xref: /freebsd/sys/kern/kern_lockf.c (revision 6e660824a82f590542932de52f128db584029893)
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  *	The Regents of the University of California.  All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 4. Neither the name of the University nor the names of its contributors
43  *    may be used to endorse or promote products derived from this software
44  *    without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_debug_lockf.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82 
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85 
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88 
89 static int	lockf_debug = 0; /* control debug output */
90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91 #endif
92 
93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94 
95 struct owner_edge;
96 struct owner_vertex;
97 struct owner_vertex_list;
98 struct owner_graph;
99 
100 #define NOLOCKF (struct lockf_entry *)0
101 #define SELF	0x1
102 #define OTHERS	0x2
103 static void	 lf_init(void *);
104 static int	 lf_hash_owner(caddr_t, struct flock *, int);
105 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106     int);
107 static struct lockf_entry *
108 		 lf_alloc_lock(struct lock_owner *);
109 static int	 lf_free_lock(struct lockf_entry *);
110 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113 static void	 lf_free_edge(struct lockf_edge *);
114 static struct lockf_edge *
115 		 lf_alloc_edge(void);
116 static void	 lf_alloc_vertex(struct lockf_entry *);
117 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118 static void	 lf_remove_edge(struct lockf_edge *);
119 static void	 lf_remove_outgoing(struct lockf_entry *);
120 static void	 lf_remove_incoming(struct lockf_entry *);
121 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124     int);
125 static struct lockf_entry *
126 		 lf_getblock(struct lockf *, struct lockf_entry *);
127 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131     int all, struct lockf_entry_list *);
132 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133 	struct lockf_entry_list*);
134 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135 	struct lockf_entry_list*);
136 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137     struct vnode *, void **cookiep);
138 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139 static void	 lf_split(struct lockf *, struct lockf_entry *,
140     struct lockf_entry *, struct lockf_entry_list *);
141 #ifdef LOCKF_DEBUG
142 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143     struct owner_vertex_list *path);
144 static void	 graph_check(struct owner_graph *g, int checkorder);
145 static void	 graph_print_vertices(struct owner_vertex_list *set);
146 #endif
147 static int	 graph_delta_forward(struct owner_graph *g,
148     struct owner_vertex *x, struct owner_vertex *y,
149     struct owner_vertex_list *delta);
150 static int	 graph_delta_backward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int	 graph_add_indices(int *indices, int n,
154     struct owner_vertex_list *set);
155 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156     int nextunused, struct owner_vertex_list *set);
157 static int	 graph_add_edge(struct owner_graph *g,
158     struct owner_vertex *x, struct owner_vertex *y);
159 static void	 graph_remove_edge(struct owner_graph *g,
160     struct owner_vertex *x, struct owner_vertex *y);
161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162     struct lock_owner *lo);
163 static void	 graph_free_vertex(struct owner_graph *g,
164     struct owner_vertex *v);
165 static struct owner_graph * graph_init(struct owner_graph *g);
166 #ifdef LOCKF_DEBUG
167 static void	 lf_print(char *, struct lockf_entry *);
168 static void	 lf_printlist(char *, struct lockf_entry *);
169 static void	 lf_print_owner(struct lock_owner *);
170 #endif
171 
172 /*
173  * This structure is used to keep track of both local and remote lock
174  * owners. The lf_owner field of the struct lockf_entry points back at
175  * the lock owner structure. Each possible lock owner (local proc for
176  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177  * pair for remote locks) is represented by a unique instance of
178  * struct lock_owner.
179  *
180  * If a lock owner has a lock that blocks some other lock or a lock
181  * that is waiting for some other lock, it also has a vertex in the
182  * owner_graph below.
183  *
184  * Locks:
185  * (s)		locked by state->ls_lock
186  * (S)		locked by lf_lock_states_lock
187  * (l)		locked by lf_lock_owners_lock
188  * (g)		locked by lf_owner_graph_lock
189  * (c)		const until freeing
190  */
191 #define	LOCK_OWNER_HASH_SIZE	256
192 
193 struct lock_owner {
194 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195 	int	lo_refs;	    /* (l) Number of locks referring to this */
196 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199 	int	lo_sysid;	    /* (c) System Id of the lock owner */
200 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201 };
202 
203 LIST_HEAD(lock_owner_list, lock_owner);
204 
205 static struct sx		lf_lock_states_lock;
206 static struct lockf_list	lf_lock_states; /* (S) */
207 static struct sx		lf_lock_owners_lock;
208 static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209 
210 /*
211  * Structures for deadlock detection.
212  *
213  * We have two types of directed graph, the first is the set of locks,
214  * both active and pending on a vnode. Within this graph, active locks
215  * are terminal nodes in the graph (i.e. have no out-going
216  * edges). Pending locks have out-going edges to each blocking active
217  * lock that prevents the lock from being granted and also to each
218  * older pending lock that would block them if it was active. The
219  * graph for each vnode is naturally acyclic; new edges are only ever
220  * added to or from new nodes (either new pending locks which only add
221  * out-going edges or new active locks which only add in-coming edges)
222  * therefore they cannot create loops in the lock graph.
223  *
224  * The second graph is a global graph of lock owners. Each lock owner
225  * is a vertex in that graph and an edge is added to the graph
226  * whenever an edge is added to a vnode graph, with end points
227  * corresponding to owner of the new pending lock and the owner of the
228  * lock upon which it waits. In order to prevent deadlock, we only add
229  * an edge to this graph if the new edge would not create a cycle.
230  *
231  * The lock owner graph is topologically sorted, i.e. if a node has
232  * any outgoing edges, then it has an order strictly less than any
233  * node to which it has an outgoing edge. We preserve this ordering
234  * (and detect cycles) on edge insertion using Algorithm PK from the
235  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237  * No. 1.7)
238  */
239 struct owner_vertex;
240 
241 struct owner_edge {
242 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244 	int		e_refs;		  /* (g) number of times added */
245 	struct owner_vertex *e_from;	  /* (c) out-going from here */
246 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247 };
248 LIST_HEAD(owner_edge_list, owner_edge);
249 
250 struct owner_vertex {
251 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253 	int		v_order;	  /* (g) order of vertex in graph */
254 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257 };
258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
259 
260 struct owner_graph {
261 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262 	int		g_size;		  /* (g) number of vertices */
263 	int		g_space;	  /* (g) space allocated for vertices */
264 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266 };
267 
268 static struct sx		lf_owner_graph_lock;
269 static struct owner_graph	lf_owner_graph;
270 
271 /*
272  * Initialise various structures and locks.
273  */
274 static void
275 lf_init(void *dummy)
276 {
277 	int i;
278 
279 	sx_init(&lf_lock_states_lock, "lock states lock");
280 	LIST_INIT(&lf_lock_states);
281 
282 	sx_init(&lf_lock_owners_lock, "lock owners lock");
283 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284 		LIST_INIT(&lf_lock_owners[i]);
285 
286 	sx_init(&lf_owner_graph_lock, "owner graph lock");
287 	graph_init(&lf_owner_graph);
288 }
289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290 
291 /*
292  * Generate a hash value for a lock owner.
293  */
294 static int
295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296 {
297 	uint32_t h;
298 
299 	if (flags & F_REMOTE) {
300 		h = HASHSTEP(0, fl->l_pid);
301 		h = HASHSTEP(h, fl->l_sysid);
302 	} else if (flags & F_FLOCK) {
303 		h = ((uintptr_t) id) >> 7;
304 	} else {
305 		struct proc *p = (struct proc *) id;
306 		h = HASHSTEP(0, p->p_pid);
307 		h = HASHSTEP(h, 0);
308 	}
309 
310 	return (h % LOCK_OWNER_HASH_SIZE);
311 }
312 
313 /*
314  * Return true if a lock owner matches the details passed to
315  * lf_advlock.
316  */
317 static int
318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319     int flags)
320 {
321 	if (flags & F_REMOTE) {
322 		return lo->lo_pid == fl->l_pid
323 			&& lo->lo_sysid == fl->l_sysid;
324 	} else {
325 		return lo->lo_id == id;
326 	}
327 }
328 
329 static struct lockf_entry *
330 lf_alloc_lock(struct lock_owner *lo)
331 {
332 	struct lockf_entry *lf;
333 
334 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335 
336 #ifdef LOCKF_DEBUG
337 	if (lockf_debug & 4)
338 		printf("Allocated lock %p\n", lf);
339 #endif
340 	if (lo) {
341 		sx_xlock(&lf_lock_owners_lock);
342 		lo->lo_refs++;
343 		sx_xunlock(&lf_lock_owners_lock);
344 		lf->lf_owner = lo;
345 	}
346 
347 	return (lf);
348 }
349 
350 static int
351 lf_free_lock(struct lockf_entry *lock)
352 {
353 
354 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355 	if (--lock->lf_refs > 0)
356 		return (0);
357 	/*
358 	 * Adjust the lock_owner reference count and
359 	 * reclaim the entry if this is the last lock
360 	 * for that owner.
