1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 5 * Authors: Doug Rabson <dfr@rabson.org> 6 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (c) 1982, 1986, 1989, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * This code is derived from software contributed to Berkeley by 34 * Scooter Morris at Genentech Inc. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 61 */ 62 63 #include <sys/cdefs.h> 64 __FBSDID("$FreeBSD$"); 65 66 #include "opt_debug_lockf.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/hash.h> 71 #include <sys/jail.h> 72 #include <sys/kernel.h> 73 #include <sys/limits.h> 74 #include <sys/lock.h> 75 #include <sys/mount.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/sbuf.h> 79 #include <sys/stat.h> 80 #include <sys/sx.h> 81 #include <sys/unistd.h> 82 #include <sys/user.h> 83 #include <sys/vnode.h> 84 #include <sys/malloc.h> 85 #include <sys/fcntl.h> 86 #include <sys/lockf.h> 87 #include <sys/taskqueue.h> 88 89 #ifdef LOCKF_DEBUG 90 #include <sys/sysctl.h> 91 92 static int lockf_debug = 0; /* control debug output */ 93 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 94 #endif 95 96 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 97 98 struct owner_edge; 99 struct owner_vertex; 100 struct owner_vertex_list; 101 struct owner_graph; 102 103 #define NOLOCKF (struct lockf_entry *)0 104 #define SELF 0x1 105 #define OTHERS 0x2 106 static void lf_init(void *); 107 static int lf_hash_owner(caddr_t, struct vnode *, struct flock *, int); 108 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 109 int); 110 static struct lockf_entry * 111 lf_alloc_lock(struct lock_owner *); 112 static int lf_free_lock(struct lockf_entry *); 113 static int lf_clearlock(struct lockf *, struct lockf_entry *); 114 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 115 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 116 static void lf_free_edge(struct lockf_edge *); 117 static struct lockf_edge * 118 lf_alloc_edge(void); 119 static void lf_alloc_vertex(struct lockf_entry *); 120 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 121 static void lf_remove_edge(struct lockf_edge *); 122 static void lf_remove_outgoing(struct lockf_entry *); 123 static void lf_remove_incoming(struct lockf_entry *); 124 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 125 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 126 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 127 int); 128 static struct lockf_entry * 129 lf_getblock(struct lockf *, struct lockf_entry *); 130 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 131 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 132 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 133 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 134 int all, struct lockf_entry_list *); 135 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 136 struct lockf_entry_list*); 137 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 138 struct lockf_entry_list*); 139 static int lf_setlock(struct lockf *, struct lockf_entry *, 140 struct vnode *, void **cookiep); 141 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 142 static void lf_split(struct lockf *, struct lockf_entry *, 143 struct lockf_entry *, struct lockf_entry_list *); 144 #ifdef LOCKF_DEBUG 145 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 146 struct owner_vertex_list *path); 147 static void graph_check(struct owner_graph *g, int checkorder); 148 static void graph_print_vertices(struct owner_vertex_list *set); 149 #endif 150 static int graph_delta_forward(struct owner_graph *g, 151 struct owner_vertex *x, struct owner_vertex *y, 152 struct owner_vertex_list *delta); 153 static int graph_delta_backward(struct owner_graph *g, 154 struct owner_vertex *x, struct owner_vertex *y, 155 struct owner_vertex_list *delta); 156 static int graph_add_indices(int *indices, int n, 157 struct owner_vertex_list *set); 158 static int graph_assign_indices(struct owner_graph *g, int *indices, 159 int nextunused, struct owner_vertex_list *set); 160 static int graph_add_edge(struct owner_graph *g, 161 struct owner_vertex *x, struct owner_vertex *y); 162 static void graph_remove_edge(struct owner_graph *g, 163 struct owner_vertex *x, struct owner_vertex *y); 164 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 165 struct lock_owner *lo); 166 static void graph_free_vertex(struct owner_graph *g, 167 struct owner_vertex *v); 168 static struct owner_graph * graph_init(struct owner_graph *g); 169 #ifdef LOCKF_DEBUG 170 static void lf_print(char *, struct lockf_entry *); 171 static void lf_printlist(char *, struct lockf_entry *); 172 static void lf_print_owner(struct lock_owner *); 173 #endif 174 175 /* 176 * This structure is used to keep track of both local and remote lock 177 * owners. The lf_owner field of the struct lockf_entry points back at 178 * the lock owner structure. Each possible lock owner (local proc for 179 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 180 * pair for remote locks) is represented by a unique instance of 181 * struct lock_owner. 182 * 183 * If a lock owner has a lock that blocks some other lock or a lock 184 * that is waiting for some other lock, it also has a vertex in the 185 * owner_graph below. 186 * 187 * Locks: 188 * (s) locked by state->ls_lock 189 * (S) locked by lf_lock_states_lock 190 * (g) locked by lf_owner_graph_lock 191 * (c) const until freeing 192 */ 193 #define LOCK_OWNER_HASH_SIZE 256 194 195 struct lock_owner { 196 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 197 int lo_refs; /* (l) Number of locks referring to this */ 198 int lo_flags; /* (c) Flags passed to lf_advlock */ 199 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 200 pid_t lo_pid; /* (c) Process Id of the lock owner */ 201 int lo_sysid; /* (c) System Id of the lock owner */ 202 int lo_hash; /* (c) Used to lock the appropriate chain */ 203 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 204 }; 205 206 LIST_HEAD(lock_owner_list, lock_owner); 207 208 struct lock_owner_chain { 209 struct sx lock; 210 struct lock_owner_list list; 211 }; 212 213 static struct sx lf_lock_states_lock; 214 static struct lockf_list lf_lock_states; /* (S) */ 215 static struct lock_owner_chain lf_lock_owners[LOCK_OWNER_HASH_SIZE]; 216 217 /* 218 * Structures for deadlock detection. 219 * 220 * We have two types of directed graph, the first is the set of locks, 221 * both active and pending on a vnode. Within this graph, active locks 222 * are terminal nodes in the graph (i.e. have no out-going 223 * edges). Pending locks have out-going edges to each blocking active 224 * lock that prevents the lock from being granted and also to each 225 * older pending lock that would block them if it was active. The 226 * graph for each vnode is naturally acyclic; new edges are only ever 227 * added to or from new nodes (either new pending locks which only add 228 * out-going edges or new active locks which only add in-coming edges) 229 * therefore they cannot create loops in the lock graph. 230 * 231 * The second graph is a global graph of lock owners. Each lock owner 232 * is a vertex in that graph and an edge is added to the graph 233 * whenever an edge is added to a vnode graph, with end points 234 * corresponding to owner of the new pending lock and the owner of the 235 * lock upon which it waits. In order to prevent deadlock, we only add 236 * an edge to this graph if the new edge would not create a cycle. 237 * 238 * The lock owner graph is topologically sorted, i.e. if a node has 239 * any outgoing edges, then it has an order strictly less than any 240 * node to which it has an outgoing edge. We preserve this ordering 241 * (and detect cycles) on edge insertion using Algorithm PK from the 242 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 243 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 244 * No. 1.7) 245 */ 246 struct owner_vertex; 247 248 struct owner_edge { 249 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 250 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 251 int e_refs; /* (g) number of times added */ 252 struct owner_vertex *e_from; /* (c) out-going from here */ 253 struct owner_vertex *e_to; /* (c) in-coming to here */ 254 }; 255 LIST_HEAD(owner_edge_list, owner_edge); 256 257 struct owner_vertex { 258 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 259 uint32_t v_gen; /* (g) workspace for edge insertion */ 260 int v_order; /* (g) order of vertex in graph */ 261 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 262 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 263 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 264 }; 265 TAILQ_HEAD(owner_vertex_list, owner_vertex); 266 267 struct owner_graph { 268 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 269 int g_size; /* (g) number of vertices */ 270 int g_space; /* (g) space allocated for vertices */ 271 int *g_indexbuf; /* (g) workspace for loop detection */ 272 uint32_t g_gen; /* (g) increment when re-ordering */ 273 }; 274 275 static struct sx lf_owner_graph_lock; 276 static struct owner_graph lf_owner_graph; 277 278 /* 279 * Initialise various structures and locks. 