!lf_blocks(lock, lf), 679 ("two conflicting active locks")); 680 if (lock->lf_owner == lf->lf_owner) 681 KASSERT(!lf_overlaps(lock, lf), 682 ("two overlapping locks from same owner")); 683 } 684 } 685 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 686 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 687 ("pending lock which should be active")); 688 } 689 #endif 690 sx_xunlock(&state->ls_lock); 691 692 /* 693 * If we have removed the last active lock on the vnode and 694 * this is the last thread that was in-progress, we can free 695 * the state structure. We update the caller's pointer inside 696 * the vnode interlock but call free outside. 697 * 698 * XXX alternatively, keep the state structure around until 699 * the filesystem recycles - requires a callback from the 700 * filesystem. 701 */ 702 VI_LOCK(vp); 703 704 state->ls_threads--; 705 wakeup(state); 706 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 707 KASSERT(LIST_EMPTY(&state->ls_pending), 708 ("freeing state with pending locks")); 709 freestate = state; 710 *statep = NULL; 711 } 712 713 VI_UNLOCK(vp); 714 715 if (freestate) { 716 sx_xlock(&lf_lock_states_lock); 717 LIST_REMOVE(freestate, ls_link); 718 sx_xunlock(&lf_lock_states_lock); 719 sx_destroy(&freestate->ls_lock); 720 free(freestate, M_LOCKF); 721 } 722 return (error); 723 } 724 725 int 726 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 727 { 728 struct vop_advlockasync_args a; 729 730 a.a_vp = ap->a_vp; 731 a.a_id = ap->a_id; 732 a.a_op = ap->a_op; 733 a.a_fl = ap->a_fl; 734 a.a_flags = ap->a_flags; 735 a.a_task = NULL; 736 a.a_cookiep = NULL; 737 738 return (lf_advlockasync(&a, statep, size)); 739 } 740 741 void 742 lf_purgelocks(struct vnode *vp, struct lockf **statep) 743 { 744 struct lockf *state; 745 struct lockf_entry *lock, *nlock; 746 747 /* 748 * For this to work correctly, the caller must ensure that no 749 * other threads enter the locking system for this vnode, 750 * e.g. by checking VI_DOOMED. We wake up any threads that are 751 * sleeping waiting for locks on this vnode and then free all 752 * the remaining locks. 753 */ 754 VI_LOCK(vp); 755 state = *statep; 756 if (state) { 757 state->ls_threads++; 758 VI_UNLOCK(vp); 759 760 sx_xlock(&state->ls_lock); 761 sx_xlock(&lf_owner_graph_lock); 762 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 763 LIST_REMOVE(lock, lf_link); 764 lf_remove_outgoing(lock); 765 lf_remove_incoming(lock); 766 767 /* 768 * If its an async lock, we can just free it 769 * here, otherwise we let the sleeping thread 770 * free it. 771 */ 772 if (lock->lf_async_task) { 773 lf_free_lock(lock); 774 } else { 775 lock->lf_flags |= F_INTR; 776 wakeup(lock); 777 } 778 } 779 sx_xunlock(&lf_owner_graph_lock); 780 sx_xunlock(&state->ls_lock); 781 782 /* 783 * Wait for all other threads, sleeping and otherwise 784 * to leave. 785 */ 786 VI_LOCK(vp); 787 while (state->ls_threads > 1) 788 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 789 *statep = 0; 790 VI_UNLOCK(vp); 791 792 /* 793 * We can just free all the active locks since they 794 * will have no dependancies (we removed them all 795 * above). We don't need to bother locking since we 796 * are the last thread using this state structure. 797 */ 798 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 799 LIST_REMOVE(lock, lf_link); 800 lf_free_lock(lock); 801 } 802 sx_xlock(&lf_lock_states_lock); 803 LIST_REMOVE(state, ls_link); 804 sx_xunlock(&lf_lock_states_lock); 805 sx_destroy(&state->ls_lock); 806 free(state, M_LOCKF); 807 } else { 808 VI_UNLOCK(vp); 809 } 810 } 811 812 /* 813 * Return non-zero if locks 'x' and 'y' overlap. 814 */ 815 static int 816 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 817 { 818 819 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 820 } 821 822 /* 823 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 824 */ 825 static int 826 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 827 { 828 829 return x->lf_owner != y->lf_owner 830 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 831 && lf_overlaps(x, y); 832 } 833 834 /* 835 * Allocate a lock edge from the free list 836 */ 837 static struct lockf_edge * 838 lf_alloc_edge(void) 839 { 840 841 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 842 } 843 844 /* 845 * Free a lock edge. 846 */ 847 static void 848 lf_free_edge(struct lockf_edge *e) 849 { 850 851 free(e, M_LOCKF); 852 } 853 854 855 /* 856 * Ensure that the lock's owner has a corresponding vertex in the 857 * owner graph. 858 */ 859 static void 860 lf_alloc_vertex(struct lockf_entry *lock) 861 { 862 struct owner_graph *g = &lf_owner_graph; 863 864 if (!lock->lf_owner->lo_vertex) 865 lock->lf_owner->lo_vertex = 866 graph_alloc_vertex(g, lock->lf_owner); 867 } 868 869 /* 870 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 871 * the new edge would cause a cycle in the owner graph. 872 */ 873 static int 874 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 875 { 876 struct owner_graph *g = &lf_owner_graph; 877 struct lockf_edge *e; 878 int error; 879 880 #ifdef INVARIANTS 881 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 882 KASSERT(e->le_to != y, ("adding lock edge twice")); 883 #endif 884 885 /* 886 * Make sure the two owners have entries in the owner graph. 887 */ 888 lf_alloc_vertex(x); 889 lf_alloc_vertex(y); 890 891 error = graph_add_edge(g, x->lf_owner->lo_vertex, 892 y->lf_owner->lo_vertex); 893 if (error) 894 return (error); 895 896 e = lf_alloc_edge(); 897 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 898 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 899 e->le_from = x; 900 e->le_to = y; 901 902 return (0); 903 } 904 905 /* 906 * Remove an edge from the lock graph. 