xref: /freebsd/sys/kern/kern_lockf.c (revision 56e53cb8ef000c3ef72337a4095987a932cdedef)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_debug_lockf.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/mount.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/sx.h>
78 #include <sys/unistd.h>
79 #include <sys/vnode.h>
80 #include <sys/malloc.h>
81 #include <sys/fcntl.h>
82 #include <sys/lockf.h>
83 #include <sys/taskqueue.h>
84 
85 #ifdef LOCKF_DEBUG
86 #include <sys/sysctl.h>
87 
88 #include <ufs/ufs/extattr.h>
89 #include <ufs/ufs/quota.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/inode.h>
92 
93 static int	lockf_debug = 0; /* control debug output */
94 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
95 #endif
96 
97 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
98 
99 struct owner_edge;
100 struct owner_vertex;
101 struct owner_vertex_list;
102 struct owner_graph;
103 
104 #define NOLOCKF (struct lockf_entry *)0
105 #define SELF	0x1
106 #define OTHERS	0x2
107 static void	 lf_init(void *);
108 static int	 lf_hash_owner(caddr_t, struct flock *, int);
109 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
110     int);
111 static struct lockf_entry *
112 		 lf_alloc_lock(struct lock_owner *);
113 static int	 lf_free_lock(struct lockf_entry *);
114 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
115 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
116 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
117 static void	 lf_free_edge(struct lockf_edge *);
118 static struct lockf_edge *
119 		 lf_alloc_edge(void);
120 static void	 lf_alloc_vertex(struct lockf_entry *);
121 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
122 static void	 lf_remove_edge(struct lockf_edge *);
123 static void	 lf_remove_outgoing(struct lockf_entry *);
124 static void	 lf_remove_incoming(struct lockf_entry *);
125 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
126 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
127 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
128     int);
129 static struct lockf_entry *
130 		 lf_getblock(struct lockf *, struct lockf_entry *);
131 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
132 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
133 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
134 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
135     int all, struct lockf_entry_list *);
136 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
137 	struct lockf_entry_list*);
138 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
139 	struct lockf_entry_list*);
140 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
141     struct vnode *, void **cookiep);
142 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
143 static void	 lf_split(struct lockf *, struct lockf_entry *,
144     struct lockf_entry *, struct lockf_entry_list *);
145 #ifdef LOCKF_DEBUG
146 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
147     struct owner_vertex_list *path);
148 static void	 graph_check(struct owner_graph *g, int checkorder);
149 static void	 graph_print_vertices(struct owner_vertex_list *set);
150 #endif
151 static int	 graph_delta_forward(struct owner_graph *g,
152     struct owner_vertex *x, struct owner_vertex *y,
153     struct owner_vertex_list *delta);
154 static int	 graph_delta_backward(struct owner_graph *g,
155     struct owner_vertex *x, struct owner_vertex *y,
156     struct owner_vertex_list *delta);
157 static int	 graph_add_indices(int *indices, int n,
158     struct owner_vertex_list *set);
159 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
160     int nextunused, struct owner_vertex_list *set);
161 static int	 graph_add_edge(struct owner_graph *g,
162     struct owner_vertex *x, struct owner_vertex *y);
163 static void	 graph_remove_edge(struct owner_graph *g,
164     struct owner_vertex *x, struct owner_vertex *y);
165 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
166     struct lock_owner *lo);
167 static void	 graph_free_vertex(struct owner_graph *g,
168     struct owner_vertex *v);
169 static struct owner_graph * graph_init(struct owner_graph *g);
170 #ifdef LOCKF_DEBUG
171 static void	 lf_print(char *, struct lockf_entry *);
172 static void	 lf_printlist(char *, struct lockf_entry *);
173 static void	 lf_print_owner(struct lock_owner *);
174 #endif
175 
176 /*
177  * This structure is used to keep track of both local and remote lock
178  * owners. The lf_owner field of the struct lockf_entry points back at
179  * the lock owner structure. Each possible lock owner (local proc for
180  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
181  * pair for remote locks) is represented by a unique instance of
182  * struct lock_owner.
183  *
184  * If a lock owner has a lock that blocks some other lock or a lock
185  * that is waiting for some other lock, it also has a vertex in the
186  * owner_graph below.