280 */ 281 static void 282 lf_init(void *dummy) 283 { 284 int i; 285 286 sx_init(&lf_lock_states_lock, "lock states lock"); 287 LIST_INIT(&lf_lock_states); 288 289 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 290 sx_init(&lf_lock_owners[i].lock, "lock owners lock"); 291 LIST_INIT(&lf_lock_owners[i].list); 292 } 293 294 sx_init(&lf_owner_graph_lock, "owner graph lock"); 295 graph_init(&lf_owner_graph); 296 } 297 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 298 299 /* 300 * Generate a hash value for a lock owner. 301 */ 302 static int 303 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags) 304 { 305 uint32_t h; 306 307 if (flags & F_REMOTE) { 308 h = HASHSTEP(0, fl->l_pid); 309 h = HASHSTEP(h, fl->l_sysid); 310 } else if (flags & F_FLOCK) { 311 h = ((uintptr_t) id) >> 7; 312 } else { 313 h = ((uintptr_t) vp) >> 7; 314 } 315 316 return (h % LOCK_OWNER_HASH_SIZE); 317 } 318 319 /* 320 * Return true if a lock owner matches the details passed to 321 * lf_advlock. 322 */ 323 static int 324 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 325 int flags) 326 { 327 if (flags & F_REMOTE) { 328 return lo->lo_pid == fl->l_pid 329 && lo->lo_sysid == fl->l_sysid; 330 } else { 331 return lo->lo_id == id; 332 } 333 } 334 335 static struct lockf_entry * 336 lf_alloc_lock(struct lock_owner *lo) 337 { 338 struct lockf_entry *lf; 339 340 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 341 342 #ifdef LOCKF_DEBUG 343 if (lockf_debug & 4) 344 printf("Allocated lock %p\n", lf); 345 #endif 346 if (lo) { 347 sx_xlock(&lf_lock_owners[lo->lo_hash].lock); 348 lo->lo_refs++; 349 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock); 350 lf->lf_owner = lo; 351 } 352 353 return (lf); 354 } 355 356 static int 357 lf_free_lock(struct lockf_entry *lock) 358 { 359 struct sx *chainlock; 360 361 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 362 if (--lock->lf_refs > 0) 363 return (0); 364 /* 365 * Adjust the lock_owner reference count and 366 * reclaim the entry if this is the last lock 367 * for that owner. 368 */ 369 struct lock_owner *lo = lock->lf_owner; 370 if (lo) { 371 KASSERT(LIST_EMPTY(&lock->lf_outedges), 372 ("freeing lock with dependencies")); 373 KASSERT(LIST_EMPTY(&lock->lf_inedges), 374 ("freeing lock with dependants")); 375 chainlock = &lf_lock_owners[lo->lo_hash].lock; 376 sx_xlock(chainlock); 377 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 378 lo->lo_refs--; 379 if (lo->lo_refs == 0) { 380 #ifdef LOCKF_DEBUG 381 if (lockf_debug & 1) 382 printf("lf_free_lock: freeing lock owner %p\n", 383 lo); 384 #endif 385 if (lo->lo_vertex) { 386 sx_xlock(&lf_owner_graph_lock); 387 graph_free_vertex(&lf_owner_graph, 388 lo->lo_vertex); 389 sx_xunlock(&lf_owner_graph_lock); 390 } 391 LIST_REMOVE(lo, lo_link); 392 free(lo, M_LOCKF); 393 #ifdef LOCKF_DEBUG 394 if (lockf_debug & 4) 395 printf("Freed lock owner %p\n", lo); 396 #endif 397 } 398 sx_unlock(chainlock); 399 } 400 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 401 vrele(lock->lf_vnode); 402 lock->lf_vnode = NULL; 403 } 404 #ifdef LOCKF_DEBUG 405 if (lockf_debug & 4) 406 printf("Freed lock %p\n", lock); 407 #endif 408 free(lock, M_LOCKF); 409 return (1); 410 } 411 412 /* 413 * Advisory record locking support 414 */ 415 int 416 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 417 u_quad_t size) 418 { 419 struct lockf *state; 420 struct flock *fl = ap->a_fl; 421 struct lockf_entry *lock; 422 struct vnode *vp = ap->a_vp; 423 caddr_t id = ap->a_id; 424 int flags = ap->a_flags; 425 int hash; 426 struct lock_owner *lo; 427 off_t start, end, oadd; 428 int error; 429 430 /* 431 * Handle the F_UNLKSYS case first - no need to mess about 432 * creating a lock owner for this one. 433 */ 434 if (ap->a_op == F_UNLCKSYS) { 435 lf_clearremotesys(fl->l_sysid); 436 return (0); 437 } 438 439 /* 440 * Convert the flock structure into a start and end. 441 */ 442 switch (fl->l_whence) { 443 case SEEK_SET: 444 case SEEK_CUR: 445 /* 446 * Caller is responsible for adding any necessary offset 447 * when SEEK_CUR is used. 448 */ 449 start = fl->l_start; 450 break; 451 452 case SEEK_END: 453 if (size > OFF_MAX || 454 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 455 return (EOVERFLOW); 456 start = size + fl->l_start; 457 break; 458 459 default: 460 return (EINVAL); 461 } 462 if (start < 0) 463 return (EINVAL); 464 if (fl->l_len < 0) { 465 if (start == 0) 466 return (EINVAL); 467 end = start - 1; 468 start += fl->l_len; 469 if (start < 0) 470 return (EINVAL); 471 } else if (fl->l_len == 0) { 472 end = OFF_MAX; 473 } else { 474 oadd = fl->l_len - 1; 475 if (oadd > OFF_MAX - start) 476 return (EOVERFLOW); 477 end = start + oadd; 478 } 479 480 retry_setlock: 481 482 /* 483 * Avoid the common case of unlocking when inode has no locks. 484 */ 485 if (ap->a_op != F_SETLK && (*statep) == NULL) { 486 VI_LOCK(vp); 487 if ((*statep) == NULL) { 488 fl->l_type = F_UNLCK; 489 VI_UNLOCK(vp); 490 return (0); 491 } 492 VI_UNLOCK(vp); 493 } 494 495 /* 496 * Map our arguments to an existing lock owner or create one 497 * if this is the first time we have seen this owner. 498 */ 499 hash = lf_hash_owner(id, vp, fl, flags); 500 sx_xlock(&lf_lock_owners[hash].lock); 501 LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link) 502 if (lf_owner_matches(lo, id, fl, flags)) 503 break; 504 if (!lo) { 505 /* 506 * We initialise the lock with a reference 507 * count which matches the new lockf_entry 508 * structure created below. 509 */ 510 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 511 M_WAITOK|M_ZERO); 512 #ifdef LOCKF_DEBUG 513 if (lockf_debug & 4) 514 printf("Allocated lock owner %p\n", lo); 515 #endif 516 517 lo->lo_refs = 1; 518 lo->lo_flags = flags; 519 lo->lo_id = id; 520 lo->lo_hash = hash; 521 if (flags & F_REMOTE) { 522 lo->lo_pid = fl->l_pid; 523 lo->lo_sysid = fl->l_sysid; 524 } else if (flags & F_FLOCK) { 525 lo->lo_pid = -1; 526 lo->lo_sysid = 0; 527 } else { 528 struct proc *p = (struct proc *) id; 529 lo->lo_pid = p->p_pid; 530 lo->lo_sysid = 0; 531 } 532 lo->lo_vertex = NULL; 533 534 #ifdef LOCKF_DEBUG 535 if (lockf_debug & 1) { 536 printf("lf_advlockasync: new lock owner %p ", lo); 537 lf_print_owner(lo); 538 printf("\n"); 539 } 540 #endif 541 542 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link); 543 } else { 544 /* 545 * We have seen this lock owner before, increase its 546 * reference count to account for the new lockf_entry 547 * structure we create below. 548 */ 549 lo->lo_refs++; 550 } 551 sx_xunlock(&lf_lock_owners[hash].lock); 552 553 /* 554 * Create the lockf structure. We initialise the lf_owner 555 * field here instead of in lf_alloc_lock() to avoid paying 556 * the lf_lock_owners_lock tax twice. 557 */ 558 lock = lf_alloc_lock(NULL); 559 lock->lf_refs = 1; 560 lock->lf_start = start; 561 lock->lf_end = end; 562 lock->lf_owner = lo; 563 lock->lf_vnode = vp; 564 if (flags & F_REMOTE) { 565 /* 566 * For remote locks, the caller may release its ref to 567 * the vnode at any time - we have to ref it here to 568 * prevent it from being recycled unexpectedly. 569 */ 570 vref(vp); 571 } 572 573 lock->lf_type = fl->l_type; 574 LIST_INIT(&lock->lf_outedges); 575 LIST_INIT(&lock->lf_inedges); 576 lock->lf_async_task = ap->a_task; 577 lock->lf_flags = ap->a_flags; 578 579 /* 580 * Do the requested operation. First find our state structure 581 * and create a new one if necessary - the caller's *statep 582 * variable and the state's ls_threads count is protected by 583 * the vnode interlock. 584 */ 585 VI_LOCK(vp); 586 if (VN_IS_DOOMED(vp)) { 587 VI_UNLOCK(vp); 588 lf_free_lock(lock); 589 return (ENOENT); 590 } 591 592 /* 593 * Allocate a state structure if necessary. 594 */ 595 state = *statep; 596 if (state == NULL) { 597 struct lockf *ls; 598 599 VI_UNLOCK(vp); 600 601 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 602 sx_init(&ls->ls_lock, "ls_lock"); 603 LIST_INIT(&ls->ls_active); 604 LIST_INIT(&ls->ls_pending); 605 ls->ls_threads = 1; 606 607 sx_xlock(&lf_lock_states_lock); 608 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 609 sx_xunlock(&lf_lock_states_lock); 610 611 /* 612 * Cope if we lost a race with some other thread while 613 * trying to allocate memory. 