907 */ 908 static void 909 lf_remove_edge(struct lockf_edge *e) 910 { 911 struct owner_graph *g = &lf_owner_graph; 912 struct lockf_entry *x = e->le_from; 913 struct lockf_entry *y = e->le_to; 914 915 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 916 LIST_REMOVE(e, le_outlink); 917 LIST_REMOVE(e, le_inlink); 918 e->le_from = NULL; 919 e->le_to = NULL; 920 lf_free_edge(e); 921 } 922 923 /* 924 * Remove all out-going edges from lock x. 925 */ 926 static void 927 lf_remove_outgoing(struct lockf_entry *x) 928 { 929 struct lockf_edge *e; 930 931 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 932 lf_remove_edge(e); 933 } 934 } 935 936 /* 937 * Remove all in-coming edges from lock x. 938 */ 939 static void 940 lf_remove_incoming(struct lockf_entry *x) 941 { 942 struct lockf_edge *e; 943 944 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 945 lf_remove_edge(e); 946 } 947 } 948 949 /* 950 * Walk the list of locks for the file and create an out-going edge 951 * from lock to each blocking lock. 952 */ 953 static int 954 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 955 { 956 struct lockf_entry *overlap; 957 int error; 958 959 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 960 /* 961 * We may assume that the active list is sorted by 962 * lf_start. 963 */ 964 if (overlap->lf_start > lock->lf_end) 965 break; 966 if (!lf_blocks(lock, overlap)) 967 continue; 968 969 /* 970 * We've found a blocking lock. Add the corresponding 971 * edge to the graphs and see if it would cause a 972 * deadlock. 973 */ 974 error = lf_add_edge(lock, overlap); 975 976 /* 977 * The only error that lf_add_edge returns is EDEADLK. 978 * Remove any edges we added and return the error. 979 */ 980 if (error) { 981 lf_remove_outgoing(lock); 982 return (error); 983 } 984 } 985 986 /* 987 * We also need to add edges to sleeping locks that block 988 * us. This ensures that lf_wakeup_lock cannot grant two 989 * mutually blocking locks simultaneously and also enforces a 990 * 'first come, first served' fairness model. Note that this 991 * only happens if we are blocked by at least one active lock 992 * due to the call to lf_getblock in lf_setlock below. 993 */ 994 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 995 if (!lf_blocks(lock, overlap)) 996 continue; 997 /* 998 * We've found a blocking lock. Add the corresponding 999 * edge to the graphs and see if it would cause a 1000 * deadlock. 1001 */ 1002 error = lf_add_edge(lock, overlap); 1003 1004 /* 1005 * The only error that lf_add_edge returns is EDEADLK. 1006 * Remove any edges we added and return the error. 1007 */ 1008 if (error) { 1009 lf_remove_outgoing(lock); 1010 return (error); 1011 } 1012 } 1013 1014 return (0); 1015 } 1016 1017 /* 1018 * Walk the list of pending locks for the file and create an in-coming 1019 * edge from lock to each blocking lock. 1020 */ 1021 static int 1022 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1023 { 1024 struct lockf_entry *overlap; 1025 int error; 1026 1027 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1028 if (!lf_blocks(lock, overlap)) 1029 continue; 1030 1031 /* 1032 * We've found a blocking lock. Add the corresponding 1033 * edge to the graphs and see if it would cause a 1034 * deadlock. 1035 */ 1036 error = lf_add_edge(overlap, lock); 1037 1038 /* 1039 * The only error that lf_add_edge returns is EDEADLK. 1040 * Remove any edges we added and return the error. 1041 */ 1042 if (error) { 1043 lf_remove_incoming(lock); 1044 return (error); 1045 } 1046 } 1047 return (0); 1048 } 1049 1050 /* 1051 * Insert lock into the active list, keeping list entries ordered by 1052 * increasing values of lf_start. 1053 */ 1054 static void 1055 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1056 { 1057 struct lockf_entry *lf, *lfprev; 1058 1059 if (LIST_EMPTY(&state->ls_active)) { 1060 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1061 return; 1062 } 1063 1064 lfprev = NULL; 1065 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1066 if (lf->lf_start > lock->lf_start) { 1067 LIST_INSERT_BEFORE(lf, lock, lf_link); 1068 return; 1069 } 1070 lfprev = lf; 1071 } 1072 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1073 } 1074 1075 /* 1076 * Wake up a sleeping lock and remove it from the pending list now 1077 * that all its dependancies have been resolved. The caller should 1078 * arrange for the lock to be added to the active list, adjusting any 1079 * existing locks for the same owner as needed. 1080 */ 1081 static void 1082 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1083 { 1084 1085 /* 1086 * Remove from ls_pending list and wake up the caller 1087 * or start the async notification, as appropriate. 1088 */ 1089 LIST_REMOVE(wakelock, lf_link); 1090 #ifdef LOCKF_DEBUG 1091 if (lockf_debug & 1) 1092 lf_print("lf_wakeup_lock: awakening", wakelock); 1093 #endif /* LOCKF_DEBUG */ 1094 if (wakelock->lf_async_task) { 1095 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1096 } else { 1097 wakeup(wakelock); 1098 } 1099 } 1100 1101 /* 1102 * Re-check all dependant locks and remove edges to locks that we no 1103 * longer block. If 'all' is non-zero, the lock has been removed and 1104 * we must remove all the dependancies, otherwise it has simply been 1105 * reduced but remains active. Any pending locks which have been been 1106 * unblocked are added to 'granted' 1107 */ 1108 static void 1109 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1110 struct lockf_entry_list *granted) 1111 { 1112 struct lockf_edge *e, *ne; 1113 struct lockf_entry *deplock; 1114 1115 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1116 deplock = e->le_from; 1117 if (all || !lf_blocks(lock, deplock)) { 1118 sx_xlock(&lf_owner_graph_lock); 1119 lf_remove_edge(e); 1120 sx_xunlock(&lf_owner_graph_lock); 1121 if (LIST_EMPTY(&deplock->lf_outedges)) { 1122 lf_wakeup_lock(state, deplock); 1123 LIST_INSERT_HEAD(granted, deplock, lf_link); 1124 } 1125 } 1126 } 1127 } 1128 1129 /* 1130 * Set the start of an existing active lock, updating dependancies and 1131 * adding any newly woken locks to 'granted'. 1132 */ 1133 static void 1134 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1135 struct lockf_entry_list *granted) 1136 { 1137 1138 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1139 lock->lf_start = new_start; 1140 LIST_REMOVE(lock, lf_link); 1141 lf_insert_lock(state, lock); 1142 lf_update_dependancies(state, lock, FALSE, granted); 1143 } 1144 1145 /* 1146 * Set the end of an existing active lock, updating dependancies and 1147 * adding any newly woken locks to 'granted'. 