361 	 */
362 	struct lock_owner *lo = lock->lf_owner;
363 	if (lo) {
364 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
365 		    ("freeing lock with dependancies"));
366 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
367 		    ("freeing lock with dependants"));
368 		sx_xlock(&lf_lock_owners_lock);
369 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370 		lo->lo_refs--;
371 		if (lo->lo_refs == 0) {
372 #ifdef LOCKF_DEBUG
373 			if (lockf_debug & 1)
374 				printf("lf_free_lock: freeing lock owner %p\n",
375 				    lo);
376 #endif
377 			if (lo->lo_vertex) {
378 				sx_xlock(&lf_owner_graph_lock);
379 				graph_free_vertex(&lf_owner_graph,
380 				    lo->lo_vertex);
381 				sx_xunlock(&lf_owner_graph_lock);
382 			}
383 			LIST_REMOVE(lo, lo_link);
384 			free(lo, M_LOCKF);
385 #ifdef LOCKF_DEBUG
386 			if (lockf_debug & 4)
387 				printf("Freed lock owner %p\n", lo);
388 #endif
389 		}
390 		sx_unlock(&lf_lock_owners_lock);
391 	}
392 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393 		vrele(lock->lf_vnode);
394 		lock->lf_vnode = NULL;
395 	}
396 #ifdef LOCKF_DEBUG
397 	if (lockf_debug & 4)
398 		printf("Freed lock %p\n", lock);
399 #endif
400 	free(lock, M_LOCKF);
401 	return (1);
402 }
403 
404 /*
405  * Advisory record locking support
406  */
407 int
408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409     u_quad_t size)
410 {
411 	struct lockf *state, *freestate = NULL;
412 	struct flock *fl = ap->a_fl;
413 	struct lockf_entry *lock;
414 	struct vnode *vp = ap->a_vp;
415 	caddr_t id = ap->a_id;
416 	int flags = ap->a_flags;
417 	int hash;
418 	struct lock_owner *lo;
419 	off_t start, end, oadd;
420 	int error;
421 
422 	/*
423 	 * Handle the F_UNLKSYS case first - no need to mess about
424 	 * creating a lock owner for this one.
425 	 */
426 	if (ap->a_op == F_UNLCKSYS) {
427 		lf_clearremotesys(fl->l_sysid);
428 		return (0);
429 	}
430 
431 	/*
432 	 * Convert the flock structure into a start and end.
433 	 */
434 	switch (fl->l_whence) {
435 
436 	case SEEK_SET:
437 	case SEEK_CUR:
438 		/*
439 		 * Caller is responsible for adding any necessary offset
440 		 * when SEEK_CUR is used.
441 		 */
442 		start = fl->l_start;
443 		break;
444 
445 	case SEEK_END:
446 		if (size > OFF_MAX ||
447 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448 			return (EOVERFLOW);
449 		start = size + fl->l_start;
450 		break;
451 
452 	default:
453 		return (EINVAL);
454 	}
455 	if (start < 0)
456 		return (EINVAL);
457 	if (fl->l_len < 0) {
458 		if (start == 0)
459 			return (EINVAL);
460 		end = start - 1;
461 		start += fl->l_len;
462 		if (start < 0)
463 			return (EINVAL);
464 	} else if (fl->l_len == 0) {
465 		end = OFF_MAX;
466 	} else {
467 		oadd = fl->l_len - 1;
468 		if (oadd > OFF_MAX - start)
469 			return (EOVERFLOW);
470 		end = start + oadd;
471 	}
472 	/*
473 	 * Avoid the common case of unlocking when inode has no locks.
474 	 */
475 	VI_LOCK(vp);
476 	if ((*statep) == NULL) {
477 		if (ap->a_op != F_SETLK) {
478 			fl->l_type = F_UNLCK;
479 			VI_UNLOCK(vp);
480 			return (0);
481 		}
482 	}
483 	VI_UNLOCK(vp);
484 
485 	/*
486 	 * Map our arguments to an existing lock owner or create one
487 	 * if this is the first time we have seen this owner.
488 	 */
489 	hash = lf_hash_owner(id, fl, flags);
490 	sx_xlock(&lf_lock_owners_lock);
491 	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
492 		if (lf_owner_matches(lo, id, fl, flags))
493 			break;
494 	if (!lo) {
495 		/*
496 		 * We initialise the lock with a reference
497 		 * count which matches the new lockf_entry
498 		 * structure created below.
499 		 */
500 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
501 		    M_WAITOK|M_ZERO);
502 #ifdef LOCKF_DEBUG
503 		if (lockf_debug & 4)
504 			printf("Allocated lock owner %p\n", lo);
505 #endif
506 
507 		lo->lo_refs = 1;
508 		lo->lo_flags = flags;
509 		lo->lo_id = id;
510 		if (flags & F_REMOTE) {
511 			lo->lo_pid = fl->l_pid;
512 			lo->lo_sysid = fl->l_sysid;
513 		} else if (flags & F_FLOCK) {
514 			lo->lo_pid = -1;
515 			lo->lo_sysid = 0;
516 		} else {
517 			struct proc *p = (struct proc *) id;
518 			lo->lo_pid = p->p_pid;
519 			lo->lo_sysid = 0;
520 		}
521 		lo->lo_vertex = NULL;
522 
523 #ifdef LOCKF_DEBUG
524 		if (lockf_debug & 1) {
525 			printf("lf_advlockasync: new lock owner %p ", lo);
526 			lf_print_owner(lo);
527 			printf("\n");
528 		}
529 #endif
530 
531 		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
532 	} else {
533 		/*
534 		 * We have seen this lock owner before, increase its
535 		 * reference count to account for the new lockf_entry
536 		 * structure we create below.
537 		 */
538 		lo->lo_refs++;
539 	}
540 	sx_xunlock(&lf_lock_owners_lock);
541 
542 	/*
543 	 * Create the lockf structure. We initialise the lf_owner
544 	 * field here instead of in lf_alloc_lock() to avoid paying
545 	 * the lf_lock_owners_lock tax twice.
546 	 */
547 	lock = lf_alloc_lock(NULL);
548 	lock->lf_refs = 1;
549 	lock->lf_start = start;
550 	lock->lf_end = end;
551 	lock->lf_owner = lo;
552 	lock->lf_vnode = vp;
553 	if (flags & F_REMOTE) {
554 		/*
555 		 * For remote locks, the caller may release its ref to
556 		 * the vnode at any time - we have to ref it here to
557 		 * prevent it from being recycled unexpectedly.
558 		 */
559 		vref(vp);
560 	}
561 
562 	/*
563 	 * XXX The problem is that VTOI is ufs specific, so it will
564 	 * break LOCKF_DEBUG for all other FS's other than UFS because
565 	 * it casts the vnode->data ptr to struct inode *.
566 	 */
567 /*	lock->lf_inode = VTOI(ap->a_vp); */
568 	lock->lf_inode = (struct inode *)0;
569 	lock->lf_type = fl->l_type;
570 	LIST_INIT(&lock->lf_outedges);
571 	LIST_INIT(&lock->lf_inedges);
572 	lock->lf_async_task = ap->a_task;
573 	lock->lf_flags = ap->a_flags;
574 
575 	/*
576 	 * Do the requested operation. First find our state structure
577 	 * and create a new one if necessary - the caller's *statep
578 	 * variable and the state's ls_threads count is protected by
579 	 * the vnode interlock.
580 	 */
581 	VI_LOCK(vp);
582 	if (vp->v_iflag & VI_DOOMED) {
583 		VI_UNLOCK(vp);
584 		lf_free_lock(lock);
585 		return (ENOENT);
586 	}
587 
588 	/*
589 	 * Allocate a state structure if necessary.
590 	 */
591 	state = *statep;
592 	if (state == NULL) {
593 		struct lockf *ls;
594 
595 		VI_UNLOCK(vp);
596 
597 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
598 		sx_init(&ls->ls_lock, "ls_lock");
599 		LIST_INIT(&ls->ls_active);
600 		LIST_INIT(&ls->ls_pending);
601 		ls->ls_threads = 1;
602 
603 		sx_xlock(&lf_lock_states_lock);
604 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
605 		sx_xunlock(&lf_lock_states_lock);
606 
607 		/*
608 		 * Cope if we lost a race with some other thread while
609 		 * trying to allocate memory.
610 		 */
611 		VI_LOCK(vp);
612 		if (vp->v_iflag & VI_DOOMED) {
613 			VI_UNLOCK(vp);
614 			sx_xlock(&lf_lock_states_lock);
615 			LIST_REMOVE(ls, ls_link);
616 			sx_xunlock(&lf_lock_states_lock);
617 			sx_destroy(&ls->ls_lock);
618 			free(ls, M_LOCKF);
619 			lf_free_lock(lock);
620 			return (ENOENT);
621 		}
622 		if ((*statep) == NULL) {
623 			state = *statep = ls;
624 			VI_UNLOCK(vp);
625 		} else {
626 			state = *statep;
627 			state->ls_threads++;
628 			VI_UNLOCK(vp);
629 
630 			sx_xlock(&lf_lock_states_lock);
631 			LIST_REMOVE(ls, ls_link);
632 			sx_xunlock(&lf_lock_states_lock);
633 			sx_destroy(&ls->ls_lock);
634 			free(ls, M_LOCKF);
635 		}
636 	} else {
637 		state->ls_threads++;
638 		VI_UNLOCK(vp);
639 	}
640 
641 	sx_xlock(&state->ls_lock);
642 	/*
643 	 * Recheck the doomed vnode after state->ls_lock is
644 	 * locked. lf_purgelocks() requires that no new threads add
645 	 * pending locks when vnode is marked by VI_DOOMED flag.
646 	 */
647 	VI_LOCK(vp);
648 	if (vp->v_iflag & VI_DOOMED) {
649 		state->ls_threads--;
650 		wakeup(state);
651 		VI_UNLOCK(vp);
652 		sx_xunlock(&state->ls_lock);
653 		lf_free_lock(lock);
654 		return (ENOENT);
655 	}
656 	VI_UNLOCK(vp);
657 
658 	switch (ap->a_op) {
659 	case F_SETLK:
660 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
661 		break;
662 
663 	case F_UNLCK:
664 		error = lf_clearlock(state, lock);
665 		lf_free_lock(lock);
666 		break;
667 
668 	case F_GETLK:
669 		error = lf_getlock(state, lock, fl);
670 		lf_free_lock(lock);
671 		break;
672 
673 	case F_CANCEL:
674 		if (ap->a_cookiep)
675 			error = lf_cancel(state, lock, *ap->a_cookiep);
676 		else
677 			error = EINVAL;
678 		lf_free_lock(lock);
679 		break;
680 
681 	default:
682 		lf_free_lock(lock);
683 		error = EINVAL;
684 		break;
685 	}
686 
687 #ifdef INVARIANTS
688 	/*
689 	 * Check for some can't happen stuff. In this case, the active
690 	 * lock list becoming disordered or containing mutually
691 	 * blocking locks. We also check the pending list for locks
692 	 * which should be active (i.e. have no out-going edges).