614 */ 615 VI_LOCK(vp); 616 if (VN_IS_DOOMED(vp)) { 617 VI_UNLOCK(vp); 618 sx_xlock(&lf_lock_states_lock); 619 LIST_REMOVE(ls, ls_link); 620 sx_xunlock(&lf_lock_states_lock); 621 sx_destroy(&ls->ls_lock); 622 free(ls, M_LOCKF); 623 lf_free_lock(lock); 624 return (ENOENT); 625 } 626 if ((*statep) == NULL) { 627 state = *statep = ls; 628 VI_UNLOCK(vp); 629 } else { 630 state = *statep; 631 MPASS(state->ls_threads >= 0); 632 state->ls_threads++; 633 VI_UNLOCK(vp); 634 635 sx_xlock(&lf_lock_states_lock); 636 LIST_REMOVE(ls, ls_link); 637 sx_xunlock(&lf_lock_states_lock); 638 sx_destroy(&ls->ls_lock); 639 free(ls, M_LOCKF); 640 } 641 } else { 642 MPASS(state->ls_threads >= 0); 643 state->ls_threads++; 644 VI_UNLOCK(vp); 645 } 646 647 sx_xlock(&state->ls_lock); 648 /* 649 * Recheck the doomed vnode after state->ls_lock is 650 * locked. lf_purgelocks() requires that no new threads add 651 * pending locks when vnode is marked by VIRF_DOOMED flag. 652 */ 653 if (VN_IS_DOOMED(vp)) { 654 VI_LOCK(vp); 655 MPASS(state->ls_threads > 0); 656 state->ls_threads--; 657 wakeup(state); 658 VI_UNLOCK(vp); 659 sx_xunlock(&state->ls_lock); 660 lf_free_lock(lock); 661 return (ENOENT); 662 } 663 664 switch (ap->a_op) { 665 case F_SETLK: 666 error = lf_setlock(state, lock, vp, ap->a_cookiep); 667 break; 668 669 case F_UNLCK: 670 error = lf_clearlock(state, lock); 671 lf_free_lock(lock); 672 break; 673 674 case F_GETLK: 675 error = lf_getlock(state, lock, fl); 676 lf_free_lock(lock); 677 break; 678 679 case F_CANCEL: 680 if (ap->a_cookiep) 681 error = lf_cancel(state, lock, *ap->a_cookiep); 682 else 683 error = EINVAL; 684 lf_free_lock(lock); 685 break; 686 687 default: 688 lf_free_lock(lock); 689 error = EINVAL; 690 break; 691 } 692 693 #ifdef DIAGNOSTIC 694 /* 695 * Check for some can't happen stuff. In this case, the active 696 * lock list becoming disordered or containing mutually 697 * blocking locks. We also check the pending list for locks 698 * which should be active (i.e. have no out-going edges). 699 */ 700 LIST_FOREACH(lock, &state->ls_active, lf_link) { 701 struct lockf_entry *lf; 702 if (LIST_NEXT(lock, lf_link)) 703 KASSERT((lock->lf_start 704 <= LIST_NEXT(lock, lf_link)->lf_start), 705 ("locks disordered")); 706 LIST_FOREACH(lf, &state->ls_active, lf_link) { 707 if (lock == lf) 708 break; 709 KASSERT(!lf_blocks(lock, lf), 710 ("two conflicting active locks")); 711 if (lock->lf_owner == lf->lf_owner) 712 KASSERT(!lf_overlaps(lock, lf), 713 ("two overlapping locks from same owner")); 714 } 715 } 716 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 717 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 718 ("pending lock which should be active")); 719 } 720 #endif 721 sx_xunlock(&state->ls_lock); 722 723 VI_LOCK(vp); 724 MPASS(state->ls_threads > 0); 725 state->ls_threads--; 726 if (state->ls_threads != 0) { 727 wakeup(state); 728 } 729 VI_UNLOCK(vp); 730 731 if (error == EDOOFUS) { 732 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 733 goto retry_setlock; 734 } 735 return (error); 736 } 737 738 int 739 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 740 { 741 struct vop_advlockasync_args a; 742 743 a.a_vp = ap->a_vp; 744 a.a_id = ap->a_id; 745 a.a_op = ap->a_op; 746 a.a_fl = ap->a_fl; 747 a.a_flags = ap->a_flags; 748 a.a_task = NULL; 749 a.a_cookiep = NULL; 750 751 return (lf_advlockasync(&a, statep, size)); 752 } 753 754 void 755 lf_purgelocks(struct vnode *vp, struct lockf **statep) 756 { 757 struct lockf *state; 758 struct lockf_entry *lock, *nlock; 759 760 /* 761 * For this to work correctly, the caller must ensure that no 762 * other threads enter the locking system for this vnode, 763 * e.g. by checking VIRF_DOOMED. We wake up any threads that are 764 * sleeping waiting for locks on this vnode and then free all 765 * the remaining locks. 766 */ 767 KASSERT(VN_IS_DOOMED(vp), 768 ("lf_purgelocks: vp %p has not vgone yet", vp)); 769 state = *statep; 770 if (state == NULL) { 771 return; 772 } 773 VI_LOCK(vp); 774 *statep = NULL; 775 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 776 KASSERT(LIST_EMPTY(&state->ls_pending), 777 ("freeing state with pending locks")); 778 VI_UNLOCK(vp); 779 goto out_free; 780 } 781 MPASS(state->ls_threads >= 0); 782 state->ls_threads++; 783 VI_UNLOCK(vp); 784 785 sx_xlock(&state->ls_lock); 786 sx_xlock(&lf_owner_graph_lock); 787 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 788 LIST_REMOVE(lock, lf_link); 789 lf_remove_outgoing(lock); 790 lf_remove_incoming(lock); 791 792 /* 793 * If its an async lock, we can just free it 794 * here, otherwise we let the sleeping thread 795 * free it. 796 */ 797 if (lock->lf_async_task) { 798 lf_free_lock(lock); 799 } else { 800 lock->lf_flags |= F_INTR; 801 wakeup(lock); 802 } 803 } 804 sx_xunlock(&lf_owner_graph_lock); 805 sx_xunlock(&state->ls_lock); 806 807 /* 808 * Wait for all other threads, sleeping and otherwise 809 * to leave. 810 */ 811 VI_LOCK(vp); 812 while (state->ls_threads > 1) 813 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 814 VI_UNLOCK(vp); 815 816 /* 817 * We can just free all the active locks since they 818 * will have no dependencies (we removed them all 819 * above). We don't need to bother locking since we 820 * are the last thread using this state structure. 821 */ 822 KASSERT(LIST_EMPTY(&state->ls_pending), 823 ("lock pending for %p", state)); 824 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 825 LIST_REMOVE(lock, lf_link); 826 lf_free_lock(lock); 827 } 828 out_free: 829 sx_xlock(&lf_lock_states_lock); 830 LIST_REMOVE(state, ls_link); 831 sx_xunlock(&lf_lock_states_lock); 832 sx_destroy(&state->ls_lock); 833 free(state, M_LOCKF); 834 } 835 836 /* 837 * Return non-zero if locks 'x' and 'y' overlap. 838 */ 839 static int 840 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 841 { 842 843 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 844 } 845 846 /* 847 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 848 */ 849 static int 850 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 851 { 852 853 return x->lf_owner != y->lf_owner 854 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 855 && lf_overlaps(x, y); 856 } 857 858 /* 859 * Allocate a lock edge from the free list 860 */ 861 static struct lockf_edge * 862 lf_alloc_edge(void) 863 { 864 865 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 866 } 867 868 /* 869 * Free a lock edge. 870 */ 871 static void 872 lf_free_edge(struct lockf_edge *e) 873 { 874 875 free(e, M_LOCKF); 876 } 877 878 /* 879 * Ensure that the lock's owner has a corresponding vertex in the 880 * owner graph. 881 */ 882 static void 883 lf_alloc_vertex(struct lockf_entry *lock) 884 { 885 struct owner_graph *g = &lf_owner_graph; 886 887 if (!lock->lf_owner->lo_vertex) 888 lock->lf_owner->lo_vertex = 889 graph_alloc_vertex(g, lock->lf_owner); 890 } 891 892 /* 893 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 894 * the new edge would cause a cycle in the owner graph. 895 */ 896 static int 897 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 898 { 899 struct owner_graph *g = &lf_owner_graph; 900 struct lockf_edge *e; 901 int error; 902 903 #ifdef DIAGNOSTIC 904 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 905 KASSERT(e->le_to != y, ("adding lock edge twice")); 906 #endif 907 908 /* 909 * Make sure the two owners have entries in the owner graph. 910 */ 911 lf_alloc_vertex(x); 912 lf_alloc_vertex(y); 913 914 error = graph_add_edge(g, x->lf_owner->lo_vertex, 915 y->lf_owner->lo_vertex); 916 if (error) 917 return (error); 918 919 e = lf_alloc_edge(); 920 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 921 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 922 e->le_from = x; 923 e->le_to = y; 924 925 return (0); 926 } 927 928 /* 929 * Remove an edge from the lock graph. 930 */ 931 static void 932 lf_remove_edge(struct lockf_edge *e) 933 { 934 struct owner_graph *g = &lf_owner_graph; 935 struct lockf_entry *x = e->le_from; 936 struct lockf_entry *y = e->le_to; 937 938 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 939 LIST_REMOVE(e, le_outlink); 940 LIST_REMOVE(e, le_inlink); 941 e->le_from = NULL; 942 e->le_to = NULL; 943 lf_free_edge(e); 944 } 945 946 /* 947 * Remove all out-going edges from lock x. 948 */ 949 static void 950 lf_remove_outgoing(struct lockf_entry *x) 951 { 952 struct lockf_edge *e; 953 954 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 955 lf_remove_edge(e); 956 } 957 } 958 959 /* 960 * Remove all in-coming edges from lock x. 961 */ 962 static void 963 lf_remove_incoming(struct lockf_entry *x) 964 { 965 struct lockf_edge *e; 966 967 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 968 lf_remove_edge(e); 969 } 970 } 971 972 /* 973 * Walk the list of locks for the file and create an out-going edge 974 * from lock to each blocking lock. 975 */ 976 static int 977 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 978 { 979 struct lockf_entry *overlap; 980 int error; 981 982 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 983 /* 984 * We may assume that the active list is sorted by 985 * lf_start. 986 */ 987 if (overlap->lf_start > lock->lf_end) 988 break; 989 if (!lf_blocks(lock, overlap)) 990 continue; 991 992 /* 993 * We've found a blocking lock. Add the corresponding 994 * edge to the graphs and see if it would cause a 995 * deadlock. 996 */ 997 error = lf_add_edge(lock, overlap); 998 999 /* 1000 * The only error that lf_add_edge returns is EDEADLK. 1001 * Remove any edges we added and return the error. 1002 */ 1003 if (error) { 1004 lf_remove_outgoing(lock); 1005 return (error); 1006 } 1007 } 1008 1009 /* 1010 * We also need to add edges to sleeping locks that block 1011 * us. This ensures that lf_wakeup_lock cannot grant two 1012 * mutually blocking locks simultaneously and also enforces a 1013 * 'first come, first served' fairness model. Note that this 1014 * only happens if we are blocked by at least one active lock 1015 * due to the call to lf_getblock in lf_setlock below. 