1148 */ 1149 static void 1150 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1151 struct lockf_entry_list *granted) 1152 { 1153 1154 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1155 lock->lf_end = new_end; 1156 lf_update_dependancies(state, lock, FALSE, granted); 1157 } 1158 1159 /* 1160 * Add a lock to the active list, updating or removing any current 1161 * locks owned by the same owner and processing any pending locks that 1162 * become unblocked as a result. This code is also used for unlock 1163 * since the logic for updating existing locks is identical. 1164 * 1165 * As a result of processing the new lock, we may unblock existing 1166 * pending locks as a result of downgrading/unlocking. We simply 1167 * activate the newly granted locks by looping. 1168 * 1169 * Since the new lock already has its dependancies set up, we always 1170 * add it to the list (unless its an unlock request). This may 1171 * fragment the lock list in some pathological cases but its probably 1172 * not a real problem. 1173 */ 1174 static void 1175 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1176 { 1177 struct lockf_entry *overlap, *lf; 1178 struct lockf_entry_list granted; 1179 int ovcase; 1180 1181 LIST_INIT(&granted); 1182 LIST_INSERT_HEAD(&granted, lock, lf_link); 1183 1184 while (!LIST_EMPTY(&granted)) { 1185 lock = LIST_FIRST(&granted); 1186 LIST_REMOVE(lock, lf_link); 1187 1188 /* 1189 * Skip over locks owned by other processes. Handle 1190 * any locks that overlap and are owned by ourselves. 1191 */ 1192 overlap = LIST_FIRST(&state->ls_active); 1193 for (;;) { 1194 ovcase = lf_findoverlap(&overlap, lock, SELF); 1195 1196 #ifdef LOCKF_DEBUG 1197 if (ovcase && (lockf_debug & 2)) { 1198 printf("lf_setlock: overlap %d", ovcase); 1199 lf_print("", overlap); 1200 } 1201 #endif 1202 /* 1203 * Six cases: 1204 * 0) no overlap 1205 * 1) overlap == lock 1206 * 2) overlap contains lock 1207 * 3) lock contains overlap 1208 * 4) overlap starts before lock 1209 * 5) overlap ends after lock 1210 */ 1211 switch (ovcase) { 1212 case 0: /* no overlap */ 1213 break; 1214 1215 case 1: /* overlap == lock */ 1216 /* 1217 * We have already setup the 1218 * dependants for the new lock, taking 1219 * into account a possible downgrade 1220 * or unlock. Remove the old lock. 1221 */ 1222 LIST_REMOVE(overlap, lf_link); 1223 lf_update_dependancies(state, overlap, TRUE, 1224 &granted); 1225 lf_free_lock(overlap); 1226 break; 1227 1228 case 2: /* overlap contains lock */ 1229 /* 1230 * Just split the existing lock. 1231 */ 1232 lf_split(state, overlap, lock, &granted); 1233 break; 1234 1235 case 3: /* lock contains overlap */ 1236 /* 1237 * Delete the overlap and advance to 1238 * the next entry in the list. 1239 */ 1240 lf = LIST_NEXT(overlap, lf_link); 1241 LIST_REMOVE(overlap, lf_link); 1242 lf_update_dependancies(state, overlap, TRUE, 1243 &granted); 1244 lf_free_lock(overlap); 1245 overlap = lf; 1246 continue; 1247 1248 case 4: /* overlap starts before lock */ 1249 /* 1250 * Just update the overlap end and 1251 * move on. 1252 */ 1253 lf_set_end(state, overlap, lock->lf_start - 1, 1254 &granted); 1255 overlap = LIST_NEXT(overlap, lf_link); 1256 continue; 1257 1258 case 5: /* overlap ends after lock */ 1259 /* 1260 * Change the start of overlap and 1261 * re-insert. 1262 */ 1263 lf_set_start(state, overlap, lock->lf_end + 1, 1264 &granted); 1265 break; 1266 } 1267 break; 1268 } 1269 #ifdef LOCKF_DEBUG 1270 if (lockf_debug & 1) { 1271 if (lock->lf_type != F_UNLCK) 1272 lf_print("lf_activate_lock: activated", lock); 1273 else 1274 lf_print("lf_activate_lock: unlocked", lock); 1275 lf_printlist("lf_activate_lock", lock); 1276 } 1277 #endif /* LOCKF_DEBUG */ 1278 if (lock->lf_type != F_UNLCK) 1279 lf_insert_lock(state, lock); 1280 } 1281 } 1282 1283 /* 1284 * Cancel a pending lock request, either as a result of a signal or a 1285 * cancel request for an async lock. 1286 */ 1287 static void 1288 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1289 { 1290 struct lockf_entry_list granted; 1291 1292 /* 1293 * Note it is theoretically possible that cancelling this lock 1294 * may allow some other pending lock to become 1295 * active. Consider this case: 1296 * 1297 * Owner Action Result Dependancies 1298 * 1299 * A: lock [0..0] succeeds 1300 * B: lock [2..2] succeeds 1301 * C: lock [1..2] blocked C->B 1302 * D: lock [0..1] blocked C->B,D->A,D->C 1303 * A: unlock [0..0] C->B,D->C 1304 * C: cancel [1..2] 1305 */ 1306 1307 LIST_REMOVE(lock, lf_link); 1308 1309 /* 1310 * Removing out-going edges is simple. 1311 */ 1312 sx_xlock(&lf_owner_graph_lock); 1313 lf_remove_outgoing(lock); 1314 sx_xunlock(&lf_owner_graph_lock); 1315 1316 /* 1317 * Removing in-coming edges may allow some other lock to 1318 * become active - we use lf_update_dependancies to figure 1319 * this out. 1320 */ 1321 LIST_INIT(&granted); 1322 lf_update_dependancies(state, lock, TRUE, &granted); 1323 lf_free_lock(lock); 1324 1325 /* 1326 * Feed any newly active locks to lf_activate_lock. 1327 */ 1328 while (!LIST_EMPTY(&granted)) { 1329 lock = LIST_FIRST(&granted); 1330 LIST_REMOVE(lock, lf_link); 1331 lf_activate_lock(state, lock); 1332 } 1333 } 1334 1335 /* 1336 * Set a byte-range lock. 1337 */ 1338 static int 1339 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1340 void **cookiep) 1341 { 1342 struct lockf_entry *block; 1343 static char lockstr[] = "lockf"; 1344 int priority, error; 1345 1346 #ifdef LOCKF_DEBUG 1347 if (lockf_debug & 1) 1348 lf_print("lf_setlock", lock); 1349 #endif /* LOCKF_DEBUG */ 1350 1351 /* 1352 * Set the priority 1353 */ 1354 priority = PLOCK; 1355 if (lock->lf_type == F_WRLCK) 1356 priority += 4; 1357 if (!(lock->lf_flags & F_NOINTR)) 1358 priority |= PCATCH; 1359 /* 1360 * Scan lock list for this file looking for locks that would block us. 1361 */ 1362 while ((block = lf_getblock(state, lock))) { 1363 /* 1364 * Free the structure and return if nonblocking. 