693 	 */
694 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
695 		struct lockf_entry *lf;
696 		if (LIST_NEXT(lock, lf_link))
697 			KASSERT((lock->lf_start
698 				<= LIST_NEXT(lock, lf_link)->lf_start),
699 			    ("locks disordered"));
700 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
701 			if (lock == lf)
702 				break;
703 			KASSERT(!lf_blocks(lock, lf),
704 			    ("two conflicting active locks"));
705 			if (lock->lf_owner == lf->lf_owner)
706 				KASSERT(!lf_overlaps(lock, lf),
707 				    ("two overlapping locks from same owner"));
708 		}
709 	}
710 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
711 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
712 		    ("pending lock which should be active"));
713 	}
714 #endif
715 	sx_xunlock(&state->ls_lock);
716 
717 	/*
718 	 * If we have removed the last active lock on the vnode and
719 	 * this is the last thread that was in-progress, we can free
720 	 * the state structure. We update the caller's pointer inside
721 	 * the vnode interlock but call free outside.
722 	 *
723 	 * XXX alternatively, keep the state structure around until
724 	 * the filesystem recycles - requires a callback from the
725 	 * filesystem.
726 	 */
727 	VI_LOCK(vp);
728 
729 	state->ls_threads--;
730 	wakeup(state);
731 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
732 		KASSERT(LIST_EMPTY(&state->ls_pending),
733 		    ("freeing state with pending locks"));
734 		freestate = state;
735 		*statep = NULL;
736 	}
737 
738 	VI_UNLOCK(vp);
739 
740 	if (freestate) {
741 		sx_xlock(&lf_lock_states_lock);
742 		LIST_REMOVE(freestate, ls_link);
743 		sx_xunlock(&lf_lock_states_lock);
744 		sx_destroy(&freestate->ls_lock);
745 		free(freestate, M_LOCKF);
746 	}
747 	return (error);
748 }
749 
750 int
751 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
752 {
753 	struct vop_advlockasync_args a;
754 
755 	a.a_vp = ap->a_vp;
756 	a.a_id = ap->a_id;
757 	a.a_op = ap->a_op;
758 	a.a_fl = ap->a_fl;
759 	a.a_flags = ap->a_flags;
760 	a.a_task = NULL;
761 	a.a_cookiep = NULL;
762 
763 	return (lf_advlockasync(&a, statep, size));
764 }
765 
766 void
767 lf_purgelocks(struct vnode *vp, struct lockf **statep)
768 {
769 	struct lockf *state;
770 	struct lockf_entry *lock, *nlock;
771 
772 	/*
773 	 * For this to work correctly, the caller must ensure that no
774 	 * other threads enter the locking system for this vnode,
775 	 * e.g. by checking VI_DOOMED. We wake up any threads that are
776 	 * sleeping waiting for locks on this vnode and then free all
777 	 * the remaining locks.
778 	 */
779 	VI_LOCK(vp);
780 	KASSERT(vp->v_iflag & VI_DOOMED,
781 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
782 	state = *statep;
783 	if (state) {
784 		*statep = NULL;
785 		state->ls_threads++;
786 		VI_UNLOCK(vp);
787 
788 		sx_xlock(&state->ls_lock);
789 		sx_xlock(&lf_owner_graph_lock);
790 		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
791 			LIST_REMOVE(lock, lf_link);
792 			lf_remove_outgoing(lock);
793 			lf_remove_incoming(lock);
794 
795 			/*
796 			 * If its an async lock, we can just free it
797 			 * here, otherwise we let the sleeping thread
798 			 * free it.
799 			 */
800 			if (lock->lf_async_task) {
801 				lf_free_lock(lock);
802 			} else {
803 				lock->lf_flags |= F_INTR;
804 				wakeup(lock);
805 			}
806 		}
807 		sx_xunlock(&lf_owner_graph_lock);
808 		sx_xunlock(&state->ls_lock);
809 
810 		/*
811 		 * Wait for all other threads, sleeping and otherwise
812 		 * to leave.
813 		 */
814 		VI_LOCK(vp);
815 		while (state->ls_threads > 1)
816 			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
817 		VI_UNLOCK(vp);
818 
819 		/*
820 		 * We can just free all the active locks since they
821 		 * will have no dependancies (we removed them all
822 		 * above). We don't need to bother locking since we
823 		 * are the last thread using this state structure.
824 		 */
825 		KASSERT(LIST_EMPTY(&state->ls_pending),
826 		    ("lock pending for %p", state));
827 		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
828 			LIST_REMOVE(lock, lf_link);
829 			lf_free_lock(lock);
830 		}
831 		sx_xlock(&lf_lock_states_lock);
832 		LIST_REMOVE(state, ls_link);
833 		sx_xunlock(&lf_lock_states_lock);
834 		sx_destroy(&state->ls_lock);
835 		free(state, M_LOCKF);
836 	} else {
837 		VI_UNLOCK(vp);
838 	}
839 }
840 
841 /*
842  * Return non-zero if locks 'x' and 'y' overlap.
843  */
844 static int
845 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
846 {
847 
848 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
849 }
850 
851 /*
852  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
853  */
854 static int
855 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
856 {
857 
858 	return x->lf_owner != y->lf_owner
859 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
860 		&& lf_overlaps(x, y);
861 }
862 
863 /*
864  * Allocate a lock edge from the free list
865  */
866 static struct lockf_edge *
867 lf_alloc_edge(void)
868 {
869 
870 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
871 }
872 
873 /*
874  * Free a lock edge.
875  */
876 static void
877 lf_free_edge(struct lockf_edge *e)
878 {
879 
880 	free(e, M_LOCKF);
881 }
882 
883 
884 /*
885  * Ensure that the lock's owner has a corresponding vertex in the
886  * owner graph.
887  */
888 static void
889 lf_alloc_vertex(struct lockf_entry *lock)
890 {
891 	struct owner_graph *g = &lf_owner_graph;
892 
893 	if (!lock->lf_owner->lo_vertex)
894 		lock->lf_owner->lo_vertex =
895 			graph_alloc_vertex(g, lock->lf_owner);
896 }
897 
898 /*
899  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
900  * the new edge would cause a cycle in the owner graph.
901  */
902 static int
903 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
904 {
905 	struct owner_graph *g = &lf_owner_graph;
906 	struct lockf_edge *e;
907 	int error;
908 
909 #ifdef INVARIANTS
910 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
911 		KASSERT(e->le_to != y, ("adding lock edge twice"));
912 #endif
913 
914 	/*
915 	 * Make sure the two owners have entries in the owner graph.
916 	 */
917 	lf_alloc_vertex(x);
918 	lf_alloc_vertex(y);
919 
920 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
921 	    y->lf_owner->lo_vertex);
922 	if (error)
923 		return (error);
924 
925 	e = lf_alloc_edge();
926 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
927 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
928 	e->le_from = x;
929 	e->le_to = y;
930 
931 	return (0);
932 }
933 
934 /*
935  * Remove an edge from the lock graph.
936  */
937 static void
938 lf_remove_edge(struct lockf_edge *e)
939 {
940 	struct owner_graph *g = &lf_owner_graph;
941 	struct lockf_entry *x = e->le_from;
942 	struct lockf_entry *y = e->le_to;
943 
944 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
945 	LIST_REMOVE(e, le_outlink);
946 	LIST_REMOVE(e, le_inlink);
947 	e->le_from = NULL;
948 	e->le_to = NULL;
949 	lf_free_edge(e);
950 }
951 
952 /*
953  * Remove all out-going edges from lock x.
954  */
955 static void
956 lf_remove_outgoing(struct lockf_entry *x)
957 {
958 	struct lockf_edge *e;
959 
960 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
961 		lf_remove_edge(e);
962 	}
963 }
964 
965 /*
966  * Remove all in-coming edges from lock x.
967  */
968 static void
969 lf_remove_incoming(struct lockf_entry *x)
970 {
971 	struct lockf_edge *e;
972 
973 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
974 		lf_remove_edge(e);
975 	}
976 }
977 
978 /*
979  * Walk the list of locks for the file and create an out-going edge
980  * from lock to each blocking lock.
981  */
982 static int
983 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
984 {
985 	struct lockf_entry *overlap;
986 	int error;
987 
988 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
989 		/*
990 		 * We may assume that the active list is sorted by
991 		 * lf_start.
992 		 */
993 		if (overlap->lf_start > lock->lf_end)
994 			break;
995 		if (!lf_blocks(lock, overlap))
996 			continue;
997 
998 		/*
999 		 * We've found a blocking lock. Add the corresponding
1000 		 * edge to the graphs and see if it would cause a
1001 		 * deadlock.
1002 		 */
1003 		error = lf_add_edge(lock, overlap);
1004 
1005 		/*
1006 		 * The only error that lf_add_edge returns is EDEADLK.
1007 		 * Remove any edges we added and return the error.
1008 		 */
1009 		if (error) {
1010 			lf_remove_outgoing(lock);
1011 			return (error);
1012 		}
1013 	}
1014 
1015 	/*
1016 	 * We also need to add edges to sleeping locks that block
1017 	 * us. This ensures that lf_wakeup_lock cannot grant two
1018 	 * mutually blocking locks simultaneously and also enforces a
1019 	 * 'first come, first served' fairness model. Note that this
1020 	 * only happens if we are blocked by at least one active lock
1021 	 * due to the call to lf_getblock in lf_setlock below.
1022 	 */
1023 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1024 		if (!lf_blocks(lock, overlap))
1025 			continue;
1026 		/*
1027 		 * We've found a blocking lock. Add the corresponding
1028 		 * edge to the graphs and see if it would cause a
1029 		 * deadlock.
1030 		 */
1031 		error = lf_add_edge(lock, overlap);
1032 
1033 		/*
1034 		 * The only error that lf_add_edge returns is EDEADLK.
1035 		 * Remove any edges we added and return the error.