1016 */ 1017 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1018 if (!lf_blocks(lock, overlap)) 1019 continue; 1020 /* 1021 * We've found a blocking lock. Add the corresponding 1022 * edge to the graphs and see if it would cause a 1023 * deadlock. 1024 */ 1025 error = lf_add_edge(lock, overlap); 1026 1027 /* 1028 * The only error that lf_add_edge returns is EDEADLK. 1029 * Remove any edges we added and return the error. 1030 */ 1031 if (error) { 1032 lf_remove_outgoing(lock); 1033 return (error); 1034 } 1035 } 1036 1037 return (0); 1038 } 1039 1040 /* 1041 * Walk the list of pending locks for the file and create an in-coming 1042 * edge from lock to each blocking lock. 1043 */ 1044 static int 1045 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1046 { 1047 struct lockf_entry *overlap; 1048 int error; 1049 1050 sx_assert(&state->ls_lock, SX_XLOCKED); 1051 if (LIST_EMPTY(&state->ls_pending)) 1052 return (0); 1053 1054 error = 0; 1055 sx_xlock(&lf_owner_graph_lock); 1056 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1057 if (!lf_blocks(lock, overlap)) 1058 continue; 1059 1060 /* 1061 * We've found a blocking lock. Add the corresponding 1062 * edge to the graphs and see if it would cause a 1063 * deadlock. 1064 */ 1065 error = lf_add_edge(overlap, lock); 1066 1067 /* 1068 * The only error that lf_add_edge returns is EDEADLK. 1069 * Remove any edges we added and return the error. 1070 */ 1071 if (error) { 1072 lf_remove_incoming(lock); 1073 break; 1074 } 1075 } 1076 sx_xunlock(&lf_owner_graph_lock); 1077 return (error); 1078 } 1079 1080 /* 1081 * Insert lock into the active list, keeping list entries ordered by 1082 * increasing values of lf_start. 1083 */ 1084 static void 1085 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1086 { 1087 struct lockf_entry *lf, *lfprev; 1088 1089 if (LIST_EMPTY(&state->ls_active)) { 1090 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1091 return; 1092 } 1093 1094 lfprev = NULL; 1095 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1096 if (lf->lf_start > lock->lf_start) { 1097 LIST_INSERT_BEFORE(lf, lock, lf_link); 1098 return; 1099 } 1100 lfprev = lf; 1101 } 1102 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1103 } 1104 1105 /* 1106 * Wake up a sleeping lock and remove it from the pending list now 1107 * that all its dependencies have been resolved. The caller should 1108 * arrange for the lock to be added to the active list, adjusting any 1109 * existing locks for the same owner as needed. 1110 */ 1111 static void 1112 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1113 { 1114 1115 /* 1116 * Remove from ls_pending list and wake up the caller 1117 * or start the async notification, as appropriate. 1118 */ 1119 LIST_REMOVE(wakelock, lf_link); 1120 #ifdef LOCKF_DEBUG 1121 if (lockf_debug & 1) 1122 lf_print("lf_wakeup_lock: awakening", wakelock); 1123 #endif /* LOCKF_DEBUG */ 1124 if (wakelock->lf_async_task) { 1125 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1126 } else { 1127 wakeup(wakelock); 1128 } 1129 } 1130 1131 /* 1132 * Re-check all dependent locks and remove edges to locks that we no 1133 * longer block. If 'all' is non-zero, the lock has been removed and 1134 * we must remove all the dependencies, otherwise it has simply been 1135 * reduced but remains active. Any pending locks which have been been 1136 * unblocked are added to 'granted' 1137 */ 1138 static void 1139 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1140 struct lockf_entry_list *granted) 1141 { 1142 struct lockf_edge *e, *ne; 1143 struct lockf_entry *deplock; 1144 1145 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1146 deplock = e->le_from; 1147 if (all || !lf_blocks(lock, deplock)) { 1148 sx_xlock(&lf_owner_graph_lock); 1149 lf_remove_edge(e); 1150 sx_xunlock(&lf_owner_graph_lock); 1151 if (LIST_EMPTY(&deplock->lf_outedges)) { 1152 lf_wakeup_lock(state, deplock); 1153 LIST_INSERT_HEAD(granted, deplock, lf_link); 1154 } 1155 } 1156 } 1157 } 1158 1159 /* 1160 * Set the start of an existing active lock, updating dependencies and 1161 * adding any newly woken locks to 'granted'. 1162 */ 1163 static void 1164 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1165 struct lockf_entry_list *granted) 1166 { 1167 1168 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1169 lock->lf_start = new_start; 1170 LIST_REMOVE(lock, lf_link); 1171 lf_insert_lock(state, lock); 1172 lf_update_dependancies(state, lock, FALSE, granted); 1173 } 1174 1175 /* 1176 * Set the end of an existing active lock, updating dependencies and 1177 * adding any newly woken locks to 'granted'. 1178 */ 1179 static void 1180 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1181 struct lockf_entry_list *granted) 1182 { 1183 1184 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1185 lock->lf_end = new_end; 1186 lf_update_dependancies(state, lock, FALSE, granted); 1187 } 1188 1189 /* 1190 * Add a lock to the active list, updating or removing any current 1191 * locks owned by the same owner and processing any pending locks that 1192 * become unblocked as a result. This code is also used for unlock 1193 * since the logic for updating existing locks is identical. 1194 * 1195 * As a result of processing the new lock, we may unblock existing 1196 * pending locks as a result of downgrading/unlocking. We simply 1197 * activate the newly granted locks by looping. 1198 * 1199 * Since the new lock already has its dependencies set up, we always 1200 * add it to the list (unless its an unlock request). This may 1201 * fragment the lock list in some pathological cases but its probably 1202 * not a real problem. 1203 */ 1204 static void 1205 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1206 { 1207 struct lockf_entry *overlap, *lf; 1208 struct lockf_entry_list granted; 1209 int ovcase; 1210 1211 LIST_INIT(&granted); 1212 LIST_INSERT_HEAD(&granted, lock, lf_link); 1213 1214 while (!LIST_EMPTY(&granted)) { 1215 lock = LIST_FIRST(&granted); 1216 LIST_REMOVE(lock, lf_link); 1217 1218 /* 1219 * Skip over locks owned by other processes. Handle 1220 * any locks that overlap and are owned by ourselves. 1221 */ 1222 overlap = LIST_FIRST(&state->ls_active); 1223 for (;;) { 1224 ovcase = lf_findoverlap(&overlap, lock, SELF); 1225 1226 #ifdef LOCKF_DEBUG 1227 if (ovcase && (lockf_debug & 2)) { 1228 printf("lf_setlock: overlap %d", ovcase); 1229 lf_print("", overlap); 1230 } 1231 #endif 1232 /* 1233 * Six cases: 1234 * 0) no overlap 1235 * 1) overlap == lock 1236 * 2) overlap contains lock 1237 * 3) lock contains overlap 1238 * 4) overlap starts before lock 1239 * 5) overlap ends after lock 1240 */ 1241 switch (ovcase) { 1242 case 0: /* no overlap */ 1243 break; 1244 1245 case 1: /* overlap == lock */ 1246 /* 1247 * We have already setup the 1248 * dependants for the new lock, taking 1249 * into account a possible downgrade 1250 * or unlock. Remove the old lock. 1251 */ 1252 LIST_REMOVE(overlap, lf_link); 1253 lf_update_dependancies(state, overlap, TRUE, 1254 &granted); 1255 lf_free_lock(overlap); 1256 break; 1257 1258 case 2: /* overlap contains lock */ 1259 /* 1260 * Just split the existing lock. 1261 */ 1262 lf_split(state, overlap, lock, &granted); 1263 break; 1264 1265 case 3: /* lock contains overlap */ 1266 /* 1267 * Delete the overlap and advance to 1268 * the next entry in the list. 1269 */ 1270 lf = LIST_NEXT(overlap, lf_link); 1271 LIST_REMOVE(overlap, lf_link); 1272 lf_update_dependancies(state, overlap, TRUE, 1273 &granted); 1274 lf_free_lock(overlap); 1275 overlap = lf; 1276 continue; 1277 1278 case 4: /* overlap starts before lock */ 1279 /* 1280 * Just update the overlap end and 1281 * move on. 1282 */ 1283 lf_set_end(state, overlap, lock->lf_start - 1, 1284 &granted); 1285 overlap = LIST_NEXT(overlap, lf_link); 1286 continue; 1287 1288 case 5: /* overlap ends after lock */ 1289 /* 1290 * Change the start of overlap and 1291 * re-insert. 1292 */ 1293 lf_set_start(state, overlap, lock->lf_end + 1, 1294 &granted); 1295 break; 1296 } 1297 break; 1298 } 1299 #ifdef LOCKF_DEBUG 1300 if (lockf_debug & 1) { 1301 if (lock->lf_type != F_UNLCK) 1302 lf_print("lf_activate_lock: activated", lock); 1303 else 1304 lf_print("lf_activate_lock: unlocked", lock); 1305 lf_printlist("lf_activate_lock", lock); 1306 } 1307 #endif /* LOCKF_DEBUG */ 1308 if (lock->lf_type != F_UNLCK) 1309 lf_insert_lock(state, lock); 1310 } 1311 } 1312 1313 /* 1314 * Cancel a pending lock request, either as a result of a signal or a 1315 * cancel request for an async lock. 1316 */ 1317 static void 1318 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1319 { 1320 struct lockf_entry_list granted; 1321 1322 /* 1323 * Note it is theoretically possible that cancelling this lock 1324 * may allow some other pending lock to become 1325 * active. Consider this case: 1326 * 1327 * Owner Action Result Dependencies 1328 * 1329 * A: lock [0..0] succeeds 1330 * B: lock [2..2] succeeds 1331 * C: lock [1..2] blocked C->B 1332 * D: lock [0..1] blocked C->B,D->A,D->C 1333 * A: unlock [0..0] C->B,D->C 1334 * C: cancel [1..2] 1335 */ 1336 1337 LIST_REMOVE(lock, lf_link); 1338 1339 /* 1340 * Removing out-going edges is simple. 