1365 */ 1366 if ((lock->lf_flags & F_WAIT) == 0 1367 && lock->lf_async_task == NULL) { 1368 lf_free_lock(lock); 1369 error = EAGAIN; 1370 goto out; 1371 } 1372 1373 /* 1374 * For flock type locks, we must first remove 1375 * any shared locks that we hold before we sleep 1376 * waiting for an exclusive lock. 1377 */ 1378 if ((lock->lf_flags & F_FLOCK) && 1379 lock->lf_type == F_WRLCK) { 1380 lock->lf_type = F_UNLCK; 1381 lf_activate_lock(state, lock); 1382 lock->lf_type = F_WRLCK; 1383 } 1384 1385 /* 1386 * We are blocked. Create edges to each blocking lock, 1387 * checking for deadlock using the owner graph. For 1388 * simplicity, we run deadlock detection for all 1389 * locks, posix and otherwise. 1390 */ 1391 sx_xlock(&lf_owner_graph_lock); 1392 error = lf_add_outgoing(state, lock); 1393 sx_xunlock(&lf_owner_graph_lock); 1394 1395 if (error) { 1396 #ifdef LOCKF_DEBUG 1397 if (lockf_debug & 1) 1398 lf_print("lf_setlock: deadlock", lock); 1399 #endif 1400 lf_free_lock(lock); 1401 goto out; 1402 } 1403 1404 /* 1405 * We have added edges to everything that blocks 1406 * us. Sleep until they all go away. 1407 */ 1408 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1409 #ifdef LOCKF_DEBUG 1410 if (lockf_debug & 1) { 1411 struct lockf_edge *e; 1412 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1413 lf_print("lf_setlock: blocking on", e->le_to); 1414 lf_printlist("lf_setlock", e->le_to); 1415 } 1416 } 1417 #endif /* LOCKF_DEBUG */ 1418 1419 if ((lock->lf_flags & F_WAIT) == 0) { 1420 /* 1421 * The caller requested async notification - 1422 * this callback happens when the blocking 1423 * lock is released, allowing the caller to 1424 * make another attempt to take the lock. 1425 */ 1426 *cookiep = (void *) lock; 1427 error = EINPROGRESS; 1428 goto out; 1429 } 1430 1431 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1432 /* 1433 * We may have been awakened by a signal and/or by a 1434 * debugger continuing us (in which cases we must 1435 * remove our lock graph edges) and/or by another 1436 * process releasing a lock (in which case our edges 1437 * have already been removed and we have been moved to 1438 * the active list). We may also have been woken by 1439 * lf_purgelocks which we report to the caller as 1440 * EINTR. In that case, lf_purgelocks will have 1441 * removed our lock graph edges. 1442 * 1443 * Note that it is possible to receive a signal after 1444 * we were successfully woken (and moved to the active 1445 * list) but before we resumed execution. In this 1446 * case, our lf_outedges list will be clear. We 1447 * pretend there was no error. 1448 * 1449 * Note also, if we have been sleeping long enough, we 1450 * may now have incoming edges from some newer lock 1451 * which is waiting behind us in the queue. 1452 */ 1453 if (lock->lf_flags & F_INTR) { 1454 error = EINTR; 1455 lf_free_lock(lock); 1456 goto out; 1457 } 1458 if (LIST_EMPTY(&lock->lf_outedges)) { 1459 error = 0; 1460 } else { 1461 lf_cancel_lock(state, lock); 1462 goto out; 1463 } 1464 #ifdef LOCKF_DEBUG 1465 if (lockf_debug & 1) { 1466 lf_print("lf_setlock: granted", lock); 1467 } 1468 #endif 1469 goto out; 1470 } 1471 /* 1472 * It looks like we are going to grant the lock. First add 1473 * edges from any currently pending lock that the new lock 1474 * would block. 1475 */ 1476 sx_xlock(&lf_owner_graph_lock); 1477 error = lf_add_incoming(state, lock); 1478 sx_xunlock(&lf_owner_graph_lock); 1479 if (error) { 1480 #ifdef LOCKF_DEBUG 1481 if (lockf_debug & 1) 1482 lf_print("lf_setlock: deadlock", lock); 1483 #endif 1484 lf_free_lock(lock); 1485 goto out; 1486 } 1487 1488 /* 1489 * No blocks!! Add the lock. Note that we will 1490 * downgrade or upgrade any overlapping locks this 1491 * process already owns. 1492 */ 1493 lf_activate_lock(state, lock); 1494 error = 0; 1495 out: 1496 return (error); 1497 } 1498 1499 /* 1500 * Remove a byte-range lock on an inode. 1501 * 1502 * Generally, find the lock (or an overlap to that lock) 1503 * and remove it (or shrink it), then wakeup anyone we can. 1504 */ 1505 static int 1506 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1507 { 1508 struct lockf_entry *overlap; 1509 1510 overlap = LIST_FIRST(&state->ls_active); 1511 1512 if (overlap == NOLOCKF) 1513 return (0); 1514 #ifdef LOCKF_DEBUG 1515 if (unlock->lf_type != F_UNLCK) 1516 panic("lf_clearlock: bad type"); 1517 if (lockf_debug & 1) 1518 lf_print("lf_clearlock", unlock); 1519 #endif /* LOCKF_DEBUG */ 1520 1521 lf_activate_lock(state, unlock); 1522 1523 return (0); 1524 } 1525 1526 /* 1527 * Check whether there is a blocking lock, and if so return its 1528 * details in '*fl'. 1529 */ 1530 static int 1531 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1532 { 1533 struct lockf_entry *block; 1534 1535 #ifdef LOCKF_DEBUG 1536 if (lockf_debug & 1) 1537 lf_print("lf_getlock", lock); 1538 #endif /* LOCKF_DEBUG */ 1539 1540 if ((block = lf_getblock(state, lock))) { 1541 fl->l_type = block->lf_type; 1542 fl->l_whence = SEEK_SET; 1543 fl->l_start = block->lf_start; 1544 if (block->lf_end == OFF_MAX) 1545 fl->l_len = 0; 1546 else 1547 fl->l_len = block->lf_end - block->lf_start + 1; 1548 fl->l_pid = block->lf_owner->lo_pid; 1549 fl->l_sysid = block->lf_owner->lo_sysid; 1550 } else { 1551 fl->l_type = F_UNLCK; 1552 } 1553 return (0); 1554 } 1555 1556 /* 1557 * Cancel an async lock request. 1558 */ 1559 static int 1560 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1561 { 1562 struct lockf_entry *reallock; 1563 1564 /* 1565 * We need to match this request with an existing lock 1566 * request. 1567 */ 1568 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1569 if ((void *) reallock == cookie) { 1570 /* 1571 * Double-check that this lock looks right 1572 * (maybe use a rolling ID for the cancel 1573 * cookie instead?) 1574 */ 1575 if (!(reallock->lf_vnode == lock->lf_vnode 1576 && reallock->lf_start == lock->lf_start 1577 && reallock->lf_end == lock->lf_end)) { 1578 return (ENOENT); 1579 } 1580 1581 /* 1582 * Make sure this lock was async and then just 1583 * remove it from its wait lists. 1584 */ 1585 if (!reallock->lf_async_task) { 1586 return (ENOENT); 1587 } 1588 1589 /* 1590 * Note that since any other thread must take 1591 * state->ls_lock before it can possibly 1592 * trigger the async callback, we are safe 1593 * from a race with lf_wakeup_lock, i.e. we 1594 * can free the lock (actually our caller does 1595 * this). 