1036 		 */
1037 		if (error) {
1038 			lf_remove_outgoing(lock);
1039 			return (error);
1040 		}
1041 	}
1042 
1043 	return (0);
1044 }
1045 
1046 /*
1047  * Walk the list of pending locks for the file and create an in-coming
1048  * edge from lock to each blocking lock.
1049  */
1050 static int
1051 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1052 {
1053 	struct lockf_entry *overlap;
1054 	int error;
1055 
1056 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1057 		if (!lf_blocks(lock, overlap))
1058 			continue;
1059 
1060 		/*
1061 		 * We've found a blocking lock. Add the corresponding
1062 		 * edge to the graphs and see if it would cause a
1063 		 * deadlock.
1064 		 */
1065 		error = lf_add_edge(overlap, lock);
1066 
1067 		/*
1068 		 * The only error that lf_add_edge returns is EDEADLK.
1069 		 * Remove any edges we added and return the error.
1070 		 */
1071 		if (error) {
1072 			lf_remove_incoming(lock);
1073 			return (error);
1074 		}
1075 	}
1076 	return (0);
1077 }
1078 
1079 /*
1080  * Insert lock into the active list, keeping list entries ordered by
1081  * increasing values of lf_start.
1082  */
1083 static void
1084 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1085 {
1086 	struct lockf_entry *lf, *lfprev;
1087 
1088 	if (LIST_EMPTY(&state->ls_active)) {
1089 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1090 		return;
1091 	}
1092 
1093 	lfprev = NULL;
1094 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1095 		if (lf->lf_start > lock->lf_start) {
1096 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1097 			return;
1098 		}
1099 		lfprev = lf;
1100 	}
1101 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1102 }
1103 
1104 /*
1105  * Wake up a sleeping lock and remove it from the pending list now
1106  * that all its dependancies have been resolved. The caller should
1107  * arrange for the lock to be added to the active list, adjusting any
1108  * existing locks for the same owner as needed.
1109  */
1110 static void
1111 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1112 {
1113 
1114 	/*
1115 	 * Remove from ls_pending list and wake up the caller
1116 	 * or start the async notification, as appropriate.
1117 	 */
1118 	LIST_REMOVE(wakelock, lf_link);
1119 #ifdef LOCKF_DEBUG
1120 	if (lockf_debug & 1)
1121 		lf_print("lf_wakeup_lock: awakening", wakelock);
1122 #endif /* LOCKF_DEBUG */
1123 	if (wakelock->lf_async_task) {
1124 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1125 	} else {
1126 		wakeup(wakelock);
1127 	}
1128 }
1129 
1130 /*
1131  * Re-check all dependant locks and remove edges to locks that we no
1132  * longer block. If 'all' is non-zero, the lock has been removed and
1133  * we must remove all the dependancies, otherwise it has simply been
1134  * reduced but remains active. Any pending locks which have been been
1135  * unblocked are added to 'granted'
1136  */
1137 static void
1138 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1139 	struct lockf_entry_list *granted)
1140 {
1141 	struct lockf_edge *e, *ne;
1142 	struct lockf_entry *deplock;
1143 
1144 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1145 		deplock = e->le_from;
1146 		if (all || !lf_blocks(lock, deplock)) {
1147 			sx_xlock(&lf_owner_graph_lock);
1148 			lf_remove_edge(e);
1149 			sx_xunlock(&lf_owner_graph_lock);
1150 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1151 				lf_wakeup_lock(state, deplock);
1152 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1153 			}
1154 		}
1155 	}
1156 }
1157 
1158 /*
1159  * Set the start of an existing active lock, updating dependancies and
1160  * adding any newly woken locks to 'granted'.
1161  */
1162 static void
1163 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1164 	struct lockf_entry_list *granted)
1165 {
1166 
1167 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1168 	lock->lf_start = new_start;
1169 	LIST_REMOVE(lock, lf_link);
1170 	lf_insert_lock(state, lock);
1171 	lf_update_dependancies(state, lock, FALSE, granted);
1172 }
1173 
1174 /*
1175  * Set the end of an existing active lock, updating dependancies and
1176  * adding any newly woken locks to 'granted'.
1177  */
1178 static void
1179 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1180 	struct lockf_entry_list *granted)
1181 {
1182 
1183 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1184 	lock->lf_end = new_end;
1185 	lf_update_dependancies(state, lock, FALSE, granted);
1186 }
1187 
1188 /*
1189  * Add a lock to the active list, updating or removing any current
1190  * locks owned by the same owner and processing any pending locks that
1191  * become unblocked as a result. This code is also used for unlock
1192  * since the logic for updating existing locks is identical.
1193  *
1194  * As a result of processing the new lock, we may unblock existing
1195  * pending locks as a result of downgrading/unlocking. We simply
1196  * activate the newly granted locks by looping.
1197  *
1198  * Since the new lock already has its dependancies set up, we always
1199  * add it to the list (unless its an unlock request). This may
1200  * fragment the lock list in some pathological cases but its probably
1201  * not a real problem.
1202  */
1203 static void
1204 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1205 {
1206 	struct lockf_entry *overlap, *lf;
1207 	struct lockf_entry_list granted;
1208 	int ovcase;
1209 
1210 	LIST_INIT(&granted);
1211 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1212 
1213 	while (!LIST_EMPTY(&granted)) {
1214 		lock = LIST_FIRST(&granted);
1215 		LIST_REMOVE(lock, lf_link);
1216 
1217 		/*
1218 		 * Skip over locks owned by other processes.  Handle
1219 		 * any locks that overlap and are owned by ourselves.
1220 		 */
1221 		overlap = LIST_FIRST(&state->ls_active);
1222 		for (;;) {
1223 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1224 
1225 #ifdef LOCKF_DEBUG
1226 			if (ovcase && (lockf_debug & 2)) {
1227 				printf("lf_setlock: overlap %d", ovcase);
1228 				lf_print("", overlap);
1229 			}
1230 #endif
1231 			/*
1232 			 * Six cases:
1233 			 *	0) no overlap
1234 			 *	1) overlap == lock
1235 			 *	2) overlap contains lock
1236 			 *	3) lock contains overlap
1237 			 *	4) overlap starts before lock
1238 			 *	5) overlap ends after lock
1239 			 */
1240 			switch (ovcase) {
1241 			case 0: /* no overlap */
1242 				break;
1243 
1244 			case 1: /* overlap == lock */
1245 				/*
1246 				 * We have already setup the
1247 				 * dependants for the new lock, taking
1248 				 * into account a possible downgrade
1249 				 * or unlock. Remove the old lock.
1250 				 */
1251 				LIST_REMOVE(overlap, lf_link);
1252 				lf_update_dependancies(state, overlap, TRUE,
1253 					&granted);
1254 				lf_free_lock(overlap);
1255 				break;
1256 
1257 			case 2: /* overlap contains lock */
1258 				/*
1259 				 * Just split the existing lock.
1260 				 */
1261 				lf_split(state, overlap, lock, &granted);
1262 				break;
1263 
1264 			case 3: /* lock contains overlap */
1265 				/*
1266 				 * Delete the overlap and advance to
1267 				 * the next entry in the list.
1268 				 */
1269 				lf = LIST_NEXT(overlap, lf_link);
1270 				LIST_REMOVE(overlap, lf_link);
1271 				lf_update_dependancies(state, overlap, TRUE,
1272 					&granted);
1273 				lf_free_lock(overlap);
1274 				overlap = lf;
1275 				continue;
1276 
1277 			case 4: /* overlap starts before lock */
1278 				/*
1279 				 * Just update the overlap end and
1280 				 * move on.
1281 				 */
1282 				lf_set_end(state, overlap, lock->lf_start - 1,
1283 				    &granted);
1284 				overlap = LIST_NEXT(overlap, lf_link);
1285 				continue;
1286 
1287 			case 5: /* overlap ends after lock */
1288 				/*
1289 				 * Change the start of overlap and
1290 				 * re-insert.
1291 				 */
1292 				lf_set_start(state, overlap, lock->lf_end + 1,
1293 				    &granted);
1294 				break;
1295 			}
1296 			break;
1297 		}
1298 #ifdef LOCKF_DEBUG
1299 		if (lockf_debug & 1) {
1300 			if (lock->lf_type != F_UNLCK)
1301 				lf_print("lf_activate_lock: activated", lock);
1302 			else
1303 				lf_print("lf_activate_lock: unlocked", lock);
1304 			lf_printlist("lf_activate_lock", lock);
1305 		}
1306 #endif /* LOCKF_DEBUG */
1307 		if (lock->lf_type != F_UNLCK)
1308 			lf_insert_lock(state, lock);
1309 	}
1310 }
1311 
1312 /*
1313  * Cancel a pending lock request, either as a result of a signal or a
1314  * cancel request for an async lock.
1315  */
1316 static void
1317 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1318 {
1319 	struct lockf_entry_list granted;
1320 
1321 	/*
1322 	 * Note it is theoretically possible that cancelling this lock
1323 	 * may allow some other pending lock to become
1324 	 * active. Consider this case:
1325 	 *
1326 	 * Owner	Action		Result		Dependancies
1327 	 *
1328 	 * A:		lock [0..0]	succeeds
1329 	 * B:		lock [2..2]	succeeds
1330 	 * C:		lock [1..2]	blocked		C->B
1331 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1332 	 * A:		unlock [0..0]			C->B,D->C
1333 	 * C:		cancel [1..2]
1334 	 */
1335 
1336 	LIST_REMOVE(lock, lf_link);
1337 
1338 	/*
1339 	 * Removing out-going edges is simple.
1340 	 */
1341 	sx_xlock(&lf_owner_graph_lock);
1342 	lf_remove_outgoing(lock);
1343 	sx_xunlock(&lf_owner_graph_lock);
1344 
1345 	/*
1346 	 * Removing in-coming edges may allow some other lock to
1347 	 * become active - we use lf_update_dependancies to figure
1348 	 * this out.