1341 */ 1342 sx_xlock(&lf_owner_graph_lock); 1343 lf_remove_outgoing(lock); 1344 sx_xunlock(&lf_owner_graph_lock); 1345 1346 /* 1347 * Removing in-coming edges may allow some other lock to 1348 * become active - we use lf_update_dependancies to figure 1349 * this out. 1350 */ 1351 LIST_INIT(&granted); 1352 lf_update_dependancies(state, lock, TRUE, &granted); 1353 lf_free_lock(lock); 1354 1355 /* 1356 * Feed any newly active locks to lf_activate_lock. 1357 */ 1358 while (!LIST_EMPTY(&granted)) { 1359 lock = LIST_FIRST(&granted); 1360 LIST_REMOVE(lock, lf_link); 1361 lf_activate_lock(state, lock); 1362 } 1363 } 1364 1365 /* 1366 * Set a byte-range lock. 1367 */ 1368 static int 1369 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1370 void **cookiep) 1371 { 1372 static char lockstr[] = "lockf"; 1373 int error, priority, stops_deferred; 1374 1375 #ifdef LOCKF_DEBUG 1376 if (lockf_debug & 1) 1377 lf_print("lf_setlock", lock); 1378 #endif /* LOCKF_DEBUG */ 1379 1380 /* 1381 * Set the priority 1382 */ 1383 priority = PLOCK; 1384 if (lock->lf_type == F_WRLCK) 1385 priority += 4; 1386 if (!(lock->lf_flags & F_NOINTR)) 1387 priority |= PCATCH; 1388 /* 1389 * Scan lock list for this file looking for locks that would block us. 1390 */ 1391 if (lf_getblock(state, lock)) { 1392 /* 1393 * Free the structure and return if nonblocking. 1394 */ 1395 if ((lock->lf_flags & F_WAIT) == 0 1396 && lock->lf_async_task == NULL) { 1397 lf_free_lock(lock); 1398 error = EAGAIN; 1399 goto out; 1400 } 1401 1402 /* 1403 * For flock type locks, we must first remove 1404 * any shared locks that we hold before we sleep 1405 * waiting for an exclusive lock. 1406 */ 1407 if ((lock->lf_flags & F_FLOCK) && 1408 lock->lf_type == F_WRLCK) { 1409 lock->lf_type = F_UNLCK; 1410 lf_activate_lock(state, lock); 1411 lock->lf_type = F_WRLCK; 1412 } 1413 1414 /* 1415 * We are blocked. Create edges to each blocking lock, 1416 * checking for deadlock using the owner graph. For 1417 * simplicity, we run deadlock detection for all 1418 * locks, posix and otherwise. 1419 */ 1420 sx_xlock(&lf_owner_graph_lock); 1421 error = lf_add_outgoing(state, lock); 1422 sx_xunlock(&lf_owner_graph_lock); 1423 1424 if (error) { 1425 #ifdef LOCKF_DEBUG 1426 if (lockf_debug & 1) 1427 lf_print("lf_setlock: deadlock", lock); 1428 #endif 1429 lf_free_lock(lock); 1430 goto out; 1431 } 1432 1433 /* 1434 * We have added edges to everything that blocks 1435 * us. Sleep until they all go away. 1436 */ 1437 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1438 #ifdef LOCKF_DEBUG 1439 if (lockf_debug & 1) { 1440 struct lockf_edge *e; 1441 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1442 lf_print("lf_setlock: blocking on", e->le_to); 1443 lf_printlist("lf_setlock", e->le_to); 1444 } 1445 } 1446 #endif /* LOCKF_DEBUG */ 1447 1448 if ((lock->lf_flags & F_WAIT) == 0) { 1449 /* 1450 * The caller requested async notification - 1451 * this callback happens when the blocking 1452 * lock is released, allowing the caller to 1453 * make another attempt to take the lock. 1454 */ 1455 *cookiep = (void *) lock; 1456 error = EINPROGRESS; 1457 goto out; 1458 } 1459 1460 lock->lf_refs++; 1461 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART); 1462 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1463 sigallowstop(stops_deferred); 1464 if (lf_free_lock(lock)) { 1465 error = EDOOFUS; 1466 goto out; 1467 } 1468 1469 /* 1470 * We may have been awakened by a signal and/or by a 1471 * debugger continuing us (in which cases we must 1472 * remove our lock graph edges) and/or by another 1473 * process releasing a lock (in which case our edges 1474 * have already been removed and we have been moved to 1475 * the active list). We may also have been woken by 1476 * lf_purgelocks which we report to the caller as 1477 * EINTR. In that case, lf_purgelocks will have 1478 * removed our lock graph edges. 1479 * 1480 * Note that it is possible to receive a signal after 1481 * we were successfully woken (and moved to the active 1482 * list) but before we resumed execution. In this 1483 * case, our lf_outedges list will be clear. We 1484 * pretend there was no error. 1485 * 1486 * Note also, if we have been sleeping long enough, we 1487 * may now have incoming edges from some newer lock 1488 * which is waiting behind us in the queue. 1489 */ 1490 if (lock->lf_flags & F_INTR) { 1491 error = EINTR; 1492 lf_free_lock(lock); 1493 goto out; 1494 } 1495 if (LIST_EMPTY(&lock->lf_outedges)) { 1496 error = 0; 1497 } else { 1498 lf_cancel_lock(state, lock); 1499 goto out; 1500 } 1501 #ifdef LOCKF_DEBUG 1502 if (lockf_debug & 1) { 1503 lf_print("lf_setlock: granted", lock); 1504 } 1505 #endif 1506 goto out; 1507 } 1508 /* 1509 * It looks like we are going to grant the lock. First add 1510 * edges from any currently pending lock that the new lock 1511 * would block. 1512 */ 1513 error = lf_add_incoming(state, lock); 1514 if (error) { 1515 #ifdef LOCKF_DEBUG 1516 if (lockf_debug & 1) 1517 lf_print("lf_setlock: deadlock", lock); 1518 #endif 1519 lf_free_lock(lock); 1520 goto out; 1521 } 1522 1523 /* 1524 * No blocks!! Add the lock. Note that we will 1525 * downgrade or upgrade any overlapping locks this 1526 * process already owns. 1527 */ 1528 lf_activate_lock(state, lock); 1529 error = 0; 1530 out: 1531 return (error); 1532 } 1533 1534 /* 1535 * Remove a byte-range lock on an inode. 1536 * 1537 * Generally, find the lock (or an overlap to that lock) 1538 * and remove it (or shrink it), then wakeup anyone we can. 1539 */ 1540 static int 1541 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1542 { 1543 struct lockf_entry *overlap; 1544 1545 overlap = LIST_FIRST(&state->ls_active); 1546 1547 if (overlap == NOLOCKF) 1548 return (0); 1549 #ifdef LOCKF_DEBUG 1550 if (unlock->lf_type != F_UNLCK) 1551 panic("lf_clearlock: bad type"); 1552 if (lockf_debug & 1) 1553 lf_print("lf_clearlock", unlock); 1554 #endif /* LOCKF_DEBUG */ 1555 1556 lf_activate_lock(state, unlock); 1557 1558 return (0); 1559 } 1560 1561 /* 1562 * Check whether there is a blocking lock, and if so return its 1563 * details in '*fl'. 1564 */ 1565 static int 1566 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1567 { 1568 struct lockf_entry *block; 1569 1570 #ifdef LOCKF_DEBUG 1571 if (lockf_debug & 1) 1572 lf_print("lf_getlock", lock); 1573 #endif /* LOCKF_DEBUG */ 1574 1575 if ((block = lf_getblock(state, lock))) { 1576 fl->l_type = block->lf_type; 1577 fl->l_whence = SEEK_SET; 1578 fl->l_start = block->lf_start; 1579 if (block->lf_end == OFF_MAX) 1580 fl->l_len = 0; 1581 else 1582 fl->l_len = block->lf_end - block->lf_start + 1; 1583 fl->l_pid = block->lf_owner->lo_pid; 1584 fl->l_sysid = block->lf_owner->lo_sysid; 1585 } else { 1586 fl->l_type = F_UNLCK; 1587 } 1588 return (0); 1589 } 1590 1591 /* 1592 * Cancel an async lock request. 1593 */ 1594 static int 1595 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1596 { 1597 struct lockf_entry *reallock; 1598 1599 /* 1600 * We need to match this request with an existing lock 1601 * request. 1602 */ 1603 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1604 if ((void *) reallock == cookie) { 1605 /* 1606 * Double-check that this lock looks right 1607 * (maybe use a rolling ID for the cancel 1608 * cookie instead?) 1609 */ 1610 if (!(reallock->lf_vnode == lock->lf_vnode 1611 && reallock->lf_start == lock->lf_start 1612 && reallock->lf_end == lock->lf_end)) { 1613 return (ENOENT); 1614 } 1615 1616 /* 1617 * Make sure this lock was async and then just 1618 * remove it from its wait lists. 1619 */ 1620 if (!reallock->lf_async_task) { 1621 return (ENOENT); 1622 } 1623 1624 /* 1625 * Note that since any other thread must take 1626 * state->ls_lock before it can possibly 1627 * trigger the async callback, we are safe 1628 * from a race with lf_wakeup_lock, i.e. we 1629 * can free the lock (actually our caller does 1630 * this). 1631 */ 1632 lf_cancel_lock(state, reallock); 1633 return (0); 1634 } 1635 } 1636 1637 /* 1638 * We didn't find a matching lock - not much we can do here. 1639 */ 1640 return (ENOENT); 1641 } 1642 1643 /* 1644 * Walk the list of locks for an inode and 1645 * return the first blocking lock. 1646 */ 1647 static struct lockf_entry * 1648 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1649 { 1650 struct lockf_entry *overlap; 1651 1652 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1653 /* 1654 * We may assume that the active list is sorted by 1655 * lf_start. 1656 */ 1657 if (overlap->lf_start > lock->lf_end) 1658 break; 1659 if (!lf_blocks(lock, overlap)) 1660 continue; 1661 return (overlap); 1662 } 1663 return (NOLOCKF); 1664 } 1665 1666 /* 1667 * Walk the list of locks for an inode to find an overlapping lock (if 1668 * any) and return a classification of that overlap. 