1596 */ 1597 lf_cancel_lock(state, reallock); 1598 return (0); 1599 } 1600 } 1601 1602 /* 1603 * We didn't find a matching lock - not much we can do here. 1604 */ 1605 return (ENOENT); 1606 } 1607 1608 /* 1609 * Walk the list of locks for an inode and 1610 * return the first blocking lock. 1611 */ 1612 static struct lockf_entry * 1613 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1614 { 1615 struct lockf_entry *overlap; 1616 1617 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1618 /* 1619 * We may assume that the active list is sorted by 1620 * lf_start. 1621 */ 1622 if (overlap->lf_start > lock->lf_end) 1623 break; 1624 if (!lf_blocks(lock, overlap)) 1625 continue; 1626 return (overlap); 1627 } 1628 return (NOLOCKF); 1629 } 1630 1631 /* 1632 * Walk the list of locks for an inode to find an overlapping lock (if 1633 * any) and return a classification of that overlap. 1634 * 1635 * Arguments: 1636 * *overlap The place in the lock list to start looking 1637 * lock The lock which is being tested 1638 * type Pass 'SELF' to test only locks with the same 1639 * owner as lock, or 'OTHER' to test only locks 1640 * with a different owner 1641 * 1642 * Returns one of six values: 1643 * 0) no overlap 1644 * 1) overlap == lock 1645 * 2) overlap contains lock 1646 * 3) lock contains overlap 1647 * 4) overlap starts before lock 1648 * 5) overlap ends after lock 1649 * 1650 * If there is an overlapping lock, '*overlap' is set to point at the 1651 * overlapping lock. 1652 * 1653 * NOTE: this returns only the FIRST overlapping lock. There 1654 * may be more than one. 1655 */ 1656 static int 1657 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1658 { 1659 struct lockf_entry *lf; 1660 off_t start, end; 1661 int res; 1662 1663 if ((*overlap) == NOLOCKF) { 1664 return (0); 1665 } 1666 #ifdef LOCKF_DEBUG 1667 if (lockf_debug & 2) 1668 lf_print("lf_findoverlap: looking for overlap in", lock); 1669 #endif /* LOCKF_DEBUG */ 1670 start = lock->lf_start; 1671 end = lock->lf_end; 1672 res = 0; 1673 while (*overlap) { 1674 lf = *overlap; 1675 if (lf->lf_start > end) 1676 break; 1677 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1678 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1679 *overlap = LIST_NEXT(lf, lf_link); 1680 continue; 1681 } 1682 #ifdef LOCKF_DEBUG 1683 if (lockf_debug & 2) 1684 lf_print("\tchecking", lf); 1685 #endif /* LOCKF_DEBUG */ 1686 /* 1687 * OK, check for overlap 1688 * 1689 * Six cases: 1690 * 0) no overlap 1691 * 1) overlap == lock 1692 * 2) overlap contains lock 1693 * 3) lock contains overlap 1694 * 4) overlap starts before lock 1695 * 5) overlap ends after lock 1696 */ 1697 if (start > lf->lf_end) { 1698 /* Case 0 */ 1699 #ifdef LOCKF_DEBUG 1700 if (lockf_debug & 2) 1701 printf("no overlap\n"); 1702 #endif /* LOCKF_DEBUG */ 1703 *overlap = LIST_NEXT(lf, lf_link); 1704 continue; 1705 } 1706 if (lf->lf_start == start && lf->lf_end == end) { 1707 /* Case 1 */ 1708 #ifdef LOCKF_DEBUG 1709 if (lockf_debug & 2) 1710 printf("overlap == lock\n"); 1711 #endif /* LOCKF_DEBUG */ 1712 res = 1; 1713 break; 1714 } 1715 if (lf->lf_start <= start && lf->lf_end >= end) { 1716 /* Case 2 */ 1717 #ifdef LOCKF_DEBUG 1718 if (lockf_debug & 2) 1719 printf("overlap contains lock\n"); 1720 #endif /* LOCKF_DEBUG */ 1721 res = 2; 1722 break; 1723 } 1724 if (start <= lf->lf_start && end >= lf->lf_end) { 1725 /* Case 3 */ 1726 #ifdef LOCKF_DEBUG 1727 if (lockf_debug & 2) 1728 printf("lock contains overlap\n"); 1729 #endif /* LOCKF_DEBUG */ 1730 res = 3; 1731 break; 1732 } 1733 if (lf->lf_start < start && lf->lf_end >= start) { 1734 /* Case 4 */ 1735 #ifdef LOCKF_DEBUG 1736 if (lockf_debug & 2) 1737 printf("overlap starts before lock\n"); 1738 #endif /* LOCKF_DEBUG */ 1739 res = 4; 1740 break; 1741 } 1742 if (lf->lf_start > start && lf->lf_end > end) { 1743 /* Case 5 */ 1744 #ifdef LOCKF_DEBUG 1745 if (lockf_debug & 2) 1746 printf("overlap ends after lock\n"); 1747 #endif /* LOCKF_DEBUG */ 1748 res = 5; 1749 break; 1750 } 1751 panic("lf_findoverlap: default"); 1752 } 1753 return (res); 1754 } 1755 1756 /* 1757 * Split an the existing 'lock1', based on the extent of the lock 1758 * described by 'lock2'. The existing lock should cover 'lock2' 1759 * entirely. 1760 * 1761 * Any pending locks which have been been unblocked are added to 1762 * 'granted' 1763 */ 1764 static void 1765 lf_split(struct lockf *state, struct lockf_entry *lock1, 1766 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1767 { 1768 struct lockf_entry *splitlock; 1769 1770 #ifdef LOCKF_DEBUG 1771 if (lockf_debug & 2) { 1772 lf_print("lf_split", lock1); 1773 lf_print("splitting from", lock2); 1774 } 1775 #endif /* LOCKF_DEBUG */ 1776 /* 1777 * Check to see if we don't need to split at all. 1778 */ 1779 if (lock1->lf_start == lock2->lf_start) { 1780 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1781 return; 1782 } 1783 if (lock1->lf_end == lock2->lf_end) { 1784 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1785 return; 1786 } 1787 /* 1788 * Make a new lock consisting of the last part of 1789 * the encompassing lock. 1790 */ 1791 splitlock = lf_alloc_lock(lock1->lf_owner); 1792 memcpy(splitlock, lock1, sizeof *splitlock); 1793 if (splitlock->lf_flags & F_REMOTE) 1794 vref(splitlock->lf_vnode); 1795 1796 /* 1797 * This cannot cause a deadlock since any edges we would add 1798 * to splitlock already exist in lock1. We must be sure to add 1799 * necessary dependancies to splitlock before we reduce lock1 1800 * otherwise we may accidentally grant a pending lock that 1801 * was blocked by the tail end of lock1. 