1349 	 */
1350 	LIST_INIT(&granted);
1351 	lf_update_dependancies(state, lock, TRUE, &granted);
1352 	lf_free_lock(lock);
1353 
1354 	/*
1355 	 * Feed any newly active locks to lf_activate_lock.
1356 	 */
1357 	while (!LIST_EMPTY(&granted)) {
1358 		lock = LIST_FIRST(&granted);
1359 		LIST_REMOVE(lock, lf_link);
1360 		lf_activate_lock(state, lock);
1361 	}
1362 }
1363 
1364 /*
1365  * Set a byte-range lock.
1366  */
1367 static int
1368 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1369     void **cookiep)
1370 {
1371 	static char lockstr[] = "lockf";
1372 	int priority, error;
1373 
1374 #ifdef LOCKF_DEBUG
1375 	if (lockf_debug & 1)
1376 		lf_print("lf_setlock", lock);
1377 #endif /* LOCKF_DEBUG */
1378 
1379 	/*
1380 	 * Set the priority
1381 	 */
1382 	priority = PLOCK;
1383 	if (lock->lf_type == F_WRLCK)
1384 		priority += 4;
1385 	if (!(lock->lf_flags & F_NOINTR))
1386 		priority |= PCATCH;
1387 	/*
1388 	 * Scan lock list for this file looking for locks that would block us.
1389 	 */
1390 	if (lf_getblock(state, lock)) {
1391 		/*
1392 		 * Free the structure and return if nonblocking.
1393 		 */
1394 		if ((lock->lf_flags & F_WAIT) == 0
1395 		    && lock->lf_async_task == NULL) {
1396 			lf_free_lock(lock);
1397 			error = EAGAIN;
1398 			goto out;
1399 		}
1400 
1401 		/*
1402 		 * For flock type locks, we must first remove
1403 		 * any shared locks that we hold before we sleep
1404 		 * waiting for an exclusive lock.
1405 		 */
1406 		if ((lock->lf_flags & F_FLOCK) &&
1407 		    lock->lf_type == F_WRLCK) {
1408 			lock->lf_type = F_UNLCK;
1409 			lf_activate_lock(state, lock);
1410 			lock->lf_type = F_WRLCK;
1411 		}
1412 
1413 		/*
1414 		 * We are blocked. Create edges to each blocking lock,
1415 		 * checking for deadlock using the owner graph. For
1416 		 * simplicity, we run deadlock detection for all
1417 		 * locks, posix and otherwise.
1418 		 */
1419 		sx_xlock(&lf_owner_graph_lock);
1420 		error = lf_add_outgoing(state, lock);
1421 		sx_xunlock(&lf_owner_graph_lock);
1422 
1423 		if (error) {
1424 #ifdef LOCKF_DEBUG
1425 			if (lockf_debug & 1)
1426 				lf_print("lf_setlock: deadlock", lock);
1427 #endif
1428 			lf_free_lock(lock);
1429 			goto out;
1430 		}
1431 
1432 		/*
1433 		 * We have added edges to everything that blocks
1434 		 * us. Sleep until they all go away.
1435 		 */
1436 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1437 #ifdef LOCKF_DEBUG
1438 		if (lockf_debug & 1) {
1439 			struct lockf_edge *e;
1440 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1441 				lf_print("lf_setlock: blocking on", e->le_to);
1442 				lf_printlist("lf_setlock", e->le_to);
1443 			}
1444 		}
1445 #endif /* LOCKF_DEBUG */
1446 
1447 		if ((lock->lf_flags & F_WAIT) == 0) {
1448 			/*
1449 			 * The caller requested async notification -
1450 			 * this callback happens when the blocking
1451 			 * lock is released, allowing the caller to
1452 			 * make another attempt to take the lock.
1453 			 */
1454 			*cookiep = (void *) lock;
1455 			error = EINPROGRESS;
1456 			goto out;
1457 		}
1458 
1459 		lock->lf_refs++;
1460 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1461 		if (lf_free_lock(lock)) {
1462 			error = EINTR;
1463 			goto out;
1464 		}
1465 
1466 		/*
1467 		 * We may have been awakened by a signal and/or by a
1468 		 * debugger continuing us (in which cases we must
1469 		 * remove our lock graph edges) and/or by another
1470 		 * process releasing a lock (in which case our edges
1471 		 * have already been removed and we have been moved to
1472 		 * the active list). We may also have been woken by
1473 		 * lf_purgelocks which we report to the caller as
1474 		 * EINTR. In that case, lf_purgelocks will have
1475 		 * removed our lock graph edges.
1476 		 *
1477 		 * Note that it is possible to receive a signal after
1478 		 * we were successfully woken (and moved to the active
1479 		 * list) but before we resumed execution. In this
1480 		 * case, our lf_outedges list will be clear. We
1481 		 * pretend there was no error.
1482 		 *
1483 		 * Note also, if we have been sleeping long enough, we
1484 		 * may now have incoming edges from some newer lock
1485 		 * which is waiting behind us in the queue.
1486 		 */
1487 		if (lock->lf_flags & F_INTR) {
1488 			error = EINTR;
1489 			lf_free_lock(lock);
1490 			goto out;
1491 		}
1492 		if (LIST_EMPTY(&lock->lf_outedges)) {
1493 			error = 0;
1494 		} else {
1495 			lf_cancel_lock(state, lock);
1496 			goto out;
1497 		}
1498 #ifdef LOCKF_DEBUG
1499 		if (lockf_debug & 1) {
1500 			lf_print("lf_setlock: granted", lock);
1501 		}
1502 #endif
1503 		goto out;
1504 	}
1505 	/*
1506 	 * It looks like we are going to grant the lock. First add
1507 	 * edges from any currently pending lock that the new lock
1508 	 * would block.
1509 	 */
1510 	sx_xlock(&lf_owner_graph_lock);
1511 	error = lf_add_incoming(state, lock);
1512 	sx_xunlock(&lf_owner_graph_lock);
1513 	if (error) {
1514 #ifdef LOCKF_DEBUG
1515 		if (lockf_debug & 1)
1516 			lf_print("lf_setlock: deadlock", lock);
1517 #endif
1518 		lf_free_lock(lock);
1519 		goto out;
1520 	}
1521 
1522 	/*
1523 	 * No blocks!!  Add the lock.  Note that we will
1524 	 * downgrade or upgrade any overlapping locks this
1525 	 * process already owns.
1526 	 */
1527 	lf_activate_lock(state, lock);
1528 	error = 0;
1529 out:
1530 	return (error);
1531 }
1532 
1533 /*
1534  * Remove a byte-range lock on an inode.
1535  *
1536  * Generally, find the lock (or an overlap to that lock)
1537  * and remove it (or shrink it), then wakeup anyone we can.
1538  */
1539 static int
1540 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1541 {
1542 	struct lockf_entry *overlap;
1543 
1544 	overlap = LIST_FIRST(&state->ls_active);
1545 
1546 	if (overlap == NOLOCKF)
1547 		return (0);
1548 #ifdef LOCKF_DEBUG
1549 	if (unlock->lf_type != F_UNLCK)
1550 		panic("lf_clearlock: bad type");
1551 	if (lockf_debug & 1)
1552 		lf_print("lf_clearlock", unlock);
1553 #endif /* LOCKF_DEBUG */
1554 
1555 	lf_activate_lock(state, unlock);
1556 
1557 	return (0);
1558 }
1559 
1560 /*
1561  * Check whether there is a blocking lock, and if so return its
1562  * details in '*fl'.
1563  */
1564 static int
1565 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1566 {
1567 	struct lockf_entry *block;
1568 
1569 #ifdef LOCKF_DEBUG
1570 	if (lockf_debug & 1)
1571 		lf_print("lf_getlock", lock);
1572 #endif /* LOCKF_DEBUG */
1573 
1574 	if ((block = lf_getblock(state, lock))) {
1575 		fl->l_type = block->lf_type;
1576 		fl->l_whence = SEEK_SET;
1577 		fl->l_start = block->lf_start;
1578 		if (block->lf_end == OFF_MAX)
1579 			fl->l_len = 0;
1580 		else
1581 			fl->l_len = block->lf_end - block->lf_start + 1;
1582 		fl->l_pid = block->lf_owner->lo_pid;
1583 		fl->l_sysid = block->lf_owner->lo_sysid;
1584 	} else {
1585 		fl->l_type = F_UNLCK;
1586 	}
1587 	return (0);
1588 }
1589 
1590 /*
1591  * Cancel an async lock request.
1592  */
1593 static int
1594 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1595 {
1596 	struct lockf_entry *reallock;
1597 
1598 	/*
1599 	 * We need to match this request with an existing lock
1600 	 * request.
1601 	 */
1602 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1603 		if ((void *) reallock == cookie) {
1604 			/*
1605 			 * Double-check that this lock looks right
1606 			 * (maybe use a rolling ID for the cancel
1607 			 * cookie instead?)
1608 			 */
1609 			if (!(reallock->lf_vnode == lock->lf_vnode
1610 				&& reallock->lf_start == lock->lf_start
1611 				&& reallock->lf_end == lock->lf_end)) {
1612 				return (ENOENT);
1613 			}
1614 
1615 			/*
1616 			 * Make sure this lock was async and then just
1617 			 * remove it from its wait lists.
1618 			 */
1619 			if (!reallock->lf_async_task) {
1620 				return (ENOENT);
1621 			}
1622 
1623 			/*
1624 			 * Note that since any other thread must take
1625 			 * state->ls_lock before it can possibly
1626 			 * trigger the async callback, we are safe
1627 			 * from a race with lf_wakeup_lock, i.e. we
1628 			 * can free the lock (actually our caller does
1629 			 * this).
1630 			 */
1631 			lf_cancel_lock(state, reallock);
1632 			return (0);
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * We didn't find a matching lock - not much we can do here.
1638 	 */
1639 	return (ENOENT);
1640 }
1641 
1642 /*
1643  * Walk the list of locks for an inode and
1644  * return the first blocking lock.