187  *
188  * Locks:
189  * (s)		locked by state->ls_lock
190  * (S)		locked by lf_lock_states_lock
191  * (l)		locked by lf_lock_owners_lock
192  * (g)		locked by lf_owner_graph_lock
193  * (c)		const until freeing
194  */
195 #define	LOCK_OWNER_HASH_SIZE	256
196 
197 struct lock_owner {
198 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
199 	int	lo_refs;	    /* (l) Number of locks referring to this */
200 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
201 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
202 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
203 	int	lo_sysid;	    /* (c) System Id of the lock owner */
204 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
205 };
206 
207 LIST_HEAD(lock_owner_list, lock_owner);
208 
209 static struct sx		lf_lock_states_lock;
210 static struct lockf_list	lf_lock_states; /* (S) */
211 static struct sx		lf_lock_owners_lock;
212 static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
213 
214 /*
215  * Structures for deadlock detection.
216  *
217  * We have two types of directed graph, the first is the set of locks,
218  * both active and pending on a vnode. Within this graph, active locks
219  * are terminal nodes in the graph (i.e. have no out-going
220  * edges). Pending locks have out-going edges to each blocking active
221  * lock that prevents the lock from being granted and also to each
222  * older pending lock that would block them if it was active. The
223  * graph for each vnode is naturally acyclic; new edges are only ever
224  * added to or from new nodes (either new pending locks which only add
225  * out-going edges or new active locks which only add in-coming edges)
226  * therefore they cannot create loops in the lock graph.
227  *
228  * The second graph is a global graph of lock owners. Each lock owner
229  * is a vertex in that graph and an edge is added to the graph
230  * whenever an edge is added to a vnode graph, with end points
231  * corresponding to owner of the new pending lock and the owner of the
232  * lock upon which it waits. In order to prevent deadlock, we only add
233  * an edge to this graph if the new edge would not create a cycle.
234  *
235  * The lock owner graph is topologically sorted, i.e. if a node has
236  * any outgoing edges, then it has an order strictly less than any
237  * node to which it has an outgoing edge. We preserve this ordering
238  * (and detect cycles) on edge insertion using Algorithm PK from the
239  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
240  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
241  * No. 1.7)
242  */
243 struct owner_vertex;
244 
245 struct owner_edge {
246 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
247 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
248 	int		e_refs;		  /* (g) number of times added */
249 	struct owner_vertex *e_from;	  /* (c) out-going from here */
250 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
251 };
252 LIST_HEAD(owner_edge_list, owner_edge);
253 
254 struct owner_vertex {
255 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
256 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
257 	int		v_order;	  /* (g) order of vertex in graph */
258 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
259 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
260 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
261 };
262 TAILQ_HEAD(owner_vertex_list, owner_vertex);
263 
264 struct owner_graph {
265 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
266 	int		g_size;		  /* (g) number of vertices */
267 	int		g_space;	  /* (g) space allocated for vertices */
268 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
269 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
270 };
271 
272 static struct sx		lf_owner_graph_lock;
273 static struct owner_graph	lf_owner_graph;
274 
275 /*
276  * Initialise various structures and locks.
277  */
278 static void
279 lf_init(void *dummy)
280 {
281 	int i;
282 
283 	sx_init(&lf_lock_states_lock, "lock states lock");
284 	LIST_INIT(&lf_lock_states);
285 
286 	sx_init(&lf_lock_owners_lock, "lock owners lock");
287 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
288 		LIST_INIT(&lf_lock_owners[i]);
289 
290 	sx_init(&lf_owner_graph_lock, "owner graph lock");
291 	graph_init(&lf_owner_graph);
292 }
293 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
294 
295 /*
296  * Generate a hash value for a lock owner.
297  */
298 static int
299 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
300 {
301 	uint32_t h;
302 
303 	if (flags & F_REMOTE) {
304 		h = HASHSTEP(0, fl->l_pid);
305 		h = HASHSTEP(h, fl->l_sysid);
306 	} else if (flags & F_FLOCK) {
307 		h = ((uintptr_t) id) >> 7;
308 	} else {
309 		struct proc *p = (struct proc *) id;
310 		h = HASHSTEP(0, p->p_pid);
311 		h = HASHSTEP(h, 0);
312 	}
313 
314 	return (h % LOCK_OWNER_HASH_SIZE);
315 }
316 
317 /*
318  * Return true if a lock owner matches the details passed to
319  * lf_advlock.