1669 * 1670 * Arguments: 1671 * *overlap The place in the lock list to start looking 1672 * lock The lock which is being tested 1673 * type Pass 'SELF' to test only locks with the same 1674 * owner as lock, or 'OTHER' to test only locks 1675 * with a different owner 1676 * 1677 * Returns one of six values: 1678 * 0) no overlap 1679 * 1) overlap == lock 1680 * 2) overlap contains lock 1681 * 3) lock contains overlap 1682 * 4) overlap starts before lock 1683 * 5) overlap ends after lock 1684 * 1685 * If there is an overlapping lock, '*overlap' is set to point at the 1686 * overlapping lock. 1687 * 1688 * NOTE: this returns only the FIRST overlapping lock. There 1689 * may be more than one. 1690 */ 1691 static int 1692 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1693 { 1694 struct lockf_entry *lf; 1695 off_t start, end; 1696 int res; 1697 1698 if ((*overlap) == NOLOCKF) { 1699 return (0); 1700 } 1701 #ifdef LOCKF_DEBUG 1702 if (lockf_debug & 2) 1703 lf_print("lf_findoverlap: looking for overlap in", lock); 1704 #endif /* LOCKF_DEBUG */ 1705 start = lock->lf_start; 1706 end = lock->lf_end; 1707 res = 0; 1708 while (*overlap) { 1709 lf = *overlap; 1710 if (lf->lf_start > end) 1711 break; 1712 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1713 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1714 *overlap = LIST_NEXT(lf, lf_link); 1715 continue; 1716 } 1717 #ifdef LOCKF_DEBUG 1718 if (lockf_debug & 2) 1719 lf_print("\tchecking", lf); 1720 #endif /* LOCKF_DEBUG */ 1721 /* 1722 * OK, check for overlap 1723 * 1724 * Six cases: 1725 * 0) no overlap 1726 * 1) overlap == lock 1727 * 2) overlap contains lock 1728 * 3) lock contains overlap 1729 * 4) overlap starts before lock 1730 * 5) overlap ends after lock 1731 */ 1732 if (start > lf->lf_end) { 1733 /* Case 0 */ 1734 #ifdef LOCKF_DEBUG 1735 if (lockf_debug & 2) 1736 printf("no overlap\n"); 1737 #endif /* LOCKF_DEBUG */ 1738 *overlap = LIST_NEXT(lf, lf_link); 1739 continue; 1740 } 1741 if (lf->lf_start == start && lf->lf_end == end) { 1742 /* Case 1 */ 1743 #ifdef LOCKF_DEBUG 1744 if (lockf_debug & 2) 1745 printf("overlap == lock\n"); 1746 #endif /* LOCKF_DEBUG */ 1747 res = 1; 1748 break; 1749 } 1750 if (lf->lf_start <= start && lf->lf_end >= end) { 1751 /* Case 2 */ 1752 #ifdef LOCKF_DEBUG 1753 if (lockf_debug & 2) 1754 printf("overlap contains lock\n"); 1755 #endif /* LOCKF_DEBUG */ 1756 res = 2; 1757 break; 1758 } 1759 if (start <= lf->lf_start && end >= lf->lf_end) { 1760 /* Case 3 */ 1761 #ifdef LOCKF_DEBUG 1762 if (lockf_debug & 2) 1763 printf("lock contains overlap\n"); 1764 #endif /* LOCKF_DEBUG */ 1765 res = 3; 1766 break; 1767 } 1768 if (lf->lf_start < start && lf->lf_end >= start) { 1769 /* Case 4 */ 1770 #ifdef LOCKF_DEBUG 1771 if (lockf_debug & 2) 1772 printf("overlap starts before lock\n"); 1773 #endif /* LOCKF_DEBUG */ 1774 res = 4; 1775 break; 1776 } 1777 if (lf->lf_start > start && lf->lf_end > end) { 1778 /* Case 5 */ 1779 #ifdef LOCKF_DEBUG 1780 if (lockf_debug & 2) 1781 printf("overlap ends after lock\n"); 1782 #endif /* LOCKF_DEBUG */ 1783 res = 5; 1784 break; 1785 } 1786 panic("lf_findoverlap: default"); 1787 } 1788 return (res); 1789 } 1790 1791 /* 1792 * Split an the existing 'lock1', based on the extent of the lock 1793 * described by 'lock2'. The existing lock should cover 'lock2' 1794 * entirely. 1795 * 1796 * Any pending locks which have been been unblocked are added to 1797 * 'granted' 1798 */ 1799 static void 1800 lf_split(struct lockf *state, struct lockf_entry *lock1, 1801 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1802 { 1803 struct lockf_entry *splitlock; 1804 1805 #ifdef LOCKF_DEBUG 1806 if (lockf_debug & 2) { 1807 lf_print("lf_split", lock1); 1808 lf_print("splitting from", lock2); 1809 } 1810 #endif /* LOCKF_DEBUG */ 1811 /* 1812 * Check to see if we don't need to split at all. 1813 */ 1814 if (lock1->lf_start == lock2->lf_start) { 1815 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1816 return; 1817 } 1818 if (lock1->lf_end == lock2->lf_end) { 1819 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1820 return; 1821 } 1822 /* 1823 * Make a new lock consisting of the last part of 1824 * the encompassing lock. 1825 */ 1826 splitlock = lf_alloc_lock(lock1->lf_owner); 1827 memcpy(splitlock, lock1, sizeof *splitlock); 1828 splitlock->lf_refs = 1; 1829 if (splitlock->lf_flags & F_REMOTE) 1830 vref(splitlock->lf_vnode); 1831 1832 /* 1833 * This cannot cause a deadlock since any edges we would add 1834 * to splitlock already exist in lock1. We must be sure to add 1835 * necessary dependencies to splitlock before we reduce lock1 1836 * otherwise we may accidentally grant a pending lock that 1837 * was blocked by the tail end of lock1. 1838 */ 1839 splitlock->lf_start = lock2->lf_end + 1; 1840 LIST_INIT(&splitlock->lf_outedges); 1841 LIST_INIT(&splitlock->lf_inedges); 1842 lf_add_incoming(state, splitlock); 1843 1844 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1845 1846 /* 1847 * OK, now link it in 1848 */ 1849 lf_insert_lock(state, splitlock); 1850 } 1851 1852 struct lockdesc { 1853 STAILQ_ENTRY(lockdesc) link; 1854 struct vnode *vp; 1855 struct flock fl; 1856 }; 1857 STAILQ_HEAD(lockdesclist, lockdesc); 1858 1859 int 1860 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1861 { 1862 struct lockf *ls; 1863 struct lockf_entry *lf; 1864 struct lockdesc *ldesc; 1865 struct lockdesclist locks; 1866 int error; 1867 1868 /* 1869 * In order to keep the locking simple, we iterate over the 1870 * active lock lists to build a list of locks that need 1871 * releasing. We then call the iterator for each one in turn. 1872 * 1873 * We take an extra reference to the vnode for the duration to 1874 * make sure it doesn't go away before we are finished. 1875 */ 1876 STAILQ_INIT(&locks); 1877 sx_xlock(&lf_lock_states_lock); 1878 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1879 sx_xlock(&ls->ls_lock); 1880 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1881 if (lf->lf_owner->lo_sysid != sysid) 1882 continue; 1883 1884 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1885 M_WAITOK); 1886 ldesc->vp = lf->lf_vnode; 1887 vref(ldesc->vp); 1888 ldesc->fl.l_start = lf->lf_start; 1889 if (lf->lf_end == OFF_MAX) 1890 ldesc->fl.l_len = 0; 1891 else 1892 ldesc->fl.l_len = 1893 lf->lf_end - lf->lf_start + 1; 1894 ldesc->fl.l_whence = SEEK_SET; 1895 ldesc->fl.l_type = F_UNLCK; 1896 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1897 ldesc->fl.l_sysid = sysid; 1898 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1899 } 1900 sx_xunlock(&ls->ls_lock); 1901 } 1902 sx_xunlock(&lf_lock_states_lock); 1903 1904 /* 1905 * Call the iterator function for each lock in turn. If the 1906 * iterator returns an error code, just free the rest of the 1907 * lockdesc structures. 1908 */ 1909 error = 0; 1910 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1911 STAILQ_REMOVE_HEAD(&locks, link); 1912 if (!error) 1913 error = fn(ldesc->vp, &ldesc->fl, arg); 1914 vrele(ldesc->vp); 1915 free(ldesc, M_LOCKF); 1916 } 1917 1918 return (error); 1919 } 1920 1921 int 1922 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1923 { 1924 struct lockf *ls; 1925 struct lockf_entry *lf; 1926 struct lockdesc *ldesc; 1927 struct lockdesclist locks; 1928 int error; 1929 1930 /* 1931 * In order to keep the locking simple, we iterate over the 1932 * active lock lists to build a list of locks that need 1933 * releasing. We then call the iterator for each one in turn. 1934 * 1935 * We take an extra reference to the vnode for the duration to 1936 * make sure it doesn't go away before we are finished. 1937 */ 1938 STAILQ_INIT(&locks); 1939 VI_LOCK(vp); 1940 ls = vp->v_lockf; 1941 if (!ls) { 1942 VI_UNLOCK(vp); 1943 return (0); 1944 } 1945 MPASS(ls->ls_threads >= 0); 1946 ls->ls_threads++; 1947 VI_UNLOCK(vp); 1948 1949 sx_xlock(&ls->ls_lock); 1950 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1951 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1952 M_WAITOK); 1953 ldesc->vp = lf->lf_vnode; 1954 vref(ldesc->vp); 1955 ldesc->fl.l_start = lf->lf_start; 1956 if (lf->lf_end == OFF_MAX) 1957 ldesc->fl.l_len = 0; 1958 else 1959 ldesc->fl.l_len = 1960 lf->lf_end - lf->lf_start + 1; 1961 ldesc->fl.l_whence = SEEK_SET; 1962 ldesc->fl.l_type = F_UNLCK; 1963 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1964 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1965 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1966 } 1967 sx_xunlock(&ls->ls_lock); 1968 VI_LOCK(vp); 1969 MPASS(ls->ls_threads > 0); 1970 ls->ls_threads--; 1971 wakeup(ls); 1972 VI_UNLOCK(vp); 1973 1974 /* 1975 * Call the iterator function for each lock in turn. If the 1976 * iterator returns an error code, just free the rest of the 1977 * lockdesc structures. 1978 */ 1979 error = 0; 1980 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1981 STAILQ_REMOVE_HEAD(&locks, link); 1982 if (!error) 1983 error = fn(ldesc->vp, &ldesc->fl, arg); 1984 vrele(ldesc->vp); 1985 free(ldesc, M_LOCKF); 1986 } 1987 1988 return (error); 1989 } 1990 1991 static int 1992 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 1993 { 1994 1995 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 1996 return (0); 1997 } 1998 1999 void 2000 lf_clearremotesys(int sysid) 2001 { 2002 2003 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2004 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2005 } 2006 2007 int 2008 lf_countlocks(int sysid) 2009 { 2010 int i; 2011 struct lock_owner *lo; 2012 int count; 2013 2014 count = 0; 2015 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) { 2016 sx_xlock(&lf_lock_owners[i].lock); 2017 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link) 2018 if (lo->lo_sysid == sysid) 2019 count += lo->lo_refs; 2020 sx_xunlock(&lf_lock_owners[i].lock); 2021 } 2022 2023 return (count); 2024 } 2025 2026 #ifdef LOCKF_DEBUG 2027 2028 /* 2029 * Return non-zero if y is reachable from x using a brute force 2030 * search. If reachable and path is non-null, return the route taken 2031 * in path. 2032 */ 2033 static int 2034 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2035 struct owner_vertex_list *path) 2036 { 2037 struct owner_edge *e; 2038 2039 if (x == y) { 2040 if (path) 2041 TAILQ_INSERT_HEAD(path, x, v_link); 2042 return 1; 2043 } 2044 2045 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2046 if (graph_reaches(e->e_to, y, path)) { 2047 if (path) 2048 TAILQ_INSERT_HEAD(path, x, v_link); 2049 return 1; 2050 } 2051 } 2052 return 0; 2053 } 2054 2055 /* 2056 * Perform consistency checks on the graph. Make sure the values of 2057 * v_order are correct. If checkorder is non-zero, check no vertex can 2058 * reach any other vertex with a smaller order. 2059 */ 2060 static void 2061 graph_check(struct owner_graph *g, int checkorder) 2062 { 2063 int i, j; 2064 2065 for (i = 0; i < g->g_size; i++) { 2066 if (!g->g_vertices[i]->v_owner) 2067 continue; 2068 KASSERT(g->g_vertices[i]->v_order == i, 2069 ("lock graph vertices disordered")); 2070 if (checkorder) { 2071 for (j = 0; j < i; j++) { 2072 if (!g->g_vertices[j]->v_owner) 2073 continue; 2074 KASSERT(!graph_reaches(g->g_vertices[i], 2075 g->g_vertices[j], NULL), 2076 ("lock graph vertices disordered")); 2077 } 2078 } 2079 } 2080 } 2081 2082 static void 2083 graph_print_vertices(struct owner_vertex_list *set) 2084 { 2085 struct owner_vertex *v; 2086 2087 printf("{ "); 2088 TAILQ_FOREACH(v, set, v_link) { 2089 printf("%d:", v->v_order); 2090 lf_print_owner(v->v_owner); 2091 if (TAILQ_NEXT(v, v_link)) 2092 printf(", "); 2093 } 2094 printf(" }\n"); 2095 } 2096 2097 #endif 2098 2099 /* 2100 * Calculate the sub-set of vertices v from the affected region [y..x] 2101 * where v is reachable from y. Return -1 if a loop was detected 2102 * (i.e. x is reachable from y, otherwise the number of vertices in 2103 * this subset. 2104 */ 2105 static int 2106 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2107 struct owner_vertex *y, struct owner_vertex_list *delta) 2108 { 2109 uint32_t gen; 2110 struct owner_vertex *v; 2111 struct owner_edge *e; 2112 int n; 2113 2114 /* 2115 * We start with a set containing just y. Then for each vertex 2116 * v in the set so far unprocessed, we add each vertex that v 2117 * has an out-edge to and that is within the affected region 2118 * [y..x]. If we see the vertex x on our travels, stop 2119 * immediately. 2120 */ 2121 TAILQ_INIT(delta); 2122 TAILQ_INSERT_TAIL(delta, y, v_link); 2123 v = y; 2124 n = 1; 2125 gen = g->g_gen; 2126 while (v) { 2127 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2128 if (e->e_to == x) 2129 return -1; 2130 if (e->e_to->v_order < x->v_order 2131 && e->e_to->v_gen != gen) { 2132 e->e_to->v_gen = gen; 2133 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2134 n++; 2135 } 2136 } 2137 v = TAILQ_NEXT(v, v_link); 2138 } 2139 2140 return (n); 2141 } 2142 2143 /* 2144 * Calculate the sub-set of vertices v from the affected region [y..x] 2145 * where v reaches x. Return the number of vertices in this subset. 2146 */ 2147 static int 2148 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2149 struct owner_vertex *y, struct owner_vertex_list *delta) 2150 { 2151 uint32_t gen; 2152 struct owner_vertex *v; 2153 struct owner_edge *e; 2154 int n; 2155 2156 /* 2157 * We start with a set containing just x. Then for each vertex 2158 * v in the set so far unprocessed, we add each vertex that v 2159 * has an in-edge from and that is within the affected region 2160 * [y..x]. 2161 */ 2162 TAILQ_INIT(delta); 2163 TAILQ_INSERT_TAIL(delta, x, v_link); 2164 v = x; 2165 n = 1; 2166 gen = g->g_gen; 2167 while (v) { 2168 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2169 if (e->e_from->v_order > y->v_order 2170 && e->e_from->v_gen != gen) { 2171 e->e_from->v_gen = gen; 2172 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2173 n++; 2174 } 2175 } 2176 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2177 } 2178 2179 return (n); 2180 } 2181 2182 static int 2183 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2184 { 2185 struct owner_vertex *v; 2186 int i, j; 2187 2188 TAILQ_FOREACH(v, set, v_link) { 2189 for (i = n; 2190 i > 0 && indices[i - 1] > v->v_order; i--) 2191 ; 2192 for (j = n - 1; j >= i; j--) 2193 indices[j + 1] = indices[j]; 2194 indices[i] = v->v_order; 2195 n++; 2196 } 2197 2198 return (n); 2199 } 2200 2201 static int 2202 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2203 struct owner_vertex_list *set) 2204 { 2205 struct owner_vertex *v, *vlowest; 2206 2207 while (!TAILQ_EMPTY(set)) { 2208 vlowest = NULL; 2209 TAILQ_FOREACH(v, set, v_link) { 2210 if (!vlowest || v->v_order < vlowest->v_order) 2211 vlowest = v; 2212 } 2213 TAILQ_REMOVE(set, vlowest, v_link); 2214 vlowest->v_order = indices[nextunused]; 2215 g->g_vertices[vlowest->v_order] = vlowest; 2216 nextunused++; 2217 } 2218 2219 return (nextunused); 2220 } 2221 2222 static int 2223 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2224 struct owner_vertex *y) 2225 { 2226 struct owner_edge *e; 2227 struct owner_vertex_list deltaF, deltaB; 2228 int nF, n, vi, i; 2229 int *indices; 2230 int nB __unused; 2231 2232 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2233 2234 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2235 if (e->e_to == y) { 2236 e->e_refs++; 2237 return (0); 2238 } 2239 } 2240 2241 #ifdef LOCKF_DEBUG 2242 if (lockf_debug & 8) { 2243 printf("adding edge %d:", x->v_order); 2244 lf_print_owner(x->v_owner); 2245 printf(" -> %d:", y->v_order); 2246 lf_print_owner(y->v_owner); 2247 printf("\n"); 2248 } 2249 #endif 2250 if (y->v_order < x->v_order) { 2251 /* 2252 * The new edge violates the order. First find the set 2253 * of affected vertices reachable from y (deltaF) and 2254 * the set of affect vertices affected that reach x 2255 * (deltaB), using the graph generation number to 2256 * detect whether we have visited a given vertex 2257 * already. We re-order the graph so that each vertex 2258 * in deltaB appears before each vertex in deltaF. 2259 * 2260 * If x is a member of deltaF, then the new edge would 2261 * create a cycle. Otherwise, we may assume that 2262 * deltaF and deltaB are disjoint. 2263 */ 2264 g->g_gen++; 2265 if (g->g_gen == 0) { 2266 /* 2267 * Generation wrap. 2268 */ 2269 for (vi = 0; vi < g->g_size; vi++) { 2270 g->g_vertices[vi]->v_gen = 0; 2271 } 2272 g->g_gen++; 2273 } 2274 nF = graph_delta_forward(g, x, y, &deltaF); 2275 if (nF < 0) { 2276 #ifdef LOCKF_DEBUG 2277 if (lockf_debug & 8) { 2278 struct owner_vertex_list path; 2279 printf("deadlock: "); 2280 TAILQ_INIT(&path); 2281 graph_reaches(y, x, &path); 2282 graph_print_vertices(&path); 2283 } 2284 #endif 2285 return (EDEADLK); 2286 } 2287 2288 #ifdef LOCKF_DEBUG 2289 if (lockf_debug & 8) { 2290 printf("re-ordering graph vertices\n"); 2291 printf("deltaF = "); 2292 graph_print_vertices(&deltaF); 2293 } 2294 #endif 2295 2296 nB = graph_delta_backward(g, x, y, &deltaB); 2297 2298 #ifdef LOCKF_DEBUG 2299 if (lockf_debug & 8) { 2300 printf("deltaB = "); 2301 graph_print_vertices(&deltaB); 2302 } 2303 #endif 2304 2305 /* 2306 * We first build a set of vertex indices (vertex 2307 * order values) that we may use, then we re-assign 2308 * orders first to those vertices in deltaB, then to 2309 * deltaF. Note that the contents of deltaF and deltaB 2310 * may be partially disordered - we perform an 2311 * insertion sort while building our index set. 2312 */ 2313 indices = g->g_indexbuf; 2314 n = graph_add_indices(indices, 0, &deltaF); 2315 graph_add_indices(indices, n, &deltaB); 2316 2317 /* 2318 * We must also be sure to maintain the relative 2319 * ordering of deltaF and deltaB when re-assigning 2320 * vertices. We do this by iteratively removing the 2321 * lowest ordered element from the set and assigning 2322 * it the next value from our new ordering. 2323 */ 2324 i = graph_assign_indices(g, indices, 0, &deltaB); 2325 graph_assign_indices(g, indices, i, &deltaF); 2326 2327 #ifdef LOCKF_DEBUG 2328 if (lockf_debug & 8) { 2329 struct owner_vertex_list set; 2330 TAILQ_INIT(&set); 2331 for (i = 0; i < nB + nF; i++) 2332 TAILQ_INSERT_TAIL(&set, 2333 g->g_vertices[indices[i]], v_link); 2334 printf("new ordering = "); 2335 graph_print_vertices(&set); 2336 } 2337 #endif 2338 } 2339 2340 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2341 2342 #ifdef LOCKF_DEBUG 2343 if (lockf_debug & 8) { 2344 graph_check(g, TRUE); 2345 } 2346 #endif 2347 2348 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2349 2350 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2351 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2352 e->e_refs = 1; 2353 e->e_from = x; 2354 e->e_to = y; 2355 2356 return (0); 2357 } 2358 2359 /* 2360 * Remove an edge x->y from the graph. 2361 */ 2362 static void 2363 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2364 struct owner_vertex *y) 2365 { 2366 struct owner_edge *e; 2367 2368 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2369 2370 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2371 if (e->e_to == y) 2372 break; 2373 } 2374 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2375 2376 e->e_refs--; 2377 if (e->e_refs == 0) { 2378 #ifdef LOCKF_DEBUG 2379 if (lockf_debug & 8) { 2380 printf("removing edge %d:", x->v_order); 2381 lf_print_owner(x->v_owner); 2382 printf(" -> %d:", y->v_order); 2383 lf_print_owner(y->v_owner); 2384 printf("\n"); 2385 } 2386 #endif 2387 LIST_REMOVE(e, e_outlink); 2388 LIST_REMOVE(e, e_inlink); 2389 free(e, M_LOCKF); 2390 } 2391 } 2392 2393 /* 2394 * Allocate a vertex from the free list. Return ENOMEM if there are 2395 * none. 2396 */ 2397 static struct owner_vertex * 2398 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2399 { 2400 struct owner_vertex *v; 2401 2402 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2403 2404 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2405 if (g->g_size == g->g_space) { 2406 g->g_vertices = realloc(g->g_vertices, 2407 2 * g->g_space * sizeof(struct owner_vertex *), 2408 M_LOCKF, M_WAITOK); 2409 free(g->g_indexbuf, M_LOCKF); 2410 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2411 M_LOCKF, M_WAITOK); 2412 g->g_space = 2 * g->g_space; 2413 } 2414 v->v_order = g->g_size; 2415 v->v_gen = g->g_gen; 2416 g->g_vertices[g->g_size] = v; 2417 g->g_size++; 2418 2419 LIST_INIT(&v->v_outedges); 2420 LIST_INIT(&v->v_inedges); 2421 v->v_owner = lo; 2422 2423 return (v); 2424 } 2425 2426 static void 2427 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2428 { 2429 struct owner_vertex *w; 2430 int i; 2431 2432 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2433 2434 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2435 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2436 2437 /* 2438 * Remove from the graph's array and close up the gap, 2439 * renumbering the other vertices. 2440 */ 2441 for (i = v->v_order + 1; i < g->g_size; i++) { 2442 w = g->g_vertices[i]; 2443 w->v_order--; 2444 g->g_vertices[i - 1] = w; 2445 } 2446 g->g_size--; 2447 2448 free(v, M_LOCKF); 2449 } 2450 2451 static struct owner_graph * 2452 graph_init(struct owner_graph *g) 2453 { 2454 2455 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2456 M_LOCKF, M_WAITOK); 2457 g->g_size = 0; 2458 g->g_space = 10; 2459 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2460 g->g_gen = 0; 2461 2462 return (g); 2463 } 2464 2465 struct kinfo_lockf_linked { 2466 struct kinfo_lockf kl; 2467 struct vnode *vp; 2468 STAILQ_ENTRY(kinfo_lockf_linked) link; 2469 }; 2470 2471 int 2472 vfs_report_lockf(struct mount *mp, struct sbuf *sb) 2473 { 2474 struct lockf *ls; 2475 struct lockf_entry *lf; 2476 struct kinfo_lockf_linked *klf; 2477 struct vnode *vp; 2478 struct ucred *ucred; 2479 char *fullpath, *freepath; 2480 struct stat stt; 2481 STAILQ_HEAD(, kinfo_lockf_linked) locks; 2482 int error, gerror; 2483 2484 STAILQ_INIT(&locks); 2485 sx_slock(&lf_lock_states_lock); 2486 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 2487 sx_slock(&ls->ls_lock); 2488 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 2489 vp = lf->lf_vnode; 2490 if (VN_IS_DOOMED(vp) || vp->v_mount != mp) 2491 continue; 2492 vhold(vp); 2493 klf = malloc(sizeof(struct kinfo_lockf_linked), 2494 M_LOCKF, M_WAITOK | M_ZERO); 2495 klf->vp = vp; 2496 klf->kl.kl_structsize = sizeof(struct kinfo_lockf); 2497 klf->kl.kl_start = lf->lf_start; 2498 klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 : 2499 lf->lf_end - lf->lf_start + 1; 2500 klf->kl.kl_rw = lf->lf_type == F_RDLCK ? 2501 KLOCKF_RW_READ : KLOCKF_RW_WRITE; 2502 if (lf->lf_owner->lo_sysid != 0) { 2503 klf->kl.kl_pid = lf->lf_owner->lo_pid; 2504 klf->kl.kl_sysid = lf->lf_owner->lo_sysid; 2505 klf->kl.kl_type = KLOCKF_TYPE_REMOTE; 2506 } else if (lf->lf_owner->lo_pid == -1) { 2507 klf->kl.kl_pid = -1; 2508 klf->kl.kl_sysid = 0; 2509 klf->kl.kl_type = KLOCKF_TYPE_FLOCK; 2510 } else { 2511 klf->kl.kl_pid = lf->lf_owner->lo_pid; 2512 klf->kl.kl_sysid = 0; 2513 klf->kl.kl_type = KLOCKF_TYPE_PID; 2514 } 2515 STAILQ_INSERT_TAIL(&locks, klf, link); 2516 } 2517 sx_sunlock(&ls->ls_lock); 2518 } 2519 sx_sunlock(&lf_lock_states_lock); 2520 2521 gerror = 0; 2522 ucred = curthread->td_ucred; 2523 while ((klf = STAILQ_FIRST(&locks)) != NULL) { 2524 STAILQ_REMOVE_HEAD(&locks, link); 2525 vp = klf->vp; 2526 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) { 2527 error = prison_canseemount(ucred, vp->v_mount); 2528 if (error == 0) 2529 error = VOP_STAT(vp, &stt, ucred, NOCRED); 2530 VOP_UNLOCK(vp); 2531 if (error == 0) { 2532 klf->kl.kl_file_fsid = stt.st_dev; 2533 klf->kl.kl_file_rdev = stt.st_rdev; 2534 klf->kl.kl_file_fileid = stt.st_ino; 2535 freepath = NULL; 2536 fullpath = "-"; 2537 error = vn_fullpath(vp, &fullpath, &freepath); 2538 if (error == 0) 2539 strlcpy(klf->kl.kl_path, fullpath, 2540 sizeof(klf->kl.kl_path)); 2541 free(freepath, M_TEMP); 2542 if (sbuf_bcat(sb, &klf->kl, 2543 klf->kl.kl_structsize) != 0) { 2544 gerror = sbuf_error(sb); 2545 } 2546 } 2547 } 2548 vdrop(vp); 2549 free(klf, M_LOCKF); 2550 } 2551 2552 return (gerror); 2553 } 2554 2555 static int 2556 sysctl_kern_lockf_run(struct sbuf *sb) 2557 { 2558 struct mount *mp; 2559 int error; 2560 2561 error = 0; 2562 mtx_lock(&mountlist_mtx); 2563 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2564 error = vfs_busy(mp, MBF_MNTLSTLOCK); 2565 if (error != 0) 2566 continue; 2567 error = mp->mnt_op->vfs_report_lockf(mp, sb); 2568 mtx_lock(&mountlist_mtx); 2569 vfs_unbusy(mp); 2570 if (error != 0) 2571 break; 2572 } 2573 mtx_unlock(&mountlist_mtx); 2574 return (error); 2575 } 2576 2577 static int 2578 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS) 2579 { 2580 struct sbuf sb; 2581 int error, error2; 2582 2583 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req); 2584 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2585 error = sysctl_kern_lockf_run(&sb); 2586 error2 = sbuf_finish(&sb); 2587 sbuf_delete(&sb); 2588 return (error != 0 ? error : error2); 2589 } 2590 SYSCTL_PROC(_kern, KERN_LOCKF, lockf, 2591 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2592 0, 0, sysctl_kern_lockf, "S,lockf", 2593 "Advisory locks table"); 2594 2595 #ifdef LOCKF_DEBUG 2596 /* 2597 * Print description of a lock owner 2598 */ 2599 static void 2600 lf_print_owner(struct lock_owner *lo) 2601 { 2602 2603 if (lo->lo_flags & F_REMOTE) { 2604 printf("remote pid %d, system %d", 2605 lo->lo_pid, lo->lo_sysid); 2606 } else if (lo->lo_flags & F_FLOCK) { 2607 printf("file %p", lo->lo_id); 2608 } else { 2609 printf("local pid %d", lo->lo_pid); 2610 } 2611 } 2612 2613 /* 2614 * Print out a lock. 2615 */ 2616 static void 2617 lf_print(char *tag, struct lockf_entry *lock) 2618 { 2619 2620 printf("%s: lock %p for ", tag, (void *)lock); 2621 lf_print_owner(lock->lf_owner); 2622 printf("\nvnode %p", lock->lf_vnode); 2623 VOP_PRINT(lock->lf_vnode); 2624 printf(" %s, start %jd, end ", 2625 lock->lf_type == F_RDLCK ? "shared" : 2626 lock->lf_type == F_WRLCK ? "exclusive" : 2627 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2628 (intmax_t)lock->lf_start); 2629 if (lock->lf_end == OFF_MAX) 2630 printf("EOF"); 2631 else 2632 printf("%jd", (intmax_t)lock->lf_end); 2633 if (!LIST_EMPTY(&lock->lf_outedges)) 2634 printf(" block %p\n", 2635 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2636 else 2637 printf("\n"); 2638 } 2639 2640 static void 2641 lf_printlist(char *tag, struct lockf_entry *lock) 2642 { 2643 struct lockf_entry *lf, *blk; 2644 struct lockf_edge *e; 2645 2646 printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode); 2647 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2648 printf("\tlock %p for ",(void *)lf); 2649 lf_print_owner(lock->lf_owner); 2650 printf(", %s, start %jd, end %jd", 2651 lf->lf_type == F_RDLCK ? "shared" : 2652 lf->lf_type == F_WRLCK ? "exclusive" : 2653 lf->lf_type == F_UNLCK ? "unlock" : 2654 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2655 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2656 blk = e->le_to; 2657 printf("\n\t\tlock request %p for ", (void *)blk); 2658 lf_print_owner(blk->lf_owner); 2659 printf(", %s, start %jd, end %jd", 2660 blk->lf_type == F_RDLCK ? "shared" : 2661 blk->lf_type == F_WRLCK ? "exclusive" : 2662 blk->lf_type == F_UNLCK ? "unlock" : 2663 "unknown", (intmax_t)blk->lf_start, 2664 (intmax_t)blk->lf_end); 2665 if (!LIST_EMPTY(&blk->lf_inedges)) 2666 panic("lf_printlist: bad list"); 2667 } 2668 printf("\n"); 2669 } 2670 } 2671 #endif /* LOCKF_DEBUG */ 2672