1645  */
1646 static struct lockf_entry *
1647 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1648 {
1649 	struct lockf_entry *overlap;
1650 
1651 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1652 		/*
1653 		 * We may assume that the active list is sorted by
1654 		 * lf_start.
1655 		 */
1656 		if (overlap->lf_start > lock->lf_end)
1657 			break;
1658 		if (!lf_blocks(lock, overlap))
1659 			continue;
1660 		return (overlap);
1661 	}
1662 	return (NOLOCKF);
1663 }
1664 
1665 /*
1666  * Walk the list of locks for an inode to find an overlapping lock (if
1667  * any) and return a classification of that overlap.
1668  *
1669  * Arguments:
1670  *	*overlap	The place in the lock list to start looking
1671  *	lock		The lock which is being tested
1672  *	type		Pass 'SELF' to test only locks with the same
1673  *			owner as lock, or 'OTHER' to test only locks
1674  *			with a different owner
1675  *
1676  * Returns one of six values:
1677  *	0) no overlap
1678  *	1) overlap == lock
1679  *	2) overlap contains lock
1680  *	3) lock contains overlap
1681  *	4) overlap starts before lock
1682  *	5) overlap ends after lock
1683  *
1684  * If there is an overlapping lock, '*overlap' is set to point at the
1685  * overlapping lock.
1686  *
1687  * NOTE: this returns only the FIRST overlapping lock.  There
1688  *	 may be more than one.
1689  */
1690 static int
1691 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1692 {
1693 	struct lockf_entry *lf;
1694 	off_t start, end;
1695 	int res;
1696 
1697 	if ((*overlap) == NOLOCKF) {
1698 		return (0);
1699 	}
1700 #ifdef LOCKF_DEBUG
1701 	if (lockf_debug & 2)
1702 		lf_print("lf_findoverlap: looking for overlap in", lock);
1703 #endif /* LOCKF_DEBUG */
1704 	start = lock->lf_start;
1705 	end = lock->lf_end;
1706 	res = 0;
1707 	while (*overlap) {
1708 		lf = *overlap;
1709 		if (lf->lf_start > end)
1710 			break;
1711 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1712 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1713 			*overlap = LIST_NEXT(lf, lf_link);
1714 			continue;
1715 		}
1716 #ifdef LOCKF_DEBUG
1717 		if (lockf_debug & 2)
1718 			lf_print("\tchecking", lf);
1719 #endif /* LOCKF_DEBUG */
1720 		/*
1721 		 * OK, check for overlap
1722 		 *
1723 		 * Six cases:
1724 		 *	0) no overlap
1725 		 *	1) overlap == lock
1726 		 *	2) overlap contains lock
1727 		 *	3) lock contains overlap
1728 		 *	4) overlap starts before lock
1729 		 *	5) overlap ends after lock
1730 		 */
1731 		if (start > lf->lf_end) {
1732 			/* Case 0 */
1733 #ifdef LOCKF_DEBUG
1734 			if (lockf_debug & 2)
1735 				printf("no overlap\n");
1736 #endif /* LOCKF_DEBUG */
1737 			*overlap = LIST_NEXT(lf, lf_link);
1738 			continue;
1739 		}
1740 		if (lf->lf_start == start && lf->lf_end == end) {
1741 			/* Case 1 */
1742 #ifdef LOCKF_DEBUG
1743 			if (lockf_debug & 2)
1744 				printf("overlap == lock\n");
1745 #endif /* LOCKF_DEBUG */
1746 			res = 1;
1747 			break;
1748 		}
1749 		if (lf->lf_start <= start && lf->lf_end >= end) {
1750 			/* Case 2 */
1751 #ifdef LOCKF_DEBUG
1752 			if (lockf_debug & 2)
1753 				printf("overlap contains lock\n");
1754 #endif /* LOCKF_DEBUG */
1755 			res = 2;
1756 			break;
1757 		}
1758 		if (start <= lf->lf_start && end >= lf->lf_end) {
1759 			/* Case 3 */
1760 #ifdef LOCKF_DEBUG
1761 			if (lockf_debug & 2)
1762 				printf("lock contains overlap\n");
1763 #endif /* LOCKF_DEBUG */
1764 			res = 3;
1765 			break;
1766 		}
1767 		if (lf->lf_start < start && lf->lf_end >= start) {
1768 			/* Case 4 */
1769 #ifdef LOCKF_DEBUG
1770 			if (lockf_debug & 2)
1771 				printf("overlap starts before lock\n");
1772 #endif /* LOCKF_DEBUG */
1773 			res = 4;
1774 			break;
1775 		}
1776 		if (lf->lf_start > start && lf->lf_end > end) {
1777 			/* Case 5 */
1778 #ifdef LOCKF_DEBUG
1779 			if (lockf_debug & 2)
1780 				printf("overlap ends after lock\n");
1781 #endif /* LOCKF_DEBUG */
1782 			res = 5;
1783 			break;
1784 		}
1785 		panic("lf_findoverlap: default");
1786 	}
1787 	return (res);
1788 }
1789 
1790 /*
1791  * Split an the existing 'lock1', based on the extent of the lock
1792  * described by 'lock2'. The existing lock should cover 'lock2'
1793  * entirely.
1794  *
1795  * Any pending locks which have been been unblocked are added to
1796  * 'granted'
1797  */
1798 static void
1799 lf_split(struct lockf *state, struct lockf_entry *lock1,
1800     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1801 {
1802 	struct lockf_entry *splitlock;
1803 
1804 #ifdef LOCKF_DEBUG
1805 	if (lockf_debug & 2) {
1806 		lf_print("lf_split", lock1);
1807 		lf_print("splitting from", lock2);
1808 	}
1809 #endif /* LOCKF_DEBUG */
1810 	/*
1811 	 * Check to see if we don't need to split at all.
1812 	 */
1813 	if (lock1->lf_start == lock2->lf_start) {
1814 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1815 		return;
1816 	}
1817 	if (lock1->lf_end == lock2->lf_end) {
1818 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1819 		return;
1820 	}
1821 	/*
1822 	 * Make a new lock consisting of the last part of
1823 	 * the encompassing lock.
1824 	 */
1825 	splitlock = lf_alloc_lock(lock1->lf_owner);
1826 	memcpy(splitlock, lock1, sizeof *splitlock);
1827 	splitlock->lf_refs = 1;
1828 	if (splitlock->lf_flags & F_REMOTE)
1829 		vref(splitlock->lf_vnode);
1830 
1831 	/*
1832 	 * This cannot cause a deadlock since any edges we would add
1833 	 * to splitlock already exist in lock1. We must be sure to add
1834 	 * necessary dependancies to splitlock before we reduce lock1
1835 	 * otherwise we may accidentally grant a pending lock that
1836 	 * was blocked by the tail end of lock1.
1837 	 */
1838 	splitlock->lf_start = lock2->lf_end + 1;
1839 	LIST_INIT(&splitlock->lf_outedges);
1840 	LIST_INIT(&splitlock->lf_inedges);
1841 	sx_xlock(&lf_owner_graph_lock);
1842 	lf_add_incoming(state, splitlock);
1843 	sx_xunlock(&lf_owner_graph_lock);
1844 
1845 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1846 
1847 	/*
1848 	 * OK, now link it in
1849 	 */
1850 	lf_insert_lock(state, splitlock);
1851 }
1852 
1853 struct lockdesc {
1854 	STAILQ_ENTRY(lockdesc) link;
1855 	struct vnode *vp;
1856 	struct flock fl;
1857 };
1858 STAILQ_HEAD(lockdesclist, lockdesc);
1859 
1860 int
1861 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1862 {
1863 	struct lockf *ls;
1864 	struct lockf_entry *lf;
1865 	struct lockdesc *ldesc;
1866 	struct lockdesclist locks;
1867 	int error;
1868 
1869 	/*
1870 	 * In order to keep the locking simple, we iterate over the
1871 	 * active lock lists to build a list of locks that need
1872 	 * releasing. We then call the iterator for each one in turn.
1873 	 *
1874 	 * We take an extra reference to the vnode for the duration to
1875 	 * make sure it doesn't go away before we are finished.
1876 	 */
1877 	STAILQ_INIT(&locks);
1878 	sx_xlock(&lf_lock_states_lock);
1879 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1880 		sx_xlock(&ls->ls_lock);
1881 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1882 			if (lf->lf_owner->lo_sysid != sysid)
1883 				continue;
1884 
1885 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1886 			    M_WAITOK);
1887 			ldesc->vp = lf->lf_vnode;
1888 			vref(ldesc->vp);
1889 			ldesc->fl.l_start = lf->lf_start;
1890 			if (lf->lf_end == OFF_MAX)
1891 				ldesc->fl.l_len = 0;
1892 			else
1893 				ldesc->fl.l_len =
1894 					lf->lf_end - lf->lf_start + 1;
1895 			ldesc->fl.l_whence = SEEK_SET;
1896 			ldesc->fl.l_type = F_UNLCK;
1897 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1898 			ldesc->fl.l_sysid = sysid;
1899 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1900 		}
1901 		sx_xunlock(&ls->ls_lock);
1902 	}
1903 	sx_xunlock(&lf_lock_states_lock);
1904 
1905 	/*
1906 	 * Call the iterator function for each lock in turn. If the
1907 	 * iterator returns an error code, just free the rest of the
1908 	 * lockdesc structures.
1909 	 */
1910 	error = 0;
1911 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1912 		STAILQ_REMOVE_HEAD(&locks, link);
1913 		if (!error)
1914 			error = fn(ldesc->vp, &ldesc->fl, arg);
1915 		vrele(ldesc->vp);
1916 		free(ldesc, M_LOCKF);
1917 	}
1918 
1919 	return (error);
1920 }
1921 
1922 int
1923 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1924 {
1925 	struct lockf *ls;
1926 	struct lockf_entry *lf;
1927 	struct lockdesc *ldesc;
1928 	struct lockdesclist locks;
1929 	int error;
1930 
1931 	/*
1932 	 * In order to keep the locking simple, we iterate over the
1933 	 * active lock lists to build a list of locks that need
1934 	 * releasing. We then call the iterator for each one in turn.
1935 	 *
1936 	 * We take an extra reference to the vnode for the duration to
1937 	 * make sure it doesn't go away before we are finished.
1938 	 */
1939 	STAILQ_INIT(&locks);
1940 	VI_LOCK(vp);
1941 	ls = vp->v_lockf;
1942 	if (!ls) {
1943 		VI_UNLOCK(vp);
1944 		return (0);
1945 	}
1946 	ls->ls_threads++;
1947 	VI_UNLOCK(vp);
1948 
1949 	sx_xlock(&ls->ls_lock);
1950 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1951 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1952 		    M_WAITOK);
1953 		ldesc->vp = lf->lf_vnode;
1954 		vref(ldesc->vp);
1955 		ldesc->fl.l_start = lf->lf_start;
1956 		if (lf->lf_end == OFF_MAX)
1957 			ldesc->fl.l_len = 0;
1958 		else
1959 			ldesc->fl.l_len =
1960 				lf->lf_end - lf->lf_start + 1;
1961 		ldesc->fl.l_whence = SEEK_SET;
1962 		ldesc->fl.l_type = F_UNLCK;
1963 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1964 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1965 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1966 	}
1967 	sx_xunlock(&ls->ls_lock);
1968 	VI_LOCK(vp);
1969 	ls->ls_threads--;
1970 	wakeup(ls);
1971 	VI_UNLOCK(vp);
1972 
1973 	/*
1974 	 * Call the iterator function for each lock in turn. If the
1975 	 * iterator returns an error code, just free the rest of the
1976 	 * lockdesc structures.
1977 	 */
1978 	error = 0;
1979 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1980 		STAILQ_REMOVE_HEAD(&locks, link);
1981 		if (!error)
1982 			error = fn(ldesc->vp, &ldesc->fl, arg);
1983 		vrele(ldesc->vp);
1984 		free(ldesc, M_LOCKF);
1985 	}
1986 
1987 	return (error);
1988 }
1989 
1990 static int
1991 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1992 {
1993 
1994 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1995 	return (0);
1996 }
1997 
1998 void
1999 lf_clearremotesys(int sysid)
2000 {
2001 
2002 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2003 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2004 }
2005 
2006 int
2007 lf_countlocks(int sysid)
2008 {
2009 	int i;
2010 	struct lock_owner *lo;
2011 	int count;
2012 
2013 	count = 0;
2014 	sx_xlock(&lf_lock_owners_lock);
2015 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2016 		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2017 			if (lo->lo_sysid == sysid)
2018 				count += lo->lo_refs;
2019 	sx_xunlock(&lf_lock_owners_lock);
2020 
2021 	return (count);
2022 }
2023 
2024 #ifdef LOCKF_DEBUG
2025 
2026 /*
2027  * Return non-zero if y is reachable from x using a brute force
2028  * search. If reachable and path is non-null, return the route taken
2029  * in path.
2030  */
2031 static int
2032 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2033     struct owner_vertex_list *path)
2034 {
2035 	struct owner_edge *e;
2036 
2037 	if (x == y) {
2038 		if (path)
2039 			TAILQ_INSERT_HEAD(path, x, v_link);
2040 		return 1;
2041 	}
2042 
2043 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2044 		if (graph_reaches(e->e_to, y, path)) {
2045 			if (path)
2046 				TAILQ_INSERT_HEAD(path, x, v_link);
2047 			return 1;
2048 		}
2049 	}
2050 	return 0;
2051 }
2052 
2053 /*
2054  * Perform consistency checks on the graph. Make sure the values of
2055  * v_order are correct. If checkorder is non-zero, check no vertex can
2056  * reach any other vertex with a smaller order.
2057  */
2058 static void
2059 graph_check(struct owner_graph *g, int checkorder)
2060 {
2061 	int i, j;
2062 
2063 	for (i = 0; i < g->g_size; i++) {
2064 		if (!g->g_vertices[i]->v_owner)
2065 			continue;
2066 		KASSERT(g->g_vertices[i]->v_order == i,
2067 		    ("lock graph vertices disordered"));
2068 		if (checkorder) {
2069 			for (j = 0; j < i; j++) {
2070 				if (!g->g_vertices[j]->v_owner)
2071 					continue;
2072 				KASSERT(!graph_reaches(g->g_vertices[i],
2073 					g->g_vertices[j], NULL),
2074 				    ("lock graph vertices disordered"));
2075 			}
2076 		}
2077 	}
2078 }
2079 
2080 static void
2081 graph_print_vertices(struct owner_vertex_list *set)
2082 {
2083 	struct owner_vertex *v;
2084 
2085 	printf("{ ");
2086 	TAILQ_FOREACH(v, set, v_link) {
2087 		printf("%d:", v->v_order);
2088 		lf_print_owner(v->v_owner);
2089 		if (TAILQ_NEXT(v, v_link))
2090 			printf(", ");
2091 	}
2092 	printf(" }\n");
2093 }
2094 
2095 #endif
2096 
2097 /*
2098  * Calculate the sub-set of vertices v from the affected region [y..x]
2099  * where v is reachable from y. Return -1 if a loop was detected
2100  * (i.e. x is reachable from y, otherwise the number of vertices in
2101  * this subset.
2102  */
2103 static int
2104 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2105     struct owner_vertex *y, struct owner_vertex_list *delta)
2106 {
2107 	uint32_t gen;
2108 	struct owner_vertex *v;
2109 	struct owner_edge *e;
2110 	int n;
2111 
2112 	/*
2113 	 * We start with a set containing just y. Then for each vertex
2114 	 * v in the set so far unprocessed, we add each vertex that v
2115 	 * has an out-edge to and that is within the affected region
2116 	 * [y..x]. If we see the vertex x on our travels, stop
2117 	 * immediately.
2118 	 */
2119 	TAILQ_INIT(delta);
2120 	TAILQ_INSERT_TAIL(delta, y, v_link);
2121 	v = y;
2122 	n = 1;
2123 	gen = g->g_gen;
2124 	while (v) {
2125 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2126 			if (e->e_to == x)
2127 				return -1;
2128 			if (e->e_to->v_order < x->v_order
2129 			    && e->e_to->v_gen != gen) {
2130 				e->e_to->v_gen = gen;
2131 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2132 				n++;
2133 			}
2134 		}
2135 		v = TAILQ_NEXT(v, v_link);
2136 	}
2137 
2138 	return (n);
2139 }
2140 
2141 /*
2142  * Calculate the sub-set of vertices v from the affected region [y..x]
2143  * where v reaches x. Return the number of vertices in this subset.
2144  */
2145 static int
2146 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2147     struct owner_vertex *y, struct owner_vertex_list *delta)
2148 {
2149 	uint32_t gen;
2150 	struct owner_vertex *v;
2151 	struct owner_edge *e;
2152 	int n;
2153 
2154 	/*
2155 	 * We start with a set containing just x. Then for each vertex
2156 	 * v in the set so far unprocessed, we add each vertex that v
2157 	 * has an in-edge from and that is within the affected region
2158 	 * [y..x].
2159 	 */
2160 	TAILQ_INIT(delta);
2161 	TAILQ_INSERT_TAIL(delta, x, v_link);
2162 	v = x;
2163 	n = 1;
2164 	gen = g->g_gen;
2165 	while (v) {
2166 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2167 			if (e->e_from->v_order > y->v_order
2168 			    && e->e_from->v_gen != gen) {
2169 				e->e_from->v_gen = gen;
2170 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2171 				n++;
2172 			}
2173 		}
2174 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2175 	}
2176 
2177 	return (n);
2178 }
2179 
2180 static int
2181 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2182 {
2183 	struct owner_vertex *v;
2184 	int i, j;
2185 
2186 	TAILQ_FOREACH(v, set, v_link) {
2187 		for (i = n;
2188 		     i > 0 && indices[i - 1] > v->v_order; i--)
2189 			;
2190 		for (j = n - 1; j >= i; j--)
2191 			indices[j + 1] = indices[j];
2192 		indices[i] = v->v_order;
2193 		n++;
2194 	}
2195 
2196 	return (n);
2197 }
2198 
2199 static int
2200 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2201     struct owner_vertex_list *set)
2202 {
2203 	struct owner_vertex *v, *vlowest;
2204 
2205 	while (!TAILQ_EMPTY(set)) {
2206 		vlowest = NULL;
2207 		TAILQ_FOREACH(v, set, v_link) {
2208 			if (!vlowest || v->v_order < vlowest->v_order)
2209 				vlowest = v;
2210 		}
2211 		TAILQ_REMOVE(set, vlowest, v_link);
2212 		vlowest->v_order = indices[nextunused];
2213 		g->g_vertices[vlowest->v_order] = vlowest;
2214 		nextunused++;
2215 	}
2216 
2217 	return (nextunused);
2218 }
2219 
2220 static int
2221 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2222     struct owner_vertex *y)
2223 {
2224 	struct owner_edge *e;
2225 	struct owner_vertex_list deltaF, deltaB;
2226 	int nF, nB, n, vi, i;
2227 	int *indices;
2228 
2229 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2230 
2231 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2232 		if (e->e_to == y) {
2233 			e->e_refs++;
2234 			return (0);
2235 		}
2236 	}
2237 
2238 #ifdef LOCKF_DEBUG
2239 	if (lockf_debug & 8) {
2240 		printf("adding edge %d:", x->v_order);
2241 		lf_print_owner(x->v_owner);
2242 		printf(" -> %d:", y->v_order);
2243 		lf_print_owner(y->v_owner);
2244 		printf("\n");
2245 	}
2246 #endif
2247 	if (y->v_order < x->v_order) {
2248 		/*
2249 		 * The new edge violates the order. First find the set
2250 		 * of affected vertices reachable from y (deltaF) and
2251 		 * the set of affect vertices affected that reach x
2252 		 * (deltaB), using the graph generation number to
2253 		 * detect whether we have visited a given vertex
2254 		 * already. We re-order the graph so that each vertex
2255 		 * in deltaB appears before each vertex in deltaF.
2256 		 *
2257 		 * If x is a member of deltaF, then the new edge would
2258 		 * create a cycle. Otherwise, we may assume that
2259 		 * deltaF and deltaB are disjoint.
2260 		 */
2261 		g->g_gen++;
2262 		if (g->g_gen == 0) {
2263 			/*
2264 			 * Generation wrap.
2265 			 */
2266 			for (vi = 0; vi < g->g_size; vi++) {
2267 				g->g_vertices[vi]->v_gen = 0;
2268 			}
2269 			g->g_gen++;
2270 		}
2271 		nF = graph_delta_forward(g, x, y, &deltaF);
2272 		if (nF < 0) {
2273 #ifdef LOCKF_DEBUG
2274 			if (lockf_debug & 8) {
2275 				struct owner_vertex_list path;
2276 				printf("deadlock: ");
2277 				TAILQ_INIT(&path);
2278 				graph_reaches(y, x, &path);
2279 				graph_print_vertices(&path);
2280 			}
2281 #endif
2282 			return (EDEADLK);
2283 		}
2284 
2285 #ifdef LOCKF_DEBUG
2286 		if (lockf_debug & 8) {
2287 			printf("re-ordering graph vertices\n");
2288 			printf("deltaF = ");
2289 			graph_print_vertices(&deltaF);
2290 		}
2291 #endif
2292 
2293 		nB = graph_delta_backward(g, x, y, &deltaB);
2294 
2295 #ifdef LOCKF_DEBUG
2296 		if (lockf_debug & 8) {
2297 			printf("deltaB = ");
2298 			graph_print_vertices(&deltaB);
2299 		}
2300 #endif
2301 
2302 		/*
2303 		 * We first build a set of vertex indices (vertex
2304 		 * order values) that we may use, then we re-assign
2305 		 * orders first to those vertices in deltaB, then to
2306 		 * deltaF. Note that the contents of deltaF and deltaB
2307 		 * may be partially disordered - we perform an
2308 		 * insertion sort while building our index set.
2309 		 */
2310 		indices = g->g_indexbuf;
2311 		n = graph_add_indices(indices, 0, &deltaF);
2312 		graph_add_indices(indices, n, &deltaB);
2313 
2314 		/*
2315 		 * We must also be sure to maintain the relative
2316 		 * ordering of deltaF and deltaB when re-assigning
2317 		 * vertices. We do this by iteratively removing the
2318 		 * lowest ordered element from the set and assigning
2319 		 * it the next value from our new ordering.
2320 		 */
2321 		i = graph_assign_indices(g, indices, 0, &deltaB);
2322 		graph_assign_indices(g, indices, i, &deltaF);
2323 
2324 #ifdef LOCKF_DEBUG
2325 		if (lockf_debug & 8) {
2326 			struct owner_vertex_list set;
2327 			TAILQ_INIT(&set);
2328 			for (i = 0; i < nB + nF; i++)
2329 				TAILQ_INSERT_TAIL(&set,
2330 				    g->g_vertices[indices[i]], v_link);
2331 			printf("new ordering = ");
2332 			graph_print_vertices(&set);
2333 		}
2334 #endif
2335 	}
2336 
2337 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2338 
2339 #ifdef LOCKF_DEBUG
2340 	if (lockf_debug & 8) {
2341 		graph_check(g, TRUE);
2342 	}
2343 #endif
2344 
2345 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2346 
2347 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2348 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2349 	e->e_refs = 1;
2350 	e->e_from = x;
2351 	e->e_to = y;
2352 
2353 	return (0);
2354 }
2355 
2356 /*
2357  * Remove an edge x->y from the graph.
2358  */
2359 static void
2360 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2361     struct owner_vertex *y)
2362 {
2363 	struct owner_edge *e;
2364 
2365 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2366 
2367 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2368 		if (e->e_to == y)
2369 			break;
2370 	}
2371 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2372 
2373 	e->e_refs--;
2374 	if (e->e_refs == 0) {
2375 #ifdef LOCKF_DEBUG
2376 		if (lockf_debug & 8) {
2377 			printf("removing edge %d:", x->v_order);
2378 			lf_print_owner(x->v_owner);
2379 			printf(" -> %d:", y->v_order);
2380 			lf_print_owner(y->v_owner);
2381 			printf("\n");
2382 		}
2383 #endif
2384 		LIST_REMOVE(e, e_outlink);
2385 		LIST_REMOVE(e, e_inlink);
2386 		free(e, M_LOCKF);
2387 	}
2388 }
2389 
2390 /*
2391  * Allocate a vertex from the free list. Return ENOMEM if there are
2392  * none.
2393  */
2394 static struct owner_vertex *
2395 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2396 {
2397 	struct owner_vertex *v;
2398 
2399 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2400 
2401 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2402 	if (g->g_size == g->g_space) {
2403 		g->g_vertices = realloc(g->g_vertices,
2404 		    2 * g->g_space * sizeof(struct owner_vertex *),
2405 		    M_LOCKF, M_WAITOK);
2406 		free(g->g_indexbuf, M_LOCKF);
2407 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2408 		    M_LOCKF, M_WAITOK);
2409 		g->g_space = 2 * g->g_space;
2410 	}
2411 	v->v_order = g->g_size;
2412 	v->v_gen = g->g_gen;
2413 	g->g_vertices[g->g_size] = v;
2414 	g->g_size++;
2415 
2416 	LIST_INIT(&v->v_outedges);
2417 	LIST_INIT(&v->v_inedges);
2418 	v->v_owner = lo;
2419 
2420 	return (v);
2421 }
2422 
2423 static void
2424 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2425 {
2426 	struct owner_vertex *w;
2427 	int i;
2428 
2429 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2430 
2431 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2432 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2433 
2434 	/*
2435 	 * Remove from the graph's array and close up the gap,
2436 	 * renumbering the other vertices.
2437 	 */
2438 	for (i = v->v_order + 1; i < g->g_size; i++) {
2439 		w = g->g_vertices[i];
2440 		w->v_order--;
2441 		g->g_vertices[i - 1] = w;
2442 	}
2443 	g->g_size--;
2444 
2445 	free(v, M_LOCKF);
2446 }
2447 
2448 static struct owner_graph *
2449 graph_init(struct owner_graph *g)
2450 {
2451 
2452 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2453 	    M_LOCKF, M_WAITOK);
2454 	g->g_size = 0;
2455 	g->g_space = 10;
2456 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2457 	g->g_gen = 0;
2458 
2459 	return (g);
2460 }
2461 
2462 #ifdef LOCKF_DEBUG
2463 /*
2464  * Print description of a lock owner
2465  */
2466 static void
2467 lf_print_owner(struct lock_owner *lo)
2468 {
2469 
2470 	if (lo->lo_flags & F_REMOTE) {
2471 		printf("remote pid %d, system %d",
2472 		    lo->lo_pid, lo->lo_sysid);
2473 	} else if (lo->lo_flags & F_FLOCK) {
2474 		printf("file %p", lo->lo_id);
2475 	} else {
2476 		printf("local pid %d", lo->lo_pid);
2477 	}
2478 }
2479 
2480 /*
2481  * Print out a lock.
2482  */
2483 static void
2484 lf_print(char *tag, struct lockf_entry *lock)
2485 {
2486 
2487 	printf("%s: lock %p for ", tag, (void *)lock);
2488 	lf_print_owner(lock->lf_owner);
2489 	if (lock->lf_inode != (struct inode *)0)
2490 		printf(" in ino %ju on dev <%s>,",
2491 		    (uintmax_t)lock->lf_inode->i_number,
2492 		    devtoname(lock->lf_inode->i_dev));
2493 	printf(" %s, start %jd, end ",
2494 	    lock->lf_type == F_RDLCK ? "shared" :
2495 	    lock->lf_type == F_WRLCK ? "exclusive" :
2496 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2497 	    (intmax_t)lock->lf_start);
2498 	if (lock->lf_end == OFF_MAX)
2499 		printf("EOF");
2500 	else
2501 		printf("%jd", (intmax_t)lock->lf_end);
2502 	if (!LIST_EMPTY(&lock->lf_outedges))
2503 		printf(" block %p\n",
2504 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2505 	else
2506 		printf("\n");
2507 }
2508 
2509 static void
2510 lf_printlist(char *tag, struct lockf_entry *lock)
2511 {
2512 	struct lockf_entry *lf, *blk;
2513 	struct lockf_edge *e;
2514 
2515 	if (lock->lf_inode == (struct inode *)0)
2516 		return;
2517 
2518 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2519 	    tag, (uintmax_t)lock->lf_inode->i_number,
2520 	    devtoname(lock->lf_inode->i_dev));
2521 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2522 		printf("\tlock %p for ",(void *)lf);
2523 		lf_print_owner(lock->lf_owner);
2524 		printf(", %s, start %jd, end %jd",
2525 		    lf->lf_type == F_RDLCK ? "shared" :
2526 		    lf->lf_type == F_WRLCK ? "exclusive" :
2527 		    lf->lf_type == F_UNLCK ? "unlock" :
2528 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2529 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2530 			blk = e->le_to;
2531 			printf("\n\t\tlock request %p for ", (void *)blk);
2532 			lf_print_owner(blk->lf_owner);
2533 			printf(", %s, start %jd, end %jd",
2534 			    blk->lf_type == F_RDLCK ? "shared" :
2535 			    blk->lf_type == F_WRLCK ? "exclusive" :
2536 			    blk->lf_type == F_UNLCK ? "unlock" :
2537 			    "unknown", (intmax_t)blk->lf_start,
2538 			    (intmax_t)blk->lf_end);
2539 			if (!LIST_EMPTY(&blk->lf_inedges))
2540 				panic("lf_printlist: bad list");
2541 		}
2542 		printf("\n");
2543 	}
2544 }
2545 #endif /* LOCKF_DEBUG */
2546