320  */
321 static int
322 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
323     int flags)
324 {
325 	if (flags & F_REMOTE) {
326 		return lo->lo_pid == fl->l_pid
327 			&& lo->lo_sysid == fl->l_sysid;
328 	} else {
329 		return lo->lo_id == id;
330 	}
331 }
332 
333 static struct lockf_entry *
334 lf_alloc_lock(struct lock_owner *lo)
335 {
336 	struct lockf_entry *lf;
337 
338 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
339 
340 #ifdef LOCKF_DEBUG
341 	if (lockf_debug & 4)
342 		printf("Allocated lock %p\n", lf);
343 #endif
344 	if (lo) {
345 		sx_xlock(&lf_lock_owners_lock);
346 		lo->lo_refs++;
347 		sx_xunlock(&lf_lock_owners_lock);
348 		lf->lf_owner = lo;
349 	}
350 
351 	return (lf);
352 }
353 
354 static int
355 lf_free_lock(struct lockf_entry *lock)
356 {
357 
358 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
359 	if (--lock->lf_refs > 0)
360 		return (0);
361 	/*
362 	 * Adjust the lock_owner reference count and
363 	 * reclaim the entry if this is the last lock
364 	 * for that owner.
365 	 */
366 	struct lock_owner *lo = lock->lf_owner;
367 	if (lo) {
368 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
369 		    ("freeing lock with dependencies"));
370 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
371 		    ("freeing lock with dependants"));
372 		sx_xlock(&lf_lock_owners_lock);
373 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
374 		lo->lo_refs--;
375 		if (lo->lo_refs == 0) {
376 #ifdef LOCKF_DEBUG
377 			if (lockf_debug & 1)
378 				printf("lf_free_lock: freeing lock owner %p\n",
379 				    lo);
380 #endif
381 			if (lo->lo_vertex) {
382 				sx_xlock(&lf_owner_graph_lock);
383 				graph_free_vertex(&lf_owner_graph,
384 				    lo->lo_vertex);
385 				sx_xunlock(&lf_owner_graph_lock);
386 			}
387 			LIST_REMOVE(lo, lo_link);
388 			free(lo, M_LOCKF);
389 #ifdef LOCKF_DEBUG
390 			if (lockf_debug & 4)
391 				printf("Freed lock owner %p\n", lo);
392 #endif
393 		}
394 		sx_unlock(&lf_lock_owners_lock);
395 	}
396 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
397 		vrele(lock->lf_vnode);
398 		lock->lf_vnode = NULL;
399 	}
400 #ifdef LOCKF_DEBUG
401 	if (lockf_debug & 4)
402 		printf("Freed lock %p\n", lock);
403 #endif
404 	free(lock, M_LOCKF);
405 	return (1);
406 }
407 
408 /*
409  * Advisory record locking support
410  */
411 int
412 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
413     u_quad_t size)
414 {
415 	struct lockf *state, *freestate = NULL;
416 	struct flock *fl = ap->a_fl;
417 	struct lockf_entry *lock;
418 	struct vnode *vp = ap->a_vp;
419 	caddr_t id = ap->a_id;
420 	int flags = ap->a_flags;
421 	int hash;
422 	struct lock_owner *lo;
423 	off_t start, end, oadd;
424 	int error;
425 
426 	/*
427 	 * Handle the F_UNLKSYS case first - no need to mess about
428 	 * creating a lock owner for this one.
429 	 */
430 	if (ap->a_op == F_UNLCKSYS) {
431 		lf_clearremotesys(fl->l_sysid);
432 		return (0);
433 	}
434 
435 	/*
436 	 * Convert the flock structure into a start and end.
437 	 */
438 	switch (fl->l_whence) {
439 
440 	case SEEK_SET:
441 	case SEEK_CUR:
442 		/*
443 		 * Caller is responsible for adding any necessary offset
444 		 * when SEEK_CUR is used.
445 		 */
446 		start = fl->l_start;
447 		break;
448 
449 	case SEEK_END:
450 		if (size > OFF_MAX ||
451 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
452 			return (EOVERFLOW);
453 		start = size + fl->l_start;
454 		break;
455 
456 	default:
457 		return (EINVAL);
458 	}
459 	if (start < 0)
460 		return (EINVAL);
461 	if (fl->l_len < 0) {
462 		if (start == 0)
463 			return (EINVAL);
464 		end = start - 1;
465 		start += fl->l_len;
466 		if (start < 0)
467 			return (EINVAL);
468 	} else if (fl->l_len == 0) {
469 		end = OFF_MAX;
470 	} else {
471 		oadd = fl->l_len - 1;
472 		if (oadd > OFF_MAX - start)
473 			return (EOVERFLOW);
474 		end = start + oadd;
475 	}
476 
477 retry_setlock:
478 
479 	/*
480 	 * Avoid the common case of unlocking when inode has no locks.