1802 */ 1803 splitlock->lf_start = lock2->lf_end + 1; 1804 LIST_INIT(&splitlock->lf_outedges); 1805 LIST_INIT(&splitlock->lf_inedges); 1806 sx_xlock(&lf_owner_graph_lock); 1807 lf_add_incoming(state, splitlock); 1808 sx_xunlock(&lf_owner_graph_lock); 1809 1810 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1811 1812 /* 1813 * OK, now link it in 1814 */ 1815 lf_insert_lock(state, splitlock); 1816 } 1817 1818 struct lockdesc { 1819 STAILQ_ENTRY(lockdesc) link; 1820 struct vnode *vp; 1821 struct flock fl; 1822 }; 1823 STAILQ_HEAD(lockdesclist, lockdesc); 1824 1825 int 1826 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1827 { 1828 struct lockf *ls; 1829 struct lockf_entry *lf; 1830 struct lockdesc *ldesc; 1831 struct lockdesclist locks; 1832 int error; 1833 1834 /* 1835 * In order to keep the locking simple, we iterate over the 1836 * active lock lists to build a list of locks that need 1837 * releasing. We then call the iterator for each one in turn. 1838 * 1839 * We take an extra reference to the vnode for the duration to 1840 * make sure it doesn't go away before we are finished. 1841 */ 1842 STAILQ_INIT(&locks); 1843 sx_xlock(&lf_lock_states_lock); 1844 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1845 sx_xlock(&ls->ls_lock); 1846 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1847 if (lf->lf_owner->lo_sysid != sysid) 1848 continue; 1849 1850 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1851 M_WAITOK); 1852 ldesc->vp = lf->lf_vnode; 1853 vref(ldesc->vp); 1854 ldesc->fl.l_start = lf->lf_start; 1855 if (lf->lf_end == OFF_MAX) 1856 ldesc->fl.l_len = 0; 1857 else 1858 ldesc->fl.l_len = 1859 lf->lf_end - lf->lf_start + 1; 1860 ldesc->fl.l_whence = SEEK_SET; 1861 ldesc->fl.l_type = F_UNLCK; 1862 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1863 ldesc->fl.l_sysid = sysid; 1864 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1865 } 1866 sx_xunlock(&ls->ls_lock); 1867 } 1868 sx_xunlock(&lf_lock_states_lock); 1869 1870 /* 1871 * Call the iterator function for each lock in turn. If the 1872 * iterator returns an error code, just free the rest of the 1873 * lockdesc structures. 1874 */ 1875 error = 0; 1876 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1877 STAILQ_REMOVE_HEAD(&locks, link); 1878 if (!error) 1879 error = fn(ldesc->vp, &ldesc->fl, arg); 1880 vrele(ldesc->vp); 1881 free(ldesc, M_LOCKF); 1882 } 1883 1884 return (error); 1885 } 1886 1887 int 1888 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1889 { 1890 struct lockf *ls; 1891 struct lockf_entry *lf; 1892 struct lockdesc *ldesc; 1893 struct lockdesclist locks; 1894 int error; 1895 1896 /* 1897 * In order to keep the locking simple, we iterate over the 1898 * active lock lists to build a list of locks that need 1899 * releasing. We then call the iterator for each one in turn. 1900 * 1901 * We take an extra reference to the vnode for the duration to 1902 * make sure it doesn't go away before we are finished. 1903 */ 1904 STAILQ_INIT(&locks); 1905 ls = vp->v_lockf; 1906 if (!ls) 1907 return (0); 1908 1909 sx_xlock(&ls->ls_lock); 1910 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1911 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1912 M_WAITOK); 1913 ldesc->vp = lf->lf_vnode; 1914 vref(ldesc->vp); 1915 ldesc->fl.l_start = lf->lf_start; 1916 if (lf->lf_end == OFF_MAX) 1917 ldesc->fl.l_len = 0; 1918 else 1919 ldesc->fl.l_len = 1920 lf->lf_end - lf->lf_start + 1; 1921 ldesc->fl.l_whence = SEEK_SET; 1922 ldesc->fl.l_type = F_UNLCK; 1923 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1924 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1925 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1926 } 1927 sx_xunlock(&ls->ls_lock); 1928 1929 /* 1930 * Call the iterator function for each lock in turn. If the 1931 * iterator returns an error code, just free the rest of the 1932 * lockdesc structures. 1933 */ 1934 error = 0; 1935 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1936 STAILQ_REMOVE_HEAD(&locks, link); 1937 if (!error) 1938 error = fn(ldesc->vp, &ldesc->fl, arg); 1939 vrele(ldesc->vp); 1940 free(ldesc, M_LOCKF); 1941 } 1942 1943 return (error); 1944 } 1945 1946 static int 1947 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 1948 { 1949 1950 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 1951 return (0); 1952 } 1953 1954 void 1955 lf_clearremotesys(int sysid) 1956 { 1957 1958 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 1959 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 1960 } 1961 1962 int 1963 lf_countlocks(int sysid) 1964 { 1965 int i; 1966 struct lock_owner *lo; 1967 int count; 1968 1969 count = 0; 1970 sx_xlock(&lf_lock_owners_lock); 1971 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) 1972 LIST_FOREACH(lo, &lf_lock_owners[i], lo_link) 1973 if (lo->lo_sysid == sysid) 1974 count += lo->lo_refs; 1975 sx_xunlock(&lf_lock_owners_lock); 1976 1977 return (count); 1978 } 1979 1980 #ifdef LOCKF_DEBUG 1981 1982 /* 1983 * Return non-zero if y is reachable from x using a brute force 1984 * search. If reachable and path is non-null, return the route taken 1985 * in path. 1986 */ 1987 static int 1988 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 1989 struct owner_vertex_list *path) 1990 { 1991 struct owner_edge *e; 1992 1993 if (x == y) { 1994 if (path) 1995 TAILQ_INSERT_HEAD(path, x, v_link); 1996 return 1; 1997 } 1998 1999 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2000 if (graph_reaches(e->e_to, y, path)) { 2001 if (path) 2002 TAILQ_INSERT_HEAD(path, x, v_link); 2003 return 1; 2004 } 2005 } 2006 return 0; 2007 } 2008 2009 /* 2010 * Perform consistency checks on the graph. Make sure the values of 2011 * v_order are correct. If checkorder is non-zero, check no vertex can 2012 * reach any other vertex with a smaller order. 2013 */ 2014 static void 2015 graph_check(struct owner_graph *g, int checkorder) 2016 { 2017 int i, j; 2018 2019 for (i = 0; i < g->g_size; i++) { 2020 if (!g->g_vertices[i]->v_owner) 2021 continue; 2022 KASSERT(g->g_vertices[i]->v_order == i, 2023 ("lock graph vertices disordered")); 2024 if (checkorder) { 2025 for (j = 0; j < i; j++) { 2026 if (!g->g_vertices[j]->v_owner) 2027 continue; 2028 KASSERT(!graph_reaches(g->g_vertices[i], 2029 g->g_vertices[j], NULL), 2030 ("lock graph vertices disordered")); 2031 } 2032 } 2033 } 2034 } 2035 2036 static void 2037 graph_print_vertices(struct owner_vertex_list *set) 2038 { 2039 struct owner_vertex *v; 2040 2041 printf("{ "); 2042 TAILQ_FOREACH(v, set, v_link) { 2043 printf("%d:", v->v_order); 2044 lf_print_owner(v->v_owner); 2045 if (TAILQ_NEXT(v, v_link)) 2046 printf(", "); 2047 } 2048 printf(" }\n"); 2049 } 2050 2051 #endif 2052 2053 /* 2054 * Calculate the sub-set of vertices v from the affected region [y..x] 2055 * where v is reachable from y. Return -1 if a loop was detected 2056 * (i.e. x is reachable from y, otherwise the number of vertices in 2057 * this subset. 