xref: /freebsd/sys/kern/kern_lockf.c (revision c35b5d8372e4c4ec50e8653c2b51e6179a81769e)
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  *	The Regents of the University of California.  All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. Neither the name of the University nor the names of its contributors
43  *    may be used to endorse or promote products derived from this software
44  *    without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_debug_lockf.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82 
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85 
86 #include <ufs/ufs/extattr.h>
87 #include <ufs/ufs/quota.h>
88 #include <ufs/ufs/ufsmount.h>
89 #include <ufs/ufs/inode.h>
90 
91 static int	lockf_debug = 0; /* control debug output */
92 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
93 #endif
94 
95 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
96 
97 struct owner_edge;
98 struct owner_vertex;
99 struct owner_vertex_list;
100 struct owner_graph;
101 
102 #define NOLOCKF (struct lockf_entry *)0
103 #define SELF	0x1
104 #define OTHERS	0x2
105 static void	 lf_init(void *);
106 static int	 lf_hash_owner(caddr_t, struct flock *, int);
107 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
108     int);
109 static struct lockf_entry *
110 		 lf_alloc_lock(struct lock_owner *);
111 static int	 lf_free_lock(struct lockf_entry *);
112 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
113 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
114 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
115 static void	 lf_free_edge(struct lockf_edge *);
116 static struct lockf_edge *
117 		 lf_alloc_edge(void);
118 static void	 lf_alloc_vertex(struct lockf_entry *);
119 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
120 static void	 lf_remove_edge(struct lockf_edge *);
121 static void	 lf_remove_outgoing(struct lockf_entry *);
122 static void	 lf_remove_incoming(struct lockf_entry *);
123 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
124 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
125 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
126     int);
127 static struct lockf_entry *
128 		 lf_getblock(struct lockf *, struct lockf_entry *);
129 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
130 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
131 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
132 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
133     int all, struct lockf_entry_list *);
134 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
135 	struct lockf_entry_list*);
136 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
137 	struct lockf_entry_list*);
138 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
139     struct vnode *, void **cookiep);
140 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
141 static void	 lf_split(struct lockf *, struct lockf_entry *,
142     struct lockf_entry *, struct lockf_entry_list *);
143 #ifdef LOCKF_DEBUG
144 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
145     struct owner_vertex_list *path);
146 static void	 graph_check(struct owner_graph *g, int checkorder);
147 static void	 graph_print_vertices(struct owner_vertex_list *set);
148 #endif
149 static int	 graph_delta_forward(struct owner_graph *g,
150     struct owner_vertex *x, struct owner_vertex *y,
151     struct owner_vertex_list *delta);
152 static int	 graph_delta_backward(struct owner_graph *g,
153     struct owner_vertex *x, struct owner_vertex *y,
154     struct owner_vertex_list *delta);
155 static int	 graph_add_indices(int *indices, int n,
156     struct owner_vertex_list *set);
157 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
158     int nextunused, struct owner_vertex_list *set);
159 static int	 graph_add_edge(struct owner_graph *g,
160     struct owner_vertex *x, struct owner_vertex *y);
161 static void	 graph_remove_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
164     struct lock_owner *lo);
165 static void	 graph_free_vertex(struct owner_graph *g,
166     struct owner_vertex *v);
167 static struct owner_graph * graph_init(struct owner_graph *g);
168 #ifdef LOCKF_DEBUG
169 static void	 lf_print(char *, struct lockf_entry *);
170 static void	 lf_printlist(char *, struct lockf_entry *);
171 static void	 lf_print_owner(struct lock_owner *);
172 #endif
173 
174 /*
175  * This structure is used to keep track of both local and remote lock
176  * owners. The lf_owner field of the struct lockf_entry points back at
177  * the lock owner structure. Each possible lock owner (local proc for
178  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
179  * pair for remote locks) is represented by a unique instance of
180  * struct lock_owner.
181  *
182  * If a lock owner has a lock that blocks some other lock or a lock
183  * that is waiting for some other lock, it also has a vertex in the
184  * owner_graph below.
185  *
186  * Locks:
187  * (s)		locked by state->ls_lock
188  * (S)		locked by lf_lock_states_lock
189  * (l)		locked by lf_lock_owners_lock
190  * (g)		locked by lf_owner_graph_lock
191  * (c)		const until freeing
192  */
193 #define	LOCK_OWNER_HASH_SIZE	256
194 
195 struct lock_owner {
196 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
197 	int	lo_refs;	    /* (l) Number of locks referring to this */
198 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
199 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
200 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
201 	int	lo_sysid;	    /* (c) System Id of the lock owner */
202 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
203 };
204 
205 LIST_HEAD(lock_owner_list, lock_owner);
206 
207 static struct sx		lf_lock_states_lock;
208 static struct lockf_list	lf_lock_states; /* (S) */
209 static struct sx		lf_lock_owners_lock;
210 static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
211 
212 /*
213  * Structures for deadlock detection.
214  *
215  * We have two types of directed graph, the first is the set of locks,
216  * both active and pending on a vnode. Within this graph, active locks
217  * are terminal nodes in the graph (i.e. have no out-going
218  * edges). Pending locks have out-going edges to each blocking active
219  * lock that prevents the lock from being granted and also to each
220  * older pending lock that would block them if it was active. The
221  * graph for each vnode is naturally acyclic; new edges are only ever
222  * added to or from new nodes (either new pending locks which only add
223  * out-going edges or new active locks which only add in-coming edges)
224  * therefore they cannot create loops in the lock graph.
225  *
226  * The second graph is a global graph of lock owners. Each lock owner
227  * is a vertex in that graph and an edge is added to the graph
228  * whenever an edge is added to a vnode graph, with end points
229  * corresponding to owner of the new pending lock and the owner of the
230  * lock upon which it waits. In order to prevent deadlock, we only add
231  * an edge to this graph if the new edge would not create a cycle.
232  *
233  * The lock owner graph is topologically sorted, i.e. if a node has
234  * any outgoing edges, then it has an order strictly less than any
235  * node to which it has an outgoing edge. We preserve this ordering
236  * (and detect cycles) on edge insertion using Algorithm PK from the
237  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
238  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
239  * No. 1.7)
240  */
241 struct owner_vertex;
242 
243 struct owner_edge {
244 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
245 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
246 	int		e_refs;		  /* (g) number of times added */
247 	struct owner_vertex *e_from;	  /* (c) out-going from here */
248 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
249 };
250 LIST_HEAD(owner_edge_list, owner_edge);
251 
252 struct owner_vertex {
253 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
254 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
255 	int		v_order;	  /* (g) order of vertex in graph */
256 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
257 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
258 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
259 };
260 TAILQ_HEAD(owner_vertex_list, owner_vertex);
261 
262 struct owner_graph {
263 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
264 	int		g_size;		  /* (g) number of vertices */
265 	int		g_space;	  /* (g) space allocated for vertices */
266 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
267 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
268 };
269 
270 static struct sx		lf_owner_graph_lock;
271 static struct owner_graph	lf_owner_graph;
272 
273 /*
274  * Initialise various structures and locks.
275  */
276 static void
277 lf_init(void *dummy)
278 {
279 	int i;
280 
281 	sx_init(&lf_lock_states_lock, "lock states lock");
282 	LIST_INIT(&lf_lock_states);
283 
284 	sx_init(&lf_lock_owners_lock, "lock owners lock");
285 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
286 		LIST_INIT(&lf_lock_owners[i]);
287 
288 	sx_init(&lf_owner_graph_lock, "owner graph lock");
289 	graph_init(&lf_owner_graph);
290 }
291 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
292 
293 /*
294  * Generate a hash value for a lock owner.
295  */
296 static int
297 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
298 {
299 	uint32_t h;
300 
301 	if (flags & F_REMOTE) {
302 		h = HASHSTEP(0, fl->l_pid);
303 		h = HASHSTEP(h, fl->l_sysid);
304 	} else if (flags & F_FLOCK) {
305 		h = ((uintptr_t) id) >> 7;
306 	} else {
307 		struct proc *p = (struct proc *) id;
308 		h = HASHSTEP(0, p->p_pid);
309 		h = HASHSTEP(h, 0);
310 	}
311 
312 	return (h % LOCK_OWNER_HASH_SIZE);
313 }
314 
315 /*
316  * Return true if a lock owner matches the details passed to
317  * lf_advlock.
318  */
319 static int
320 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
321     int flags)
322 {
323 	if (flags & F_REMOTE) {
324 		return lo->lo_pid == fl->l_pid
325 			&& lo->lo_sysid == fl->l_sysid;
326 	} else {
327 		return lo->lo_id == id;
328 	}
329 }
330 
331 static struct lockf_entry *
332 lf_alloc_lock(struct lock_owner *lo)
333 {
334 	struct lockf_entry *lf;
335 
336 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
337 
338 #ifdef LOCKF_DEBUG
339 	if (lockf_debug & 4)
340 		printf("Allocated lock %p\n", lf);
341 #endif
342 	if (lo) {
343 		sx_xlock(&lf_lock_owners_lock);
344 		lo->lo_refs++;
345 		sx_xunlock(&lf_lock_owners_lock);
346 		lf->lf_owner = lo;
347 	}
348 
349 	return (lf);
350 }
351 
352 static int
353 lf_free_lock(struct lockf_entry *lock)
354 {
355 
356 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
357 	if (--lock->lf_refs > 0)
358 		return (0);
359 	/*
360 	 * Adjust the lock_owner reference count and
361 	 * reclaim the entry if this is the last lock
362 	 * for that owner.
363 	 */
364 	struct lock_owner *lo = lock->lf_owner;
365 	if (lo) {
366 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
367 		    ("freeing lock with dependencies"));
368 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
369 		    ("freeing lock with dependants"));
370 		sx_xlock(&lf_lock_owners_lock);
371 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
372 		lo->lo_refs--;
373 		if (lo->lo_refs == 0) {
374 #ifdef LOCKF_DEBUG
375 			if (lockf_debug & 1)
376 				printf("lf_free_lock: freeing lock owner %p\n",
377 				    lo);
378 #endif
379 			if (lo->lo_vertex) {
380 				sx_xlock(&lf_owner_graph_lock);
381 				graph_free_vertex(&lf_owner_graph,
382 				    lo->lo_vertex);
383 				sx_xunlock(&lf_owner_graph_lock);
384 			}
385 			LIST_REMOVE(lo, lo_link);
386 			free(lo, M_LOCKF);
387 #ifdef LOCKF_DEBUG
388 			if (lockf_debug & 4)
389 				printf("Freed lock owner %p\n", lo);
390 #endif
391 		}
392 		sx_unlock(&lf_lock_owners_lock);
393 	}
394 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
395 		vrele(lock->lf_vnode);
396 		lock->lf_vnode = NULL;
397 	}
398 #ifdef LOCKF_DEBUG
399 	if (lockf_debug & 4)
400 		printf("Freed lock %p\n", lock);
401 #endif
402 	free(lock, M_LOCKF);
403 	return (1);
404 }
405 
406 /*
407  * Advisory record locking support
408  */
409 int
410 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
411     u_quad_t size)
412 {
413 	struct lockf *state, *freestate = NULL;
414 	struct flock *fl = ap->a_fl;
415 	struct lockf_entry *lock;
416 	struct vnode *vp = ap->a_vp;
417 	caddr_t id = ap->a_id;
418 	int flags = ap->a_flags;
419 	int hash;
420 	struct lock_owner *lo;
421 	off_t start, end, oadd;
422 	int error;
423 
424 	/*
425 	 * Handle the F_UNLKSYS case first - no need to mess about
426 	 * creating a lock owner for this one.
427 	 */
428 	if (ap->a_op == F_UNLCKSYS) {
429 		lf_clearremotesys(fl->l_sysid);
430 		return (0);
431 	}
432 
433 	/*
434 	 * Convert the flock structure into a start and end.
435 	 */
436 	switch (fl->l_whence) {
437 
438 	case SEEK_SET:
439 	case SEEK_CUR:
440 		/*
441 		 * Caller is responsible for adding any necessary offset
442 		 * when SEEK_CUR is used.
443 		 */
444 		start = fl->l_start;
445 		break;
446 
447 	case SEEK_END:
448 		if (size > OFF_MAX ||
449 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
450 			return (EOVERFLOW);
451 		start = size + fl->l_start;
452 		break;
453 
454 	default:
455 		return (EINVAL);
456 	}
457 	if (start < 0)
458 		return (EINVAL);
459 	if (fl->l_len < 0) {
460 		if (start == 0)
461 			return (EINVAL);
462 		end = start - 1;
463 		start += fl->l_len;
464 		if (start < 0)
465 			return (EINVAL);
466 	} else if (fl->l_len == 0) {
467 		end = OFF_MAX;
468 	} else {
469 		oadd = fl->l_len - 1;
470 		if (oadd > OFF_MAX - start)
471 			return (EOVERFLOW);
472 		end = start + oadd;
473 	}
474 
475 retry_setlock:
476 
477 	/*
478 	 * Avoid the common case of unlocking when inode has no locks.
479 	 */
480 	VI_LOCK(vp);
481 	if ((*statep) == NULL) {
482 		if (ap->a_op != F_SETLK) {
483 			fl->l_type = F_UNLCK;
484 			VI_UNLOCK(vp);
485 			return (0);
486 		}
487 	}
488 	VI_UNLOCK(vp);
489 
490 	/*
491 	 * Map our arguments to an existing lock owner or create one
492 	 * if this is the first time we have seen this owner.
493 	 */
494 	hash = lf_hash_owner(id, fl, flags);
495 	sx_xlock(&lf_lock_owners_lock);
496 	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
497 		if (lf_owner_matches(lo, id, fl, flags))
498 			break;
499 	if (!lo) {
500 		/*
501 		 * We initialise the lock with a reference
502 		 * count which matches the new lockf_entry
503 		 * structure created below.
504 		 */
505 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
506 		    M_WAITOK|M_ZERO);
507 #ifdef LOCKF_DEBUG
508 		if (lockf_debug & 4)
509 			printf("Allocated lock owner %p\n", lo);
510 #endif
511 
512 		lo->lo_refs = 1;
513 		lo->lo_flags = flags;
514 		lo->lo_id = id;
515 		if (flags & F_REMOTE) {
516 			lo->lo_pid = fl->l_pid;
517 			lo->lo_sysid = fl->l_sysid;
518 		} else if (flags & F_FLOCK) {
519 			lo->lo_pid = -1;
520 			lo->lo_sysid = 0;
521 		} else {
522 			struct proc *p = (struct proc *) id;
523 			lo->lo_pid = p->p_pid;
524 			lo->lo_sysid = 0;
525 		}
526 		lo->lo_vertex = NULL;
527 
528 #ifdef LOCKF_DEBUG
529 		if (lockf_debug & 1) {
530 			printf("lf_advlockasync: new lock owner %p ", lo);
531 			lf_print_owner(lo);
532 			printf("\n");
533 		}
534 #endif
535 
536 		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
537 	} else {
538 		/*
539 		 * We have seen this lock owner before, increase its
540 		 * reference count to account for the new lockf_entry
541 		 * structure we create below.
542 		 */
543 		lo->lo_refs++;
544 	}
545 	sx_xunlock(&lf_lock_owners_lock);
546 
547 	/*
548 	 * Create the lockf structure. We initialise the lf_owner
549 	 * field here instead of in lf_alloc_lock() to avoid paying
550 	 * the lf_lock_owners_lock tax twice.
551 	 */
552 	lock = lf_alloc_lock(NULL);
553 	lock->lf_refs = 1;
554 	lock->lf_start = start;
555 	lock->lf_end = end;
556 	lock->lf_owner = lo;
557 	lock->lf_vnode = vp;
558 	if (flags & F_REMOTE) {
559 		/*
560 		 * For remote locks, the caller may release its ref to
561 		 * the vnode at any time - we have to ref it here to
562 		 * prevent it from being recycled unexpectedly.
563 		 */
564 		vref(vp);
565 	}
566 
567 	/*
568 	 * XXX The problem is that VTOI is ufs specific, so it will
569 	 * break LOCKF_DEBUG for all other FS's other than UFS because
570 	 * it casts the vnode->data ptr to struct inode *.
571 	 */
572 /*	lock->lf_inode = VTOI(ap->a_vp); */
573 	lock->lf_inode = (struct inode *)0;
574 	lock->lf_type = fl->l_type;
575 	LIST_INIT(&lock->lf_outedges);
576 	LIST_INIT(&lock->lf_inedges);
577 	lock->lf_async_task = ap->a_task;
578 	lock->lf_flags = ap->a_flags;
579 
580 	/*
581 	 * Do the requested operation. First find our state structure
582 	 * and create a new one if necessary - the caller's *statep
583 	 * variable and the state's ls_threads count is protected by
584 	 * the vnode interlock.
585 	 */
586 	VI_LOCK(vp);
587 	if (vp->v_iflag & VI_DOOMED) {
588 		VI_UNLOCK(vp);
589 		lf_free_lock(lock);
590 		return (ENOENT);
591 	}
592 
593 	/*
594 	 * Allocate a state structure if necessary.
595 	 */
596 	state = *statep;
597 	if (state == NULL) {
598 		struct lockf *ls;
599 
600 		VI_UNLOCK(vp);
601 
602 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
603 		sx_init(&ls->ls_lock, "ls_lock");
604 		LIST_INIT(&ls->ls_active);
605 		LIST_INIT(&ls->ls_pending);
606 		ls->ls_threads = 1;
607 
608 		sx_xlock(&lf_lock_states_lock);
609 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
610 		sx_xunlock(&lf_lock_states_lock);
611 
612 		/*
613 		 * Cope if we lost a race with some other thread while
614 		 * trying to allocate memory.
615 		 */
616 		VI_LOCK(vp);
617 		if (vp->v_iflag & VI_DOOMED) {
618 			VI_UNLOCK(vp);
619 			sx_xlock(&lf_lock_states_lock);
620 			LIST_REMOVE(ls, ls_link);
621 			sx_xunlock(&lf_lock_states_lock);
622 			sx_destroy(&ls->ls_lock);
623 			free(ls, M_LOCKF);
624 			lf_free_lock(lock);
625 			return (ENOENT);
626 		}
627 		if ((*statep) == NULL) {
628 			state = *statep = ls;
629 			VI_UNLOCK(vp);
630 		} else {
631 			state = *statep;
632 			state->ls_threads++;
633 			VI_UNLOCK(vp);
634 
635 			sx_xlock(&lf_lock_states_lock);
636 			LIST_REMOVE(ls, ls_link);
637 			sx_xunlock(&lf_lock_states_lock);
638 			sx_destroy(&ls->ls_lock);
639 			free(ls, M_LOCKF);
640 		}
641 	} else {
642 		state->ls_threads++;
643 		VI_UNLOCK(vp);
644 	}
645 
646 	sx_xlock(&state->ls_lock);
647 	/*
648 	 * Recheck the doomed vnode after state->ls_lock is
649 	 * locked. lf_purgelocks() requires that no new threads add
650 	 * pending locks when vnode is marked by VI_DOOMED flag.
651 	 */
652 	VI_LOCK(vp);
653 	if (vp->v_iflag & VI_DOOMED) {
654 		state->ls_threads--;
655 		wakeup(state);
656 		VI_UNLOCK(vp);
657 		sx_xunlock(&state->ls_lock);
658 		lf_free_lock(lock);
659 		return (ENOENT);
660 	}
661 	VI_UNLOCK(vp);
662 
663 	switch (ap->a_op) {
664 	case F_SETLK:
665 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
666 		break;
667 
668 	case F_UNLCK:
669 		error = lf_clearlock(state, lock);
670 		lf_free_lock(lock);
671 		break;
672 
673 	case F_GETLK:
674 		error = lf_getlock(state, lock, fl);
675 		lf_free_lock(lock);
676 		break;
677 
678 	case F_CANCEL:
679 		if (ap->a_cookiep)
680 			error = lf_cancel(state, lock, *ap->a_cookiep);
681 		else
682 			error = EINVAL;
683 		lf_free_lock(lock);
684 		break;
685 
686 	default:
687 		lf_free_lock(lock);
688 		error = EINVAL;
689 		break;
690 	}
691 
692 #ifdef INVARIANTS
693 	/*
694 	 * Check for some can't happen stuff. In this case, the active
695 	 * lock list becoming disordered or containing mutually
696 	 * blocking locks. We also check the pending list for locks
697 	 * which should be active (i.e. have no out-going edges).
698 	 */
699 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
700 		struct lockf_entry *lf;
701 		if (LIST_NEXT(lock, lf_link))
702 			KASSERT((lock->lf_start
703 				<= LIST_NEXT(lock, lf_link)->lf_start),
704 			    ("locks disordered"));
705 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
706 			if (lock == lf)
707 				break;
708 			KASSERT(!lf_blocks(lock, lf),
709 			    ("two conflicting active locks"));
710 			if (lock->lf_owner == lf->lf_owner)
711 				KASSERT(!lf_overlaps(lock, lf),
712 				    ("two overlapping locks from same owner"));
713 		}
714 	}
715 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
716 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
717 		    ("pending lock which should be active"));
718 	}
719 #endif
720 	sx_xunlock(&state->ls_lock);
721 
722 	/*
723 	 * If we have removed the last active lock on the vnode and
724 	 * this is the last thread that was in-progress, we can free
725 	 * the state structure. We update the caller's pointer inside
726 	 * the vnode interlock but call free outside.
727 	 *
728 	 * XXX alternatively, keep the state structure around until
729 	 * the filesystem recycles - requires a callback from the
730 	 * filesystem.
731 	 */
732 	VI_LOCK(vp);
733 
734 	state->ls_threads--;
735 	wakeup(state);
736 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
737 		KASSERT(LIST_EMPTY(&state->ls_pending),
738 		    ("freeing state with pending locks"));
739 		freestate = state;
740 		*statep = NULL;
741 	}
742 
743 	VI_UNLOCK(vp);
744 
745 	if (freestate != NULL) {
746 		sx_xlock(&lf_lock_states_lock);
747 		LIST_REMOVE(freestate, ls_link);
748 		sx_xunlock(&lf_lock_states_lock);
749 		sx_destroy(&freestate->ls_lock);
750 		free(freestate, M_LOCKF);
751 		freestate = NULL;
752 	}
753 
754 	if (error == EDOOFUS) {
755 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
756 		goto retry_setlock;
757 	}
758 	return (error);
759 }
760 
761 int
762 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
763 {
764 	struct vop_advlockasync_args a;
765 
766 	a.a_vp = ap->a_vp;
767 	a.a_id = ap->a_id;
768 	a.a_op = ap->a_op;
769 	a.a_fl = ap->a_fl;
770 	a.a_flags = ap->a_flags;
771 	a.a_task = NULL;
772 	a.a_cookiep = NULL;
773 
774 	return (lf_advlockasync(&a, statep, size));
775 }
776 
777 void
778 lf_purgelocks(struct vnode *vp, struct lockf **statep)
779 {
780 	struct lockf *state;
781 	struct lockf_entry *lock, *nlock;
782 
783 	/*
784 	 * For this to work correctly, the caller must ensure that no
785 	 * other threads enter the locking system for this vnode,
786 	 * e.g. by checking VI_DOOMED. We wake up any threads that are
787 	 * sleeping waiting for locks on this vnode and then free all
788 	 * the remaining locks.
789 	 */
790 	VI_LOCK(vp);
791 	KASSERT(vp->v_iflag & VI_DOOMED,
792 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
793 	state = *statep;
794 	if (state) {
795 		*statep = NULL;
796 		state->ls_threads++;
797 		VI_UNLOCK(vp);
798 
799 		sx_xlock(&state->ls_lock);
800 		sx_xlock(&lf_owner_graph_lock);
801 		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
802 			LIST_REMOVE(lock, lf_link);
803 			lf_remove_outgoing(lock);
804 			lf_remove_incoming(lock);
805 
806 			/*
807 			 * If its an async lock, we can just free it
808 			 * here, otherwise we let the sleeping thread
809 			 * free it.
810 			 */
811 			if (lock->lf_async_task) {
812 				lf_free_lock(lock);
813 			} else {
814 				lock->lf_flags |= F_INTR;
815 				wakeup(lock);
816 			}
817 		}
818 		sx_xunlock(&lf_owner_graph_lock);
819 		sx_xunlock(&state->ls_lock);
820 
821 		/*
822 		 * Wait for all other threads, sleeping and otherwise
823 		 * to leave.
824 		 */
825 		VI_LOCK(vp);
826 		while (state->ls_threads > 1)
827 			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
828 		VI_UNLOCK(vp);
829 
830 		/*
831 		 * We can just free all the active locks since they
832 		 * will have no dependencies (we removed them all
833 		 * above). We don't need to bother locking since we
834 		 * are the last thread using this state structure.
835 		 */
836 		KASSERT(LIST_EMPTY(&state->ls_pending),
837 		    ("lock pending for %p", state));
838 		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
839 			LIST_REMOVE(lock, lf_link);
840 			lf_free_lock(lock);
841 		}
842 		sx_xlock(&lf_lock_states_lock);
843 		LIST_REMOVE(state, ls_link);
844 		sx_xunlock(&lf_lock_states_lock);
845 		sx_destroy(&state->ls_lock);
846 		free(state, M_LOCKF);
847 	} else {
848 		VI_UNLOCK(vp);
849 	}
850 }
851 
852 /*
853  * Return non-zero if locks 'x' and 'y' overlap.
854  */
855 static int
856 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
857 {
858 
859 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
860 }
861 
862 /*
863  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
864  */
865 static int
866 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
867 {
868 
869 	return x->lf_owner != y->lf_owner
870 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
871 		&& lf_overlaps(x, y);
872 }
873 
874 /*
875  * Allocate a lock edge from the free list
876  */
877 static struct lockf_edge *
878 lf_alloc_edge(void)
879 {
880 
881 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
882 }
883 
884 /*
885  * Free a lock edge.
886  */
887 static void
888 lf_free_edge(struct lockf_edge *e)
889 {
890 
891 	free(e, M_LOCKF);
892 }
893 
894 
895 /*
896  * Ensure that the lock's owner has a corresponding vertex in the
897  * owner graph.
898  */
899 static void
900 lf_alloc_vertex(struct lockf_entry *lock)
901 {
902 	struct owner_graph *g = &lf_owner_graph;
903 
904 	if (!lock->lf_owner->lo_vertex)
905 		lock->lf_owner->lo_vertex =
906 			graph_alloc_vertex(g, lock->lf_owner);
907 }
908 
909 /*
910  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
911  * the new edge would cause a cycle in the owner graph.
912  */
913 static int
914 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
915 {
916 	struct owner_graph *g = &lf_owner_graph;
917 	struct lockf_edge *e;
918 	int error;
919 
920 #ifdef INVARIANTS
921 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
922 		KASSERT(e->le_to != y, ("adding lock edge twice"));
923 #endif
924 
925 	/*
926 	 * Make sure the two owners have entries in the owner graph.
927 	 */
928 	lf_alloc_vertex(x);
929 	lf_alloc_vertex(y);
930 
931 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
932 	    y->lf_owner->lo_vertex);
933 	if (error)
934 		return (error);
935 
936 	e = lf_alloc_edge();
937 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
938 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
939 	e->le_from = x;
940 	e->le_to = y;
941 
942 	return (0);
943 }
944 
945 /*
946  * Remove an edge from the lock graph.
947  */
948 static void
949 lf_remove_edge(struct lockf_edge *e)
950 {
951 	struct owner_graph *g = &lf_owner_graph;
952 	struct lockf_entry *x = e->le_from;
953 	struct lockf_entry *y = e->le_to;
954 
955 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
956 	LIST_REMOVE(e, le_outlink);
957 	LIST_REMOVE(e, le_inlink);
958 	e->le_from = NULL;
959 	e->le_to = NULL;
960 	lf_free_edge(e);
961 }
962 
963 /*
964  * Remove all out-going edges from lock x.
965  */
966 static void
967 lf_remove_outgoing(struct lockf_entry *x)
968 {
969 	struct lockf_edge *e;
970 
971 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
972 		lf_remove_edge(e);
973 	}
974 }
975 
976 /*
977  * Remove all in-coming edges from lock x.
978  */
979 static void
980 lf_remove_incoming(struct lockf_entry *x)
981 {
982 	struct lockf_edge *e;
983 
984 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
985 		lf_remove_edge(e);
986 	}
987 }
988 
989 /*
990  * Walk the list of locks for the file and create an out-going edge
991  * from lock to each blocking lock.
992  */
993 static int
994 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
995 {
996 	struct lockf_entry *overlap;
997 	int error;
998 
999 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1000 		/*
1001 		 * We may assume that the active list is sorted by
1002 		 * lf_start.
1003 		 */
1004 		if (overlap->lf_start > lock->lf_end)
1005 			break;
1006 		if (!lf_blocks(lock, overlap))
1007 			continue;
1008 
1009 		/*
1010 		 * We've found a blocking lock. Add the corresponding
1011 		 * edge to the graphs and see if it would cause a
1012 		 * deadlock.
1013 		 */
1014 		error = lf_add_edge(lock, overlap);
1015 
1016 		/*
1017 		 * The only error that lf_add_edge returns is EDEADLK.
1018 		 * Remove any edges we added and return the error.
1019 		 */
1020 		if (error) {
1021 			lf_remove_outgoing(lock);
1022 			return (error);
1023 		}
1024 	}
1025 
1026 	/*
1027 	 * We also need to add edges to sleeping locks that block
1028 	 * us. This ensures that lf_wakeup_lock cannot grant two
1029 	 * mutually blocking locks simultaneously and also enforces a
1030 	 * 'first come, first served' fairness model. Note that this
1031 	 * only happens if we are blocked by at least one active lock
1032 	 * due to the call to lf_getblock in lf_setlock below.
1033 	 */
1034 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1035 		if (!lf_blocks(lock, overlap))
1036 			continue;
1037 		/*
1038 		 * We've found a blocking lock. Add the corresponding
1039 		 * edge to the graphs and see if it would cause a
1040 		 * deadlock.
1041 		 */
1042 		error = lf_add_edge(lock, overlap);
1043 
1044 		/*
1045 		 * The only error that lf_add_edge returns is EDEADLK.
1046 		 * Remove any edges we added and return the error.
1047 		 */
1048 		if (error) {
1049 			lf_remove_outgoing(lock);
1050 			return (error);
1051 		}
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 /*
1058  * Walk the list of pending locks for the file and create an in-coming
1059  * edge from lock to each blocking lock.
1060  */
1061 static int
1062 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1063 {
1064 	struct lockf_entry *overlap;
1065 	int error;
1066 
1067 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1068 		if (!lf_blocks(lock, overlap))
1069 			continue;
1070 
1071 		/*
1072 		 * We've found a blocking lock. Add the corresponding
1073 		 * edge to the graphs and see if it would cause a
1074 		 * deadlock.
1075 		 */
1076 		error = lf_add_edge(overlap, lock);
1077 
1078 		/*
1079 		 * The only error that lf_add_edge returns is EDEADLK.
1080 		 * Remove any edges we added and return the error.
1081 		 */
1082 		if (error) {
1083 			lf_remove_incoming(lock);
1084 			return (error);
1085 		}
1086 	}
1087 	return (0);
1088 }
1089 
1090 /*
1091  * Insert lock into the active list, keeping list entries ordered by
1092  * increasing values of lf_start.
1093  */
1094 static void
1095 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1096 {
1097 	struct lockf_entry *lf, *lfprev;
1098 
1099 	if (LIST_EMPTY(&state->ls_active)) {
1100 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1101 		return;
1102 	}
1103 
1104 	lfprev = NULL;
1105 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1106 		if (lf->lf_start > lock->lf_start) {
1107 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1108 			return;
1109 		}
1110 		lfprev = lf;
1111 	}
1112 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1113 }
1114 
1115 /*
1116  * Wake up a sleeping lock and remove it from the pending list now
1117  * that all its dependencies have been resolved. The caller should
1118  * arrange for the lock to be added to the active list, adjusting any
1119  * existing locks for the same owner as needed.
1120  */
1121 static void
1122 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1123 {
1124 
1125 	/*
1126 	 * Remove from ls_pending list and wake up the caller
1127 	 * or start the async notification, as appropriate.
1128 	 */
1129 	LIST_REMOVE(wakelock, lf_link);
1130 #ifdef LOCKF_DEBUG
1131 	if (lockf_debug & 1)
1132 		lf_print("lf_wakeup_lock: awakening", wakelock);
1133 #endif /* LOCKF_DEBUG */
1134 	if (wakelock->lf_async_task) {
1135 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1136 	} else {
1137 		wakeup(wakelock);
1138 	}
1139 }
1140 
1141 /*
1142  * Re-check all dependent locks and remove edges to locks that we no
1143  * longer block. If 'all' is non-zero, the lock has been removed and
1144  * we must remove all the dependencies, otherwise it has simply been
1145  * reduced but remains active. Any pending locks which have been been
1146  * unblocked are added to 'granted'
1147  */
1148 static void
1149 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1150 	struct lockf_entry_list *granted)
1151 {
1152 	struct lockf_edge *e, *ne;
1153 	struct lockf_entry *deplock;
1154 
1155 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1156 		deplock = e->le_from;
1157 		if (all || !lf_blocks(lock, deplock)) {
1158 			sx_xlock(&lf_owner_graph_lock);
1159 			lf_remove_edge(e);
1160 			sx_xunlock(&lf_owner_graph_lock);
1161 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1162 				lf_wakeup_lock(state, deplock);
1163 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1164 			}
1165 		}
1166 	}
1167 }
1168 
1169 /*
1170  * Set the start of an existing active lock, updating dependencies and
1171  * adding any newly woken locks to 'granted'.
1172  */
1173 static void
1174 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1175 	struct lockf_entry_list *granted)
1176 {
1177 
1178 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1179 	lock->lf_start = new_start;
1180 	LIST_REMOVE(lock, lf_link);
1181 	lf_insert_lock(state, lock);
1182 	lf_update_dependancies(state, lock, FALSE, granted);
1183 }
1184 
1185 /*
1186  * Set the end of an existing active lock, updating dependencies and
1187  * adding any newly woken locks to 'granted'.
1188  */
1189 static void
1190 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1191 	struct lockf_entry_list *granted)
1192 {
1193 
1194 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1195 	lock->lf_end = new_end;
1196 	lf_update_dependancies(state, lock, FALSE, granted);
1197 }
1198 
1199 /*
1200  * Add a lock to the active list, updating or removing any current
1201  * locks owned by the same owner and processing any pending locks that
1202  * become unblocked as a result. This code is also used for unlock
1203  * since the logic for updating existing locks is identical.
1204  *
1205  * As a result of processing the new lock, we may unblock existing
1206  * pending locks as a result of downgrading/unlocking. We simply
1207  * activate the newly granted locks by looping.
1208  *
1209  * Since the new lock already has its dependencies set up, we always
1210  * add it to the list (unless its an unlock request). This may
1211  * fragment the lock list in some pathological cases but its probably
1212  * not a real problem.
1213  */
1214 static void
1215 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1216 {
1217 	struct lockf_entry *overlap, *lf;
1218 	struct lockf_entry_list granted;
1219 	int ovcase;
1220 
1221 	LIST_INIT(&granted);
1222 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1223 
1224 	while (!LIST_EMPTY(&granted)) {
1225 		lock = LIST_FIRST(&granted);
1226 		LIST_REMOVE(lock, lf_link);
1227 
1228 		/*
1229 		 * Skip over locks owned by other processes.  Handle
1230 		 * any locks that overlap and are owned by ourselves.
1231 		 */
1232 		overlap = LIST_FIRST(&state->ls_active);
1233 		for (;;) {
1234 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1235 
1236 #ifdef LOCKF_DEBUG
1237 			if (ovcase && (lockf_debug & 2)) {
1238 				printf("lf_setlock: overlap %d", ovcase);
1239 				lf_print("", overlap);
1240 			}
1241 #endif
1242 			/*
1243 			 * Six cases:
1244 			 *	0) no overlap
1245 			 *	1) overlap == lock
1246 			 *	2) overlap contains lock
1247 			 *	3) lock contains overlap
1248 			 *	4) overlap starts before lock
1249 			 *	5) overlap ends after lock
1250 			 */
1251 			switch (ovcase) {
1252 			case 0: /* no overlap */
1253 				break;
1254 
1255 			case 1: /* overlap == lock */
1256 				/*
1257 				 * We have already setup the
1258 				 * dependants for the new lock, taking
1259 				 * into account a possible downgrade
1260 				 * or unlock. Remove the old lock.
1261 				 */
1262 				LIST_REMOVE(overlap, lf_link);
1263 				lf_update_dependancies(state, overlap, TRUE,
1264 					&granted);
1265 				lf_free_lock(overlap);
1266 				break;
1267 
1268 			case 2: /* overlap contains lock */
1269 				/*
1270 				 * Just split the existing lock.
1271 				 */
1272 				lf_split(state, overlap, lock, &granted);
1273 				break;
1274 
1275 			case 3: /* lock contains overlap */
1276 				/*
1277 				 * Delete the overlap and advance to
1278 				 * the next entry in the list.
1279 				 */
1280 				lf = LIST_NEXT(overlap, lf_link);
1281 				LIST_REMOVE(overlap, lf_link);
1282 				lf_update_dependancies(state, overlap, TRUE,
1283 					&granted);
1284 				lf_free_lock(overlap);
1285 				overlap = lf;
1286 				continue;
1287 
1288 			case 4: /* overlap starts before lock */
1289 				/*
1290 				 * Just update the overlap end and
1291 				 * move on.
1292 				 */
1293 				lf_set_end(state, overlap, lock->lf_start - 1,
1294 				    &granted);
1295 				overlap = LIST_NEXT(overlap, lf_link);
1296 				continue;
1297 
1298 			case 5: /* overlap ends after lock */
1299 				/*
1300 				 * Change the start of overlap and
1301 				 * re-insert.
1302 				 */
1303 				lf_set_start(state, overlap, lock->lf_end + 1,
1304 				    &granted);
1305 				break;
1306 			}
1307 			break;
1308 		}
1309 #ifdef LOCKF_DEBUG
1310 		if (lockf_debug & 1) {
1311 			if (lock->lf_type != F_UNLCK)
1312 				lf_print("lf_activate_lock: activated", lock);
1313 			else
1314 				lf_print("lf_activate_lock: unlocked", lock);
1315 			lf_printlist("lf_activate_lock", lock);
1316 		}
1317 #endif /* LOCKF_DEBUG */
1318 		if (lock->lf_type != F_UNLCK)
1319 			lf_insert_lock(state, lock);
1320 	}
1321 }
1322 
1323 /*
1324  * Cancel a pending lock request, either as a result of a signal or a
1325  * cancel request for an async lock.
1326  */
1327 static void
1328 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1329 {
1330 	struct lockf_entry_list granted;
1331 
1332 	/*
1333 	 * Note it is theoretically possible that cancelling this lock
1334 	 * may allow some other pending lock to become
1335 	 * active. Consider this case:
1336 	 *
1337 	 * Owner	Action		Result		Dependencies
1338 	 *
1339 	 * A:		lock [0..0]	succeeds
1340 	 * B:		lock [2..2]	succeeds
1341 	 * C:		lock [1..2]	blocked		C->B
1342 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1343 	 * A:		unlock [0..0]			C->B,D->C
1344 	 * C:		cancel [1..2]
1345 	 */
1346 
1347 	LIST_REMOVE(lock, lf_link);
1348 
1349 	/*
1350 	 * Removing out-going edges is simple.
1351 	 */
1352 	sx_xlock(&lf_owner_graph_lock);
1353 	lf_remove_outgoing(lock);
1354 	sx_xunlock(&lf_owner_graph_lock);
1355 
1356 	/*
1357 	 * Removing in-coming edges may allow some other lock to
1358 	 * become active - we use lf_update_dependancies to figure
1359 	 * this out.
1360 	 */
1361 	LIST_INIT(&granted);
1362 	lf_update_dependancies(state, lock, TRUE, &granted);
1363 	lf_free_lock(lock);
1364 
1365 	/*
1366 	 * Feed any newly active locks to lf_activate_lock.
1367 	 */
1368 	while (!LIST_EMPTY(&granted)) {
1369 		lock = LIST_FIRST(&granted);
1370 		LIST_REMOVE(lock, lf_link);
1371 		lf_activate_lock(state, lock);
1372 	}
1373 }
1374 
1375 /*
1376  * Set a byte-range lock.
1377  */
1378 static int
1379 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1380     void **cookiep)
1381 {
1382 	static char lockstr[] = "lockf";
1383 	int error, priority, stops_deferred;
1384 
1385 #ifdef LOCKF_DEBUG
1386 	if (lockf_debug & 1)
1387 		lf_print("lf_setlock", lock);
1388 #endif /* LOCKF_DEBUG */
1389 
1390 	/*
1391 	 * Set the priority
1392 	 */
1393 	priority = PLOCK;
1394 	if (lock->lf_type == F_WRLCK)
1395 		priority += 4;
1396 	if (!(lock->lf_flags & F_NOINTR))
1397 		priority |= PCATCH;
1398 	/*
1399 	 * Scan lock list for this file looking for locks that would block us.
1400 	 */
1401 	if (lf_getblock(state, lock)) {
1402 		/*
1403 		 * Free the structure and return if nonblocking.
1404 		 */
1405 		if ((lock->lf_flags & F_WAIT) == 0
1406 		    && lock->lf_async_task == NULL) {
1407 			lf_free_lock(lock);
1408 			error = EAGAIN;
1409 			goto out;
1410 		}
1411 
1412 		/*
1413 		 * For flock type locks, we must first remove
1414 		 * any shared locks that we hold before we sleep
1415 		 * waiting for an exclusive lock.
1416 		 */
1417 		if ((lock->lf_flags & F_FLOCK) &&
1418 		    lock->lf_type == F_WRLCK) {
1419 			lock->lf_type = F_UNLCK;
1420 			lf_activate_lock(state, lock);
1421 			lock->lf_type = F_WRLCK;
1422 		}
1423 
1424 		/*
1425 		 * We are blocked. Create edges to each blocking lock,
1426 		 * checking for deadlock using the owner graph. For
1427 		 * simplicity, we run deadlock detection for all
1428 		 * locks, posix and otherwise.
1429 		 */
1430 		sx_xlock(&lf_owner_graph_lock);
1431 		error = lf_add_outgoing(state, lock);
1432 		sx_xunlock(&lf_owner_graph_lock);
1433 
1434 		if (error) {
1435 #ifdef LOCKF_DEBUG
1436 			if (lockf_debug & 1)
1437 				lf_print("lf_setlock: deadlock", lock);
1438 #endif
1439 			lf_free_lock(lock);
1440 			goto out;
1441 		}
1442 
1443 		/*
1444 		 * We have added edges to everything that blocks
1445 		 * us. Sleep until they all go away.
1446 		 */
1447 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1448 #ifdef LOCKF_DEBUG
1449 		if (lockf_debug & 1) {
1450 			struct lockf_edge *e;
1451 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1452 				lf_print("lf_setlock: blocking on", e->le_to);
1453 				lf_printlist("lf_setlock", e->le_to);
1454 			}
1455 		}
1456 #endif /* LOCKF_DEBUG */
1457 
1458 		if ((lock->lf_flags & F_WAIT) == 0) {
1459 			/*
1460 			 * The caller requested async notification -
1461 			 * this callback happens when the blocking
1462 			 * lock is released, allowing the caller to
1463 			 * make another attempt to take the lock.
1464 			 */
1465 			*cookiep = (void *) lock;
1466 			error = EINPROGRESS;
1467 			goto out;
1468 		}
1469 
1470 		lock->lf_refs++;
1471 		stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1472 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1473 		sigallowstop(stops_deferred);
1474 		if (lf_free_lock(lock)) {
1475 			error = EDOOFUS;
1476 			goto out;
1477 		}
1478 
1479 		/*
1480 		 * We may have been awakened by a signal and/or by a
1481 		 * debugger continuing us (in which cases we must
1482 		 * remove our lock graph edges) and/or by another
1483 		 * process releasing a lock (in which case our edges
1484 		 * have already been removed and we have been moved to
1485 		 * the active list). We may also have been woken by
1486 		 * lf_purgelocks which we report to the caller as
1487 		 * EINTR. In that case, lf_purgelocks will have
1488 		 * removed our lock graph edges.
1489 		 *
1490 		 * Note that it is possible to receive a signal after
1491 		 * we were successfully woken (and moved to the active
1492 		 * list) but before we resumed execution. In this
1493 		 * case, our lf_outedges list will be clear. We
1494 		 * pretend there was no error.
1495 		 *
1496 		 * Note also, if we have been sleeping long enough, we
1497 		 * may now have incoming edges from some newer lock
1498 		 * which is waiting behind us in the queue.
1499 		 */
1500 		if (lock->lf_flags & F_INTR) {
1501 			error = EINTR;
1502 			lf_free_lock(lock);
1503 			goto out;
1504 		}
1505 		if (LIST_EMPTY(&lock->lf_outedges)) {
1506 			error = 0;
1507 		} else {
1508 			lf_cancel_lock(state, lock);
1509 			goto out;
1510 		}
1511 #ifdef LOCKF_DEBUG
1512 		if (lockf_debug & 1) {
1513 			lf_print("lf_setlock: granted", lock);
1514 		}
1515 #endif
1516 		goto out;
1517 	}
1518 	/*
1519 	 * It looks like we are going to grant the lock. First add
1520 	 * edges from any currently pending lock that the new lock
1521 	 * would block.
1522 	 */
1523 	sx_xlock(&lf_owner_graph_lock);
1524 	error = lf_add_incoming(state, lock);
1525 	sx_xunlock(&lf_owner_graph_lock);
1526 	if (error) {
1527 #ifdef LOCKF_DEBUG
1528 		if (lockf_debug & 1)
1529 			lf_print("lf_setlock: deadlock", lock);
1530 #endif
1531 		lf_free_lock(lock);
1532 		goto out;
1533 	}
1534 
1535 	/*
1536 	 * No blocks!!  Add the lock.  Note that we will
1537 	 * downgrade or upgrade any overlapping locks this
1538 	 * process already owns.
1539 	 */
1540 	lf_activate_lock(state, lock);
1541 	error = 0;
1542 out:
1543 	return (error);
1544 }
1545 
1546 /*
1547  * Remove a byte-range lock on an inode.
1548  *
1549  * Generally, find the lock (or an overlap to that lock)
1550  * and remove it (or shrink it), then wakeup anyone we can.
1551  */
1552 static int
1553 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1554 {
1555 	struct lockf_entry *overlap;
1556 
1557 	overlap = LIST_FIRST(&state->ls_active);
1558 
1559 	if (overlap == NOLOCKF)
1560 		return (0);
1561 #ifdef LOCKF_DEBUG
1562 	if (unlock->lf_type != F_UNLCK)
1563 		panic("lf_clearlock: bad type");
1564 	if (lockf_debug & 1)
1565 		lf_print("lf_clearlock", unlock);
1566 #endif /* LOCKF_DEBUG */
1567 
1568 	lf_activate_lock(state, unlock);
1569 
1570 	return (0);
1571 }
1572 
1573 /*
1574  * Check whether there is a blocking lock, and if so return its
1575  * details in '*fl'.
1576  */
1577 static int
1578 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1579 {
1580 	struct lockf_entry *block;
1581 
1582 #ifdef LOCKF_DEBUG
1583 	if (lockf_debug & 1)
1584 		lf_print("lf_getlock", lock);
1585 #endif /* LOCKF_DEBUG */
1586 
1587 	if ((block = lf_getblock(state, lock))) {
1588 		fl->l_type = block->lf_type;
1589 		fl->l_whence = SEEK_SET;
1590 		fl->l_start = block->lf_start;
1591 		if (block->lf_end == OFF_MAX)
1592 			fl->l_len = 0;
1593 		else
1594 			fl->l_len = block->lf_end - block->lf_start + 1;
1595 		fl->l_pid = block->lf_owner->lo_pid;
1596 		fl->l_sysid = block->lf_owner->lo_sysid;
1597 	} else {
1598 		fl->l_type = F_UNLCK;
1599 	}
1600 	return (0);
1601 }
1602 
1603 /*
1604  * Cancel an async lock request.
1605  */
1606 static int
1607 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1608 {
1609 	struct lockf_entry *reallock;
1610 
1611 	/*
1612 	 * We need to match this request with an existing lock
1613 	 * request.
1614 	 */
1615 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1616 		if ((void *) reallock == cookie) {
1617 			/*
1618 			 * Double-check that this lock looks right
1619 			 * (maybe use a rolling ID for the cancel
1620 			 * cookie instead?)
1621 			 */
1622 			if (!(reallock->lf_vnode == lock->lf_vnode
1623 				&& reallock->lf_start == lock->lf_start
1624 				&& reallock->lf_end == lock->lf_end)) {
1625 				return (ENOENT);
1626 			}
1627 
1628 			/*
1629 			 * Make sure this lock was async and then just
1630 			 * remove it from its wait lists.
1631 			 */
1632 			if (!reallock->lf_async_task) {
1633 				return (ENOENT);
1634 			}
1635 
1636 			/*
1637 			 * Note that since any other thread must take
1638 			 * state->ls_lock before it can possibly
1639 			 * trigger the async callback, we are safe
1640 			 * from a race with lf_wakeup_lock, i.e. we
1641 			 * can free the lock (actually our caller does
1642 			 * this).
1643 			 */
1644 			lf_cancel_lock(state, reallock);
1645 			return (0);
1646 		}
1647 	}
1648 
1649 	/*
1650 	 * We didn't find a matching lock - not much we can do here.
1651 	 */
1652 	return (ENOENT);
1653 }
1654 
1655 /*
1656  * Walk the list of locks for an inode and
1657  * return the first blocking lock.
1658  */
1659 static struct lockf_entry *
1660 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1661 {
1662 	struct lockf_entry *overlap;
1663 
1664 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1665 		/*
1666 		 * We may assume that the active list is sorted by
1667 		 * lf_start.
1668 		 */
1669 		if (overlap->lf_start > lock->lf_end)
1670 			break;
1671 		if (!lf_blocks(lock, overlap))
1672 			continue;
1673 		return (overlap);
1674 	}
1675 	return (NOLOCKF);
1676 }
1677 
1678 /*
1679  * Walk the list of locks for an inode to find an overlapping lock (if
1680  * any) and return a classification of that overlap.
1681  *
1682  * Arguments:
1683  *	*overlap	The place in the lock list to start looking
1684  *	lock		The lock which is being tested
1685  *	type		Pass 'SELF' to test only locks with the same
1686  *			owner as lock, or 'OTHER' to test only locks
1687  *			with a different owner
1688  *
1689  * Returns one of six values:
1690  *	0) no overlap
1691  *	1) overlap == lock
1692  *	2) overlap contains lock
1693  *	3) lock contains overlap
1694  *	4) overlap starts before lock
1695  *	5) overlap ends after lock
1696  *
1697  * If there is an overlapping lock, '*overlap' is set to point at the
1698  * overlapping lock.
1699  *
1700  * NOTE: this returns only the FIRST overlapping lock.  There
1701  *	 may be more than one.
1702  */
1703 static int
1704 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1705 {
1706 	struct lockf_entry *lf;
1707 	off_t start, end;
1708 	int res;
1709 
1710 	if ((*overlap) == NOLOCKF) {
1711 		return (0);
1712 	}
1713 #ifdef LOCKF_DEBUG
1714 	if (lockf_debug & 2)
1715 		lf_print("lf_findoverlap: looking for overlap in", lock);
1716 #endif /* LOCKF_DEBUG */
1717 	start = lock->lf_start;
1718 	end = lock->lf_end;
1719 	res = 0;
1720 	while (*overlap) {
1721 		lf = *overlap;
1722 		if (lf->lf_start > end)
1723 			break;
1724 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1725 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1726 			*overlap = LIST_NEXT(lf, lf_link);
1727 			continue;
1728 		}
1729 #ifdef LOCKF_DEBUG
1730 		if (lockf_debug & 2)
1731 			lf_print("\tchecking", lf);
1732 #endif /* LOCKF_DEBUG */
1733 		/*
1734 		 * OK, check for overlap
1735 		 *
1736 		 * Six cases:
1737 		 *	0) no overlap
1738 		 *	1) overlap == lock
1739 		 *	2) overlap contains lock
1740 		 *	3) lock contains overlap
1741 		 *	4) overlap starts before lock
1742 		 *	5) overlap ends after lock
1743 		 */
1744 		if (start > lf->lf_end) {
1745 			/* Case 0 */
1746 #ifdef LOCKF_DEBUG
1747 			if (lockf_debug & 2)
1748 				printf("no overlap\n");
1749 #endif /* LOCKF_DEBUG */
1750 			*overlap = LIST_NEXT(lf, lf_link);
1751 			continue;
1752 		}
1753 		if (lf->lf_start == start && lf->lf_end == end) {
1754 			/* Case 1 */
1755 #ifdef LOCKF_DEBUG
1756 			if (lockf_debug & 2)
1757 				printf("overlap == lock\n");
1758 #endif /* LOCKF_DEBUG */
1759 			res = 1;
1760 			break;
1761 		}
1762 		if (lf->lf_start <= start && lf->lf_end >= end) {
1763 			/* Case 2 */
1764 #ifdef LOCKF_DEBUG
1765 			if (lockf_debug & 2)
1766 				printf("overlap contains lock\n");
1767 #endif /* LOCKF_DEBUG */
1768 			res = 2;
1769 			break;
1770 		}
1771 		if (start <= lf->lf_start && end >= lf->lf_end) {
1772 			/* Case 3 */
1773 #ifdef LOCKF_DEBUG
1774 			if (lockf_debug & 2)
1775 				printf("lock contains overlap\n");
1776 #endif /* LOCKF_DEBUG */
1777 			res = 3;
1778 			break;
1779 		}
1780 		if (lf->lf_start < start && lf->lf_end >= start) {
1781 			/* Case 4 */
1782 #ifdef LOCKF_DEBUG
1783 			if (lockf_debug & 2)
1784 				printf("overlap starts before lock\n");
1785 #endif /* LOCKF_DEBUG */
1786 			res = 4;
1787 			break;
1788 		}
1789 		if (lf->lf_start > start && lf->lf_end > end) {
1790 			/* Case 5 */
1791 #ifdef LOCKF_DEBUG
1792 			if (lockf_debug & 2)
1793 				printf("overlap ends after lock\n");
1794 #endif /* LOCKF_DEBUG */
1795 			res = 5;
1796 			break;
1797 		}
1798 		panic("lf_findoverlap: default");
1799 	}
1800 	return (res);
1801 }
1802 
1803 /*
1804  * Split an the existing 'lock1', based on the extent of the lock
1805  * described by 'lock2'. The existing lock should cover 'lock2'
1806  * entirely.
1807  *
1808  * Any pending locks which have been been unblocked are added to
1809  * 'granted'
1810  */
1811 static void
1812 lf_split(struct lockf *state, struct lockf_entry *lock1,
1813     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1814 {
1815 	struct lockf_entry *splitlock;
1816 
1817 #ifdef LOCKF_DEBUG
1818 	if (lockf_debug & 2) {
1819 		lf_print("lf_split", lock1);
1820 		lf_print("splitting from", lock2);
1821 	}
1822 #endif /* LOCKF_DEBUG */
1823 	/*
1824 	 * Check to see if we don't need to split at all.
1825 	 */
1826 	if (lock1->lf_start == lock2->lf_start) {
1827 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1828 		return;
1829 	}
1830 	if (lock1->lf_end == lock2->lf_end) {
1831 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1832 		return;
1833 	}
1834 	/*
1835 	 * Make a new lock consisting of the last part of
1836 	 * the encompassing lock.
1837 	 */
1838 	splitlock = lf_alloc_lock(lock1->lf_owner);
1839 	memcpy(splitlock, lock1, sizeof *splitlock);
1840 	splitlock->lf_refs = 1;
1841 	if (splitlock->lf_flags & F_REMOTE)
1842 		vref(splitlock->lf_vnode);
1843 
1844 	/*
1845 	 * This cannot cause a deadlock since any edges we would add
1846 	 * to splitlock already exist in lock1. We must be sure to add
1847 	 * necessary dependencies to splitlock before we reduce lock1
1848 	 * otherwise we may accidentally grant a pending lock that
1849 	 * was blocked by the tail end of lock1.
1850 	 */
1851 	splitlock->lf_start = lock2->lf_end + 1;
1852 	LIST_INIT(&splitlock->lf_outedges);
1853 	LIST_INIT(&splitlock->lf_inedges);
1854 	sx_xlock(&lf_owner_graph_lock);
1855 	lf_add_incoming(state, splitlock);
1856 	sx_xunlock(&lf_owner_graph_lock);
1857 
1858 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1859 
1860 	/*
1861 	 * OK, now link it in
1862 	 */
1863 	lf_insert_lock(state, splitlock);
1864 }
1865 
1866 struct lockdesc {
1867 	STAILQ_ENTRY(lockdesc) link;
1868 	struct vnode *vp;
1869 	struct flock fl;
1870 };
1871 STAILQ_HEAD(lockdesclist, lockdesc);
1872 
1873 int
1874 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1875 {
1876 	struct lockf *ls;
1877 	struct lockf_entry *lf;
1878 	struct lockdesc *ldesc;
1879 	struct lockdesclist locks;
1880 	int error;
1881 
1882 	/*
1883 	 * In order to keep the locking simple, we iterate over the
1884 	 * active lock lists to build a list of locks that need
1885 	 * releasing. We then call the iterator for each one in turn.
1886 	 *
1887 	 * We take an extra reference to the vnode for the duration to
1888 	 * make sure it doesn't go away before we are finished.
1889 	 */
1890 	STAILQ_INIT(&locks);
1891 	sx_xlock(&lf_lock_states_lock);
1892 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1893 		sx_xlock(&ls->ls_lock);
1894 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1895 			if (lf->lf_owner->lo_sysid != sysid)
1896 				continue;
1897 
1898 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1899 			    M_WAITOK);
1900 			ldesc->vp = lf->lf_vnode;
1901 			vref(ldesc->vp);
1902 			ldesc->fl.l_start = lf->lf_start;
1903 			if (lf->lf_end == OFF_MAX)
1904 				ldesc->fl.l_len = 0;
1905 			else
1906 				ldesc->fl.l_len =
1907 					lf->lf_end - lf->lf_start + 1;
1908 			ldesc->fl.l_whence = SEEK_SET;
1909 			ldesc->fl.l_type = F_UNLCK;
1910 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1911 			ldesc->fl.l_sysid = sysid;
1912 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1913 		}
1914 		sx_xunlock(&ls->ls_lock);
1915 	}
1916 	sx_xunlock(&lf_lock_states_lock);
1917 
1918 	/*
1919 	 * Call the iterator function for each lock in turn. If the
1920 	 * iterator returns an error code, just free the rest of the
1921 	 * lockdesc structures.
1922 	 */
1923 	error = 0;
1924 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1925 		STAILQ_REMOVE_HEAD(&locks, link);
1926 		if (!error)
1927 			error = fn(ldesc->vp, &ldesc->fl, arg);
1928 		vrele(ldesc->vp);
1929 		free(ldesc, M_LOCKF);
1930 	}
1931 
1932 	return (error);
1933 }
1934 
1935 int
1936 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1937 {
1938 	struct lockf *ls;
1939 	struct lockf_entry *lf;
1940 	struct lockdesc *ldesc;
1941 	struct lockdesclist locks;
1942 	int error;
1943 
1944 	/*
1945 	 * In order to keep the locking simple, we iterate over the
1946 	 * active lock lists to build a list of locks that need
1947 	 * releasing. We then call the iterator for each one in turn.
1948 	 *
1949 	 * We take an extra reference to the vnode for the duration to
1950 	 * make sure it doesn't go away before we are finished.
1951 	 */
1952 	STAILQ_INIT(&locks);
1953 	VI_LOCK(vp);
1954 	ls = vp->v_lockf;
1955 	if (!ls) {
1956 		VI_UNLOCK(vp);
1957 		return (0);
1958 	}
1959 	ls->ls_threads++;
1960 	VI_UNLOCK(vp);
1961 
1962 	sx_xlock(&ls->ls_lock);
1963 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1964 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1965 		    M_WAITOK);
1966 		ldesc->vp = lf->lf_vnode;
1967 		vref(ldesc->vp);
1968 		ldesc->fl.l_start = lf->lf_start;
1969 		if (lf->lf_end == OFF_MAX)
1970 			ldesc->fl.l_len = 0;
1971 		else
1972 			ldesc->fl.l_len =
1973 				lf->lf_end - lf->lf_start + 1;
1974 		ldesc->fl.l_whence = SEEK_SET;
1975 		ldesc->fl.l_type = F_UNLCK;
1976 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1977 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1978 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1979 	}
1980 	sx_xunlock(&ls->ls_lock);
1981 	VI_LOCK(vp);
1982 	ls->ls_threads--;
1983 	wakeup(ls);
1984 	VI_UNLOCK(vp);
1985 
1986 	/*
1987 	 * Call the iterator function for each lock in turn. If the
1988 	 * iterator returns an error code, just free the rest of the
1989 	 * lockdesc structures.
1990 	 */
1991 	error = 0;
1992 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1993 		STAILQ_REMOVE_HEAD(&locks, link);
1994 		if (!error)
1995 			error = fn(ldesc->vp, &ldesc->fl, arg);
1996 		vrele(ldesc->vp);
1997 		free(ldesc, M_LOCKF);
1998 	}
1999 
2000 	return (error);
2001 }
2002 
2003 static int
2004 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2005 {
2006 
2007 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2008 	return (0);
2009 }
2010 
2011 void
2012 lf_clearremotesys(int sysid)
2013 {
2014 
2015 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2016 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2017 }
2018 
2019 int
2020 lf_countlocks(int sysid)
2021 {
2022 	int i;
2023 	struct lock_owner *lo;
2024 	int count;
2025 
2026 	count = 0;
2027 	sx_xlock(&lf_lock_owners_lock);
2028 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2029 		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2030 			if (lo->lo_sysid == sysid)
2031 				count += lo->lo_refs;
2032 	sx_xunlock(&lf_lock_owners_lock);
2033 
2034 	return (count);
2035 }
2036 
2037 #ifdef LOCKF_DEBUG
2038 
2039 /*
2040  * Return non-zero if y is reachable from x using a brute force
2041  * search. If reachable and path is non-null, return the route taken
2042  * in path.
2043  */
2044 static int
2045 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2046     struct owner_vertex_list *path)
2047 {
2048 	struct owner_edge *e;
2049 
2050 	if (x == y) {
2051 		if (path)
2052 			TAILQ_INSERT_HEAD(path, x, v_link);
2053 		return 1;
2054 	}
2055 
2056 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2057 		if (graph_reaches(e->e_to, y, path)) {
2058 			if (path)
2059 				TAILQ_INSERT_HEAD(path, x, v_link);
2060 			return 1;
2061 		}
2062 	}
2063 	return 0;
2064 }
2065 
2066 /*
2067  * Perform consistency checks on the graph. Make sure the values of
2068  * v_order are correct. If checkorder is non-zero, check no vertex can
2069  * reach any other vertex with a smaller order.
2070  */
2071 static void
2072 graph_check(struct owner_graph *g, int checkorder)
2073 {
2074 	int i, j;
2075 
2076 	for (i = 0; i < g->g_size; i++) {
2077 		if (!g->g_vertices[i]->v_owner)
2078 			continue;
2079 		KASSERT(g->g_vertices[i]->v_order == i,
2080 		    ("lock graph vertices disordered"));
2081 		if (checkorder) {
2082 			for (j = 0; j < i; j++) {
2083 				if (!g->g_vertices[j]->v_owner)
2084 					continue;
2085 				KASSERT(!graph_reaches(g->g_vertices[i],
2086 					g->g_vertices[j], NULL),
2087 				    ("lock graph vertices disordered"));
2088 			}
2089 		}
2090 	}
2091 }
2092 
2093 static void
2094 graph_print_vertices(struct owner_vertex_list *set)
2095 {
2096 	struct owner_vertex *v;
2097 
2098 	printf("{ ");
2099 	TAILQ_FOREACH(v, set, v_link) {
2100 		printf("%d:", v->v_order);
2101 		lf_print_owner(v->v_owner);
2102 		if (TAILQ_NEXT(v, v_link))
2103 			printf(", ");
2104 	}
2105 	printf(" }\n");
2106 }
2107 
2108 #endif
2109 
2110 /*
2111  * Calculate the sub-set of vertices v from the affected region [y..x]
2112  * where v is reachable from y. Return -1 if a loop was detected
2113  * (i.e. x is reachable from y, otherwise the number of vertices in
2114  * this subset.
2115  */
2116 static int
2117 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2118     struct owner_vertex *y, struct owner_vertex_list *delta)
2119 {
2120 	uint32_t gen;
2121 	struct owner_vertex *v;
2122 	struct owner_edge *e;
2123 	int n;
2124 
2125 	/*
2126 	 * We start with a set containing just y. Then for each vertex
2127 	 * v in the set so far unprocessed, we add each vertex that v
2128 	 * has an out-edge to and that is within the affected region
2129 	 * [y..x]. If we see the vertex x on our travels, stop
2130 	 * immediately.
2131 	 */
2132 	TAILQ_INIT(delta);
2133 	TAILQ_INSERT_TAIL(delta, y, v_link);
2134 	v = y;
2135 	n = 1;
2136 	gen = g->g_gen;
2137 	while (v) {
2138 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2139 			if (e->e_to == x)
2140 				return -1;
2141 			if (e->e_to->v_order < x->v_order
2142 			    && e->e_to->v_gen != gen) {
2143 				e->e_to->v_gen = gen;
2144 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2145 				n++;
2146 			}
2147 		}
2148 		v = TAILQ_NEXT(v, v_link);
2149 	}
2150 
2151 	return (n);
2152 }
2153 
2154 /*
2155  * Calculate the sub-set of vertices v from the affected region [y..x]
2156  * where v reaches x. Return the number of vertices in this subset.
2157  */
2158 static int
2159 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2160     struct owner_vertex *y, struct owner_vertex_list *delta)
2161 {
2162 	uint32_t gen;
2163 	struct owner_vertex *v;
2164 	struct owner_edge *e;
2165 	int n;
2166 
2167 	/*
2168 	 * We start with a set containing just x. Then for each vertex
2169 	 * v in the set so far unprocessed, we add each vertex that v
2170 	 * has an in-edge from and that is within the affected region
2171 	 * [y..x].
2172 	 */
2173 	TAILQ_INIT(delta);
2174 	TAILQ_INSERT_TAIL(delta, x, v_link);
2175 	v = x;
2176 	n = 1;
2177 	gen = g->g_gen;
2178 	while (v) {
2179 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2180 			if (e->e_from->v_order > y->v_order
2181 			    && e->e_from->v_gen != gen) {
2182 				e->e_from->v_gen = gen;
2183 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2184 				n++;
2185 			}
2186 		}
2187 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2188 	}
2189 
2190 	return (n);
2191 }
2192 
2193 static int
2194 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2195 {
2196 	struct owner_vertex *v;
2197 	int i, j;
2198 
2199 	TAILQ_FOREACH(v, set, v_link) {
2200 		for (i = n;
2201 		     i > 0 && indices[i - 1] > v->v_order; i--)
2202 			;
2203 		for (j = n - 1; j >= i; j--)
2204 			indices[j + 1] = indices[j];
2205 		indices[i] = v->v_order;
2206 		n++;
2207 	}
2208 
2209 	return (n);
2210 }
2211 
2212 static int
2213 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2214     struct owner_vertex_list *set)
2215 {
2216 	struct owner_vertex *v, *vlowest;
2217 
2218 	while (!TAILQ_EMPTY(set)) {
2219 		vlowest = NULL;
2220 		TAILQ_FOREACH(v, set, v_link) {
2221 			if (!vlowest || v->v_order < vlowest->v_order)
2222 				vlowest = v;
2223 		}
2224 		TAILQ_REMOVE(set, vlowest, v_link);
2225 		vlowest->v_order = indices[nextunused];
2226 		g->g_vertices[vlowest->v_order] = vlowest;
2227 		nextunused++;
2228 	}
2229 
2230 	return (nextunused);
2231 }
2232 
2233 static int
2234 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2235     struct owner_vertex *y)
2236 {
2237 	struct owner_edge *e;
2238 	struct owner_vertex_list deltaF, deltaB;
2239 	int nF, nB, n, vi, i;
2240 	int *indices;
2241 
2242 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2243 
2244 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2245 		if (e->e_to == y) {
2246 			e->e_refs++;
2247 			return (0);
2248 		}
2249 	}
2250 
2251 #ifdef LOCKF_DEBUG
2252 	if (lockf_debug & 8) {
2253 		printf("adding edge %d:", x->v_order);
2254 		lf_print_owner(x->v_owner);
2255 		printf(" -> %d:", y->v_order);
2256 		lf_print_owner(y->v_owner);
2257 		printf("\n");
2258 	}
2259 #endif
2260 	if (y->v_order < x->v_order) {
2261 		/*
2262 		 * The new edge violates the order. First find the set
2263 		 * of affected vertices reachable from y (deltaF) and
2264 		 * the set of affect vertices affected that reach x
2265 		 * (deltaB), using the graph generation number to
2266 		 * detect whether we have visited a given vertex
2267 		 * already. We re-order the graph so that each vertex
2268 		 * in deltaB appears before each vertex in deltaF.
2269 		 *
2270 		 * If x is a member of deltaF, then the new edge would
2271 		 * create a cycle. Otherwise, we may assume that
2272 		 * deltaF and deltaB are disjoint.
2273 		 */
2274 		g->g_gen++;
2275 		if (g->g_gen == 0) {
2276 			/*
2277 			 * Generation wrap.
2278 			 */
2279 			for (vi = 0; vi < g->g_size; vi++) {
2280 				g->g_vertices[vi]->v_gen = 0;
2281 			}
2282 			g->g_gen++;
2283 		}
2284 		nF = graph_delta_forward(g, x, y, &deltaF);
2285 		if (nF < 0) {
2286 #ifdef LOCKF_DEBUG
2287 			if (lockf_debug & 8) {
2288 				struct owner_vertex_list path;
2289 				printf("deadlock: ");
2290 				TAILQ_INIT(&path);
2291 				graph_reaches(y, x, &path);
2292 				graph_print_vertices(&path);
2293 			}
2294 #endif
2295 			return (EDEADLK);
2296 		}
2297 
2298 #ifdef LOCKF_DEBUG
2299 		if (lockf_debug & 8) {
2300 			printf("re-ordering graph vertices\n");
2301 			printf("deltaF = ");
2302 			graph_print_vertices(&deltaF);
2303 		}
2304 #endif
2305 
2306 		nB = graph_delta_backward(g, x, y, &deltaB);
2307 
2308 #ifdef LOCKF_DEBUG
2309 		if (lockf_debug & 8) {
2310 			printf("deltaB = ");
2311 			graph_print_vertices(&deltaB);
2312 		}
2313 #endif
2314 
2315 		/*
2316 		 * We first build a set of vertex indices (vertex
2317 		 * order values) that we may use, then we re-assign
2318 		 * orders first to those vertices in deltaB, then to
2319 		 * deltaF. Note that the contents of deltaF and deltaB
2320 		 * may be partially disordered - we perform an
2321 		 * insertion sort while building our index set.
2322 		 */
2323 		indices = g->g_indexbuf;
2324 		n = graph_add_indices(indices, 0, &deltaF);
2325 		graph_add_indices(indices, n, &deltaB);
2326 
2327 		/*
2328 		 * We must also be sure to maintain the relative
2329 		 * ordering of deltaF and deltaB when re-assigning
2330 		 * vertices. We do this by iteratively removing the
2331 		 * lowest ordered element from the set and assigning
2332 		 * it the next value from our new ordering.
2333 		 */
2334 		i = graph_assign_indices(g, indices, 0, &deltaB);
2335 		graph_assign_indices(g, indices, i, &deltaF);
2336 
2337 #ifdef LOCKF_DEBUG
2338 		if (lockf_debug & 8) {
2339 			struct owner_vertex_list set;
2340 			TAILQ_INIT(&set);
2341 			for (i = 0; i < nB + nF; i++)
2342 				TAILQ_INSERT_TAIL(&set,
2343 				    g->g_vertices[indices[i]], v_link);
2344 			printf("new ordering = ");
2345 			graph_print_vertices(&set);
2346 		}
2347 #endif
2348 	}
2349 
2350 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2351 
2352 #ifdef LOCKF_DEBUG
2353 	if (lockf_debug & 8) {
2354 		graph_check(g, TRUE);
2355 	}
2356 #endif
2357 
2358 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2359 
2360 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2361 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2362 	e->e_refs = 1;
2363 	e->e_from = x;
2364 	e->e_to = y;
2365 
2366 	return (0);
2367 }
2368 
2369 /*
2370  * Remove an edge x->y from the graph.
2371  */
2372 static void
2373 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2374     struct owner_vertex *y)
2375 {
2376 	struct owner_edge *e;
2377 
2378 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2379 
2380 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2381 		if (e->e_to == y)
2382 			break;
2383 	}
2384 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2385 
2386 	e->e_refs--;
2387 	if (e->e_refs == 0) {
2388 #ifdef LOCKF_DEBUG
2389 		if (lockf_debug & 8) {
2390 			printf("removing edge %d:", x->v_order);
2391 			lf_print_owner(x->v_owner);
2392 			printf(" -> %d:", y->v_order);
2393 			lf_print_owner(y->v_owner);
2394 			printf("\n");
2395 		}
2396 #endif
2397 		LIST_REMOVE(e, e_outlink);
2398 		LIST_REMOVE(e, e_inlink);
2399 		free(e, M_LOCKF);
2400 	}
2401 }
2402 
2403 /*
2404  * Allocate a vertex from the free list. Return ENOMEM if there are
2405  * none.
2406  */
2407 static struct owner_vertex *
2408 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2409 {
2410 	struct owner_vertex *v;
2411 
2412 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2413 
2414 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2415 	if (g->g_size == g->g_space) {
2416 		g->g_vertices = realloc(g->g_vertices,
2417 		    2 * g->g_space * sizeof(struct owner_vertex *),
2418 		    M_LOCKF, M_WAITOK);
2419 		free(g->g_indexbuf, M_LOCKF);
2420 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2421 		    M_LOCKF, M_WAITOK);
2422 		g->g_space = 2 * g->g_space;
2423 	}
2424 	v->v_order = g->g_size;
2425 	v->v_gen = g->g_gen;
2426 	g->g_vertices[g->g_size] = v;
2427 	g->g_size++;
2428 
2429 	LIST_INIT(&v->v_outedges);
2430 	LIST_INIT(&v->v_inedges);
2431 	v->v_owner = lo;
2432 
2433 	return (v);
2434 }
2435 
2436 static void
2437 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2438 {
2439 	struct owner_vertex *w;
2440 	int i;
2441 
2442 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2443 
2444 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2445 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2446 
2447 	/*
2448 	 * Remove from the graph's array and close up the gap,
2449 	 * renumbering the other vertices.
2450 	 */
2451 	for (i = v->v_order + 1; i < g->g_size; i++) {
2452 		w = g->g_vertices[i];
2453 		w->v_order--;
2454 		g->g_vertices[i - 1] = w;
2455 	}
2456 	g->g_size--;
2457 
2458 	free(v, M_LOCKF);
2459 }
2460 
2461 static struct owner_graph *
2462 graph_init(struct owner_graph *g)
2463 {
2464 
2465 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2466 	    M_LOCKF, M_WAITOK);
2467 	g->g_size = 0;
2468 	g->g_space = 10;
2469 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2470 	g->g_gen = 0;
2471 
2472 	return (g);
2473 }
2474 
2475 #ifdef LOCKF_DEBUG
2476 /*
2477  * Print description of a lock owner
2478  */
2479 static void
2480 lf_print_owner(struct lock_owner *lo)
2481 {
2482 
2483 	if (lo->lo_flags & F_REMOTE) {
2484 		printf("remote pid %d, system %d",
2485 		    lo->lo_pid, lo->lo_sysid);
2486 	} else if (lo->lo_flags & F_FLOCK) {
2487 		printf("file %p", lo->lo_id);
2488 	} else {
2489 		printf("local pid %d", lo->lo_pid);
2490 	}
2491 }
2492 
2493 /*
2494  * Print out a lock.
2495  */
2496 static void
2497 lf_print(char *tag, struct lockf_entry *lock)
2498 {
2499 
2500 	printf("%s: lock %p for ", tag, (void *)lock);
2501 	lf_print_owner(lock->lf_owner);
2502 	if (lock->lf_inode != (struct inode *)0)
2503 		printf(" in ino %ju on dev <%s>,",
2504 		    (uintmax_t)lock->lf_inode->i_number,
2505 		    devtoname(ITODEV(lock->lf_inode)));
2506 	printf(" %s, start %jd, end ",
2507 	    lock->lf_type == F_RDLCK ? "shared" :
2508 	    lock->lf_type == F_WRLCK ? "exclusive" :
2509 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2510 	    (intmax_t)lock->lf_start);
2511 	if (lock->lf_end == OFF_MAX)
2512 		printf("EOF");
2513 	else
2514 		printf("%jd", (intmax_t)lock->lf_end);
2515 	if (!LIST_EMPTY(&lock->lf_outedges))
2516 		printf(" block %p\n",
2517 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2518 	else
2519 		printf("\n");
2520 }
2521 
2522 static void
2523 lf_printlist(char *tag, struct lockf_entry *lock)
2524 {
2525 	struct lockf_entry *lf, *blk;
2526 	struct lockf_edge *e;
2527 
2528 	if (lock->lf_inode == (struct inode *)0)
2529 		return;
2530 
2531 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2532 	    tag, (uintmax_t)lock->lf_inode->i_number,
2533 	    devtoname(ITODEV(lock->lf_inode)));
2534 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2535 		printf("\tlock %p for ",(void *)lf);
2536 		lf_print_owner(lock->lf_owner);
2537 		printf(", %s, start %jd, end %jd",
2538 		    lf->lf_type == F_RDLCK ? "shared" :
2539 		    lf->lf_type == F_WRLCK ? "exclusive" :
2540 		    lf->lf_type == F_UNLCK ? "unlock" :
2541 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2542 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2543 			blk = e->le_to;
2544 			printf("\n\t\tlock request %p for ", (void *)blk);
2545 			lf_print_owner(blk->lf_owner);
2546 			printf(", %s, start %jd, end %jd",
2547 			    blk->lf_type == F_RDLCK ? "shared" :
2548 			    blk->lf_type == F_WRLCK ? "exclusive" :
2549 			    blk->lf_type == F_UNLCK ? "unlock" :
2550 			    "unknown", (intmax_t)blk->lf_start,
2551 			    (intmax_t)blk->lf_end);
2552 			if (!LIST_EMPTY(&blk->lf_inedges))
2553 				panic("lf_printlist: bad list");
2554 		}
2555 		printf("\n");
2556 	}
2557 }
2558 #endif /* LOCKF_DEBUG */
2559