481 	 */
482 	VI_LOCK(vp);
483 	if ((*statep) == NULL) {
484 		if (ap->a_op != F_SETLK) {
485 			fl->l_type = F_UNLCK;
486 			VI_UNLOCK(vp);
487 			return (0);
488 		}
489 	}
490 	VI_UNLOCK(vp);
491 
492 	/*
493 	 * Map our arguments to an existing lock owner or create one
494 	 * if this is the first time we have seen this owner.
495 	 */
496 	hash = lf_hash_owner(id, fl, flags);
497 	sx_xlock(&lf_lock_owners_lock);
498 	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
499 		if (lf_owner_matches(lo, id, fl, flags))
500 			break;
501 	if (!lo) {
502 		/*
503 		 * We initialise the lock with a reference
504 		 * count which matches the new lockf_entry
505 		 * structure created below.
506 		 */
507 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
508 		    M_WAITOK|M_ZERO);
509 #ifdef LOCKF_DEBUG
510 		if (lockf_debug & 4)
511 			printf("Allocated lock owner %p\n", lo);
512 #endif
513 
514 		lo->lo_refs = 1;
515 		lo->lo_flags = flags;
516 		lo->lo_id = id;
517 		if (flags & F_REMOTE) {
518 			lo->lo_pid = fl->l_pid;
519 			lo->lo_sysid = fl->l_sysid;
520 		} else if (flags & F_FLOCK) {
521 			lo->lo_pid = -1;
522 			lo->lo_sysid = 0;
523 		} else {
524 			struct proc *p = (struct proc *) id;
525 			lo->lo_pid = p->p_pid;
526 			lo->lo_sysid = 0;
527 		}
528 		lo->lo_vertex = NULL;
529 
530 #ifdef LOCKF_DEBUG
531 		if (lockf_debug & 1) {
532 			printf("lf_advlockasync: new lock owner %p ", lo);
533 			lf_print_owner(lo);
534 			printf("\n");
535 		}
536 #endif
537 
538 		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
539 	} else {
540 		/*
541 		 * We have seen this lock owner before, increase its
542 		 * reference count to account for the new lockf_entry
543 		 * structure we create below.
544 		 */
545 		lo->lo_refs++;
546 	}
547 	sx_xunlock(&lf_lock_owners_lock);
548 
549 	/*
550 	 * Create the lockf structure. We initialise the lf_owner
551 	 * field here instead of in lf_alloc_lock() to avoid paying
552 	 * the lf_lock_owners_lock tax twice.
553 	 */
554 	lock = lf_alloc_lock(NULL);
555 	lock->lf_refs = 1;
556 	lock->lf_start = start;
557 	lock->lf_end = end;
558 	lock->lf_owner = lo;
559 	lock->lf_vnode = vp;
560 	if (flags & F_REMOTE) {
561 		/*
562 		 * For remote locks, the caller may release its ref to
563 		 * the vnode at any time - we have to ref it here to
564 		 * prevent it from being recycled unexpectedly.
565 		 */
566 		vref(vp);
567 	}
568 
569 	/*
570 	 * XXX The problem is that VTOI is ufs specific, so it will
571 	 * break LOCKF_DEBUG for all other FS's other than UFS because
572 	 * it casts the vnode->data ptr to struct inode *.
573 	 */
574 /*	lock->lf_inode = VTOI(ap->a_vp); */
575 	lock->lf_inode = (struct inode *)0;
576 	lock->lf_type = fl->l_type;
577 	LIST_INIT(&lock->lf_outedges);
578 	LIST_INIT(&lock->lf_inedges);
579 	lock->lf_async_task = ap->a_task;
580 	lock->lf_flags = ap->a_flags;
581 
582 	/*
583 	 * Do the requested operation. First find our state structure
584 	 * and create a new one if necessary - the caller's *statep
585 	 * variable and the state's ls_threads count is protected by
586 	 * the vnode interlock.
587 	 */
588 	VI_LOCK(vp);
589 	if (vp->v_iflag & VI_DOOMED) {
590 		VI_UNLOCK(vp);
591 		lf_free_lock(lock);
592 		return (ENOENT);
593 	}
594 
595 	/*
596 	 * Allocate a state structure if necessary.
597 	 */
598 	state = *statep;
599 	if (state == NULL) {
600 		struct lockf *ls;
601 
602 		VI_UNLOCK(vp);
603 
604 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
605 		sx_init(&ls->ls_lock, "ls_lock");
606 		LIST_INIT(&ls->ls_active);
607 		LIST_INIT(&ls->ls_pending);
608 		ls->ls_threads = 1;
609 
610 		sx_xlock(&lf_lock_states_lock);
611 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
612 		sx_xunlock(&lf_lock_states_lock);
613 
614 		/*
615 		 * Cope if we lost a race with some other thread while
616 		 * trying to allocate memory.
617 		 */
618 		VI_LOCK(vp);
619 		if (vp->v_iflag & VI_DOOMED) {
620 			VI_UNLOCK(vp);
621 			sx_xlock(&lf_lock_states_lock);
622 			LIST_REMOVE(ls, ls_link);
623 			sx_xunlock(&lf_lock_states_lock);
624 			sx_destroy(&ls->ls_lock);
625 			free(ls, M_LOCKF);
626 			lf_free_lock(lock);
627 			return (ENOENT);
628 		}
629 		if ((*statep) == NULL) {
630 			state = *statep = ls;
631 			VI_UNLOCK(vp);
632 		} else {
633 			state = *statep;
634 			state->ls_threads++;
635 			VI_UNLOCK(vp);
636 
637 			sx_xlock(&lf_lock_states_lock);
638 			LIST_REMOVE(ls, ls_link);
639 			sx_xunlock(&lf_lock_states_lock);
640 			sx_destroy(&ls->ls_lock);
641 			free(ls, M_LOCKF);
642 		}
643 	} else {
644 		state->ls_threads++;
645 		VI_UNLOCK(vp);
646 	}
647 
648 	sx_xlock(&state->ls_lock);
649 	/*
650 	 * Recheck the doomed vnode after state->ls_lock is
651 	 * locked. lf_purgelocks() requires that no new threads add
652 	 * pending locks when vnode is marked by VI_DOOMED flag.
653 	 */
654 	VI_LOCK(vp);
655 	if (vp->v_iflag & VI_DOOMED) {
656 		state->ls_threads--;
657 		wakeup(state);
658 		VI_UNLOCK(vp);
659 		sx_xunlock(&state->ls_lock);
660 		lf_free_lock(lock);
661 		return (ENOENT);
662 	}
663 	VI_UNLOCK(vp);
664 
665 	switch (ap->a_op) {
666 	case F_SETLK:
667 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
668 		break;
669 
670 	case F_UNLCK:
671 		error = lf_clearlock(state, lock);
672 		lf_free_lock(lock);
673 		break;
674 
675 	case F_GETLK:
676 		error = lf_getlock(state, lock, fl);
677 		lf_free_lock(lock);
678 		break;
679 
680 	case F_CANCEL:
681 		if (ap->a_cookiep)
682 			error = lf_cancel(state, lock, *ap->a_cookiep);
683 		else
684 			error = EINVAL;
685 		lf_free_lock(lock);
686 		break;
687 
688 	default:
689 		lf_free_lock(lock);
690 		error = EINVAL;
691 		break;
692 	}
693 
694 #ifdef DIAGNOSTIC
695 	/*
696 	 * Check for some can't happen stuff. In this case, the active
697 	 * lock list becoming disordered or containing mutually
698 	 * blocking locks. We also check the pending list for locks
699 	 * which should be active (i.e. have no out-going edges).
700 	 */
701 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
702 		struct lockf_entry *lf;
703 		if (LIST_NEXT(lock, lf_link))
704 			KASSERT((lock->lf_start
705 				<= LIST_NEXT(lock, lf_link)->lf_start),
706 			    ("locks disordered"));
707 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
708 			if (lock == lf)
709 				break;
710 			KASSERT(!lf_blocks(lock, lf),
711 			    ("two conflicting active locks"));
712 			if (lock->lf_owner == lf->lf_owner)
713 				KASSERT(!lf_overlaps(lock, lf),
714 				    ("two overlapping locks from same owner"));
715 		}
716 	}
717 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
718 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
719 		    ("pending lock which should be active"));
720 	}
721 #endif
722 	sx_xunlock(&state->ls_lock);
723 
724 	/*
725 	 * If we have removed the last active lock on the vnode and
726 	 * this is the last thread that was in-progress, we can free
727 	 * the state structure. We update the caller's pointer inside
728 	 * the vnode interlock but call free outside.
729 	 *
730 	 * XXX alternatively, keep the state structure around until
731 	 * the filesystem recycles - requires a callback from the
732 	 * filesystem.
733 	 */
734 	VI_LOCK(vp);
735 
736 	state->ls_threads--;
737 	wakeup(state);
738 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
739 		KASSERT(LIST_EMPTY(&state->ls_pending),
740 		    ("freeing state with pending locks"));
741 		freestate = state;
742 		*statep = NULL;
743 	}
744 
745 	VI_UNLOCK(vp);
746 
747 	if (freestate != NULL) {
748 		sx_xlock(&lf_lock_states_lock);
749 		LIST_REMOVE(freestate, ls_link);
750 		sx_xunlock(&lf_lock_states_lock);
751 		sx_destroy(&freestate->ls_lock);
752 		free(freestate, M_LOCKF);
753 		freestate = NULL;
754 	}
755 
756 	if (error == EDOOFUS) {
757 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
758 		goto retry_setlock;
759 	}
760 	return (error);
761 }
762 
763 int
764 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
765 {
766 	struct vop_advlockasync_args a;
767 
768 	a.a_vp = ap->a_vp;
769 	a.a_id = ap->a_id;
770 	a.a_op = ap->a_op;
771 	a.a_fl = ap->a_fl;
772 	a.a_flags = ap->a_flags;
773 	a.a_task = NULL;
774 	a.a_cookiep = NULL;
775 
776 	return (lf_advlockasync(&a, statep, size));
777 }
778 
779 void
780 lf_purgelocks(struct vnode *vp, struct lockf **statep)
781 {
782 	struct lockf *state;
783 	struct lockf_entry *lock, *nlock;
784 
785 	/*
786 	 * For this to work correctly, the caller must ensure that no
787 	 * other threads enter the locking system for this vnode,
788 	 * e.g. by checking VI_DOOMED. We wake up any threads that are
789 	 * sleeping waiting for locks on this vnode and then free all
790 	 * the remaining locks.
791 	 */
792 	VI_LOCK(vp);
793 	KASSERT(vp->v_iflag & VI_DOOMED,
794 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
795 	state = *statep;
796 	if (state) {
797 		*statep = NULL;
798 		state->ls_threads++;
799 		VI_UNLOCK(vp);
800 
801 		sx_xlock(&state->ls_lock);
802 		sx_xlock(&lf_owner_graph_lock);
803 		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
804 			LIST_REMOVE(lock, lf_link);
805 			lf_remove_outgoing(lock);
806 			lf_remove_incoming(lock);
807 
808 			/*
809 			 * If its an async lock, we can just free it
810 			 * here, otherwise we let the sleeping thread
811 			 * free it.
812 			 */
813 			if (lock->lf_async_task) {
814 				lf_free_lock(lock);
815 			} else {
816 				lock->lf_flags |= F_INTR;
817 				wakeup(lock);
818 			}
819 		}
820 		sx_xunlock(&lf_owner_graph_lock);
821 		sx_xunlock(&state->ls_lock);
822 
823 		/*
824 		 * Wait for all other threads, sleeping and otherwise
825 		 * to leave.
826 		 */
827 		VI_LOCK(vp);
828 		while (state->ls_threads > 1)
829 			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
830 		VI_UNLOCK(vp);
831 
832 		/*
833 		 * We can just free all the active locks since they
834 		 * will have no dependencies (we removed them all
835 		 * above). We don't need to bother locking since we
836 		 * are the last thread using this state structure.
837 		 */
838 		KASSERT(LIST_EMPTY(&state->ls_pending),
839 		    ("lock pending for %p", state));
840 		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
841 			LIST_REMOVE(lock, lf_link);
842 			lf_free_lock(lock);
843 		}
844 		sx_xlock(&lf_lock_states_lock);
845 		LIST_REMOVE(state, ls_link);
846 		sx_xunlock(&lf_lock_states_lock);
847 		sx_destroy(&state->ls_lock);
848 		free(state, M_LOCKF);
849 	} else {
850 		VI_UNLOCK(vp);
851 	}
852 }