2058 */ 2059 static int 2060 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2061 struct owner_vertex *y, struct owner_vertex_list *delta) 2062 { 2063 uint32_t gen; 2064 struct owner_vertex *v; 2065 struct owner_edge *e; 2066 int n; 2067 2068 /* 2069 * We start with a set containing just y. Then for each vertex 2070 * v in the set so far unprocessed, we add each vertex that v 2071 * has an out-edge to and that is within the affected region 2072 * [y..x]. If we see the vertex x on our travels, stop 2073 * immediately. 2074 */ 2075 TAILQ_INIT(delta); 2076 TAILQ_INSERT_TAIL(delta, y, v_link); 2077 v = y; 2078 n = 1; 2079 gen = g->g_gen; 2080 while (v) { 2081 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2082 if (e->e_to == x) 2083 return -1; 2084 if (e->e_to->v_order < x->v_order 2085 && e->e_to->v_gen != gen) { 2086 e->e_to->v_gen = gen; 2087 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2088 n++; 2089 } 2090 } 2091 v = TAILQ_NEXT(v, v_link); 2092 } 2093 2094 return (n); 2095 } 2096 2097 /* 2098 * Calculate the sub-set of vertices v from the affected region [y..x] 2099 * where v reaches x. Return the number of vertices in this subset. 2100 */ 2101 static int 2102 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2103 struct owner_vertex *y, struct owner_vertex_list *delta) 2104 { 2105 uint32_t gen; 2106 struct owner_vertex *v; 2107 struct owner_edge *e; 2108 int n; 2109 2110 /* 2111 * We start with a set containing just x. Then for each vertex 2112 * v in the set so far unprocessed, we add each vertex that v 2113 * has an in-edge from and that is within the affected region 2114 * [y..x]. 2115 */ 2116 TAILQ_INIT(delta); 2117 TAILQ_INSERT_TAIL(delta, x, v_link); 2118 v = x; 2119 n = 1; 2120 gen = g->g_gen; 2121 while (v) { 2122 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2123 if (e->e_from->v_order > y->v_order 2124 && e->e_from->v_gen != gen) { 2125 e->e_from->v_gen = gen; 2126 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2127 n++; 2128 } 2129 } 2130 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2131 } 2132 2133 return (n); 2134 } 2135 2136 static int 2137 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2138 { 2139 struct owner_vertex *v; 2140 int i, j; 2141 2142 TAILQ_FOREACH(v, set, v_link) { 2143 for (i = n; 2144 i > 0 && indices[i - 1] > v->v_order; i--) 2145 ; 2146 for (j = n - 1; j >= i; j--) 2147 indices[j + 1] = indices[j]; 2148 indices[i] = v->v_order; 2149 n++; 2150 } 2151 2152 return (n); 2153 } 2154 2155 static int 2156 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2157 struct owner_vertex_list *set) 2158 { 2159 struct owner_vertex *v, *vlowest; 2160 2161 while (!TAILQ_EMPTY(set)) { 2162 vlowest = NULL; 2163 TAILQ_FOREACH(v, set, v_link) { 2164 if (!vlowest || v->v_order < vlowest->v_order) 2165 vlowest = v; 2166 } 2167 TAILQ_REMOVE(set, vlowest, v_link); 2168 vlowest->v_order = indices[nextunused]; 2169 g->g_vertices[vlowest->v_order] = vlowest; 2170 nextunused++; 2171 } 2172 2173 return (nextunused); 2174 } 2175 2176 static int 2177 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2178 struct owner_vertex *y) 2179 { 2180 struct owner_edge *e; 2181 struct owner_vertex_list deltaF, deltaB; 2182 int nF, nB, n, vi, i; 2183 int *indices; 2184 2185 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2186 2187 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2188 if (e->e_to == y) { 2189 e->e_refs++; 2190 return (0); 2191 } 2192 } 2193 2194 #ifdef LOCKF_DEBUG 2195 if (lockf_debug & 8) { 2196 printf("adding edge %d:", x->v_order); 2197 lf_print_owner(x->v_owner); 2198 printf(" -> %d:", y->v_order); 2199 lf_print_owner(y->v_owner); 2200 printf("\n"); 2201 } 2202 #endif 2203 if (y->v_order < x->v_order) { 2204 /* 2205 * The new edge violates the order. First find the set 2206 * of affected vertices reachable from y (deltaF) and 2207 * the set of affect vertices affected that reach x 2208 * (deltaB), using the graph generation number to 2209 * detect whether we have visited a given vertex 2210 * already. We re-order the graph so that each vertex 2211 * in deltaB appears before each vertex in deltaF. 2212 * 2213 * If x is a member of deltaF, then the new edge would 2214 * create a cycle. Otherwise, we may assume that 2215 * deltaF and deltaB are disjoint. 2216 */ 2217 g->g_gen++; 2218 if (g->g_gen == 0) { 2219 /* 2220 * Generation wrap. 2221 */ 2222 for (vi = 0; vi < g->g_size; vi++) { 2223 g->g_vertices[vi]->v_gen = 0; 2224 } 2225 g->g_gen++; 2226 } 2227 nF = graph_delta_forward(g, x, y, &deltaF); 2228 if (nF < 0) { 2229 #ifdef LOCKF_DEBUG 2230 if (lockf_debug & 8) { 2231 struct owner_vertex_list path; 2232 printf("deadlock: "); 2233 TAILQ_INIT(&path); 2234 graph_reaches(y, x, &path); 2235 graph_print_vertices(&path); 2236 } 2237 #endif 2238 return (EDEADLK); 2239 } 2240 2241 #ifdef LOCKF_DEBUG 2242 if (lockf_debug & 8) { 2243 printf("re-ordering graph vertices\n"); 2244 printf("deltaF = "); 2245 graph_print_vertices(&deltaF); 2246 } 2247 #endif 2248 2249 nB = graph_delta_backward(g, x, y, &deltaB); 2250 2251 #ifdef LOCKF_DEBUG 2252 if (lockf_debug & 8) { 2253 printf("deltaB = "); 2254 graph_print_vertices(&deltaB); 2255 } 2256 #endif 2257 2258 /* 2259 * We first build a set of vertex indices (vertex 2260 * order values) that we may use, then we re-assign 2261 * orders first to those vertices in deltaB, then to 2262 * deltaF. Note that the contents of deltaF and deltaB 2263 * may be partially disordered - we perform an 2264 * insertion sort while building our index set. 2265 */ 2266 indices = g->g_indexbuf; 2267 n = graph_add_indices(indices, 0, &deltaF); 2268 graph_add_indices(indices, n, &deltaB); 2269 2270 /* 2271 * We must also be sure to maintain the relative 2272 * ordering of deltaF and deltaB when re-assigning 2273 * vertices. We do this by iteratively removing the 2274 * lowest ordered element from the set and assigning 2275 * it the next value from our new ordering. 2276 */ 2277 i = graph_assign_indices(g, indices, 0, &deltaB); 2278 graph_assign_indices(g, indices, i, &deltaF); 2279 2280 #ifdef LOCKF_DEBUG 2281 if (lockf_debug & 8) { 2282 struct owner_vertex_list set; 2283 TAILQ_INIT(&set); 2284 for (i = 0; i < nB + nF; i++) 2285 TAILQ_INSERT_TAIL(&set, 2286 g->g_vertices[indices[i]], v_link); 2287 printf("new ordering = "); 2288 graph_print_vertices(&set); 2289 } 2290 #endif 2291 } 2292 2293 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2294 2295 #ifdef LOCKF_DEBUG 2296 if (lockf_debug & 8) { 2297 graph_check(g, TRUE); 2298 } 2299 #endif 2300 2301 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2302 2303 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2304 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2305 e->e_refs = 1; 2306 e->e_from = x; 2307 e->e_to = y; 2308 2309 return (0); 2310 } 2311 2312 /* 2313 * Remove an edge x->y from the graph. 2314 */ 2315 static void 2316 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2317 struct owner_vertex *y) 2318 { 2319 struct owner_edge *e; 2320 2321 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2322 2323 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2324 if (e->e_to == y) 2325 break; 2326 } 2327 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2328 2329 e->e_refs--; 2330 if (e->e_refs == 0) { 2331 #ifdef LOCKF_DEBUG 2332 if (lockf_debug & 8) { 2333 printf("removing edge %d:", x->v_order); 2334 lf_print_owner(x->v_owner); 2335 printf(" -> %d:", y->v_order); 2336 lf_print_owner(y->v_owner); 2337 printf("\n"); 2338 } 2339 #endif 2340 LIST_REMOVE(e, e_outlink); 2341 LIST_REMOVE(e, e_inlink); 2342 free(e, M_LOCKF); 2343 } 2344 } 2345 2346 /* 2347 * Allocate a vertex from the free list. Return ENOMEM if there are 2348 * none. 2349 */ 2350 static struct owner_vertex * 2351 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2352 { 2353 struct owner_vertex *v; 2354 2355 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2356 2357 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2358 if (g->g_size == g->g_space) { 2359 g->g_vertices = realloc(g->g_vertices, 2360 2 * g->g_space * sizeof(struct owner_vertex *), 2361 M_LOCKF, M_WAITOK); 2362 free(g->g_indexbuf, M_LOCKF); 2363 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2364 M_LOCKF, M_WAITOK); 2365 g->g_space = 2 * g->g_space; 2366 } 2367 v->v_order = g->g_size; 2368 v->v_gen = g->g_gen; 2369 g->g_vertices[g->g_size] = v; 2370 g->g_size++; 2371 2372 LIST_INIT(&v->v_outedges); 2373 LIST_INIT(&v->v_inedges); 2374 v->v_owner = lo; 2375 2376 return (v); 2377 } 2378 2379 static void 2380 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2381 { 2382 struct owner_vertex *w; 2383 int i; 2384 2385 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2386 2387 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2388 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2389 2390 /* 2391 * Remove from the graph's array and close up the gap, 2392 * renumbering the other vertices. 2393 */ 2394 for (i = v->v_order + 1; i < g->g_size; i++) { 2395 w = g->g_vertices[i]; 2396 w->v_order--; 2397 g->g_vertices[i - 1] = w; 2398 } 2399 g->g_size--; 2400 2401 free(v, M_LOCKF); 2402 } 2403 2404 static struct owner_graph * 2405 graph_init(struct owner_graph *g) 2406 { 2407 2408 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2409 M_LOCKF, M_WAITOK); 2410 g->g_size = 0; 2411 g->g_space = 10; 2412 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2413 g->g_gen = 0; 2414 2415 return (g); 2416 } 2417 2418 #ifdef LOCKF_DEBUG 2419 /* 2420 * Print description of a lock owner 2421 */ 2422 static void 2423 lf_print_owner(struct lock_owner *lo) 2424 { 2425 2426 if (lo->lo_flags & F_REMOTE) { 2427 printf("remote pid %d, system %d", 2428 lo->lo_pid, lo->lo_sysid); 2429 } else if (lo->lo_flags & F_FLOCK) { 2430 printf("file %p", lo->lo_id); 2431 } else { 2432 printf("local pid %d", lo->lo_pid); 2433 } 2434 } 2435 2436 /* 2437 * Print out a lock. 2438 */ 2439 static void 2440 lf_print(char *tag, struct lockf_entry *lock) 2441 { 2442 2443 printf("%s: lock %p for ", tag, (void *)lock); 2444 lf_print_owner(lock->lf_owner); 2445 if (lock->lf_inode != (struct inode *)0) 2446 printf(" in ino %ju on dev <%s>,", 2447 (uintmax_t)lock->lf_inode->i_number, 2448 devtoname(lock->lf_inode->i_dev)); 2449 printf(" %s, start %jd, end ", 2450 lock->lf_type == F_RDLCK ? "shared" : 2451 lock->lf_type == F_WRLCK ? "exclusive" : 2452 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2453 (intmax_t)lock->lf_start); 2454 if (lock->lf_end == OFF_MAX) 2455 printf("EOF"); 2456 else 2457 printf("%jd", (intmax_t)lock->lf_end); 2458 if (!LIST_EMPTY(&lock->lf_outedges)) 2459 printf(" block %p\n", 2460 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2461 else 2462 printf("\n"); 2463 } 2464 2465 static void 2466 lf_printlist(char *tag, struct lockf_entry *lock) 2467 { 2468 struct lockf_entry *lf, *blk; 2469 struct lockf_edge *e; 2470 2471 if (lock->lf_inode == (struct inode *)0) 2472 return; 2473 2474 printf("%s: Lock list for ino %ju on dev <%s>:\n", 2475 tag, (uintmax_t)lock->lf_inode->i_number, 2476 devtoname(lock->lf_inode->i_dev)); 2477 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2478 printf("\tlock %p for ",(void *)lf); 2479 lf_print_owner(lock->lf_owner); 2480 printf(", %s, start %jd, end %jd", 2481 lf->lf_type == F_RDLCK ? "shared" : 2482 lf->lf_type == F_WRLCK ? "exclusive" : 2483 lf->lf_type == F_UNLCK ? "unlock" : 2484 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2485 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2486 blk = e->le_to; 2487 printf("\n\t\tlock request %p for ", (void *)blk); 2488 lf_print_owner(blk->lf_owner); 2489 printf(", %s, start %jd, end %jd", 2490 blk->lf_type == F_RDLCK ? "shared" : 2491 blk->lf_type == F_WRLCK ? "exclusive" : 2492 blk->lf_type == F_UNLCK ? "unlock" : 2493 "unknown", (intmax_t)blk->lf_start, 2494 (intmax_t)blk->lf_end); 2495 if (!LIST_EMPTY(&blk->lf_inedges)) 2496 panic("lf_printlist: bad list"); 2497 } 2498 printf("\n"); 2499 } 2500 } 2501 #endif /* LOCKF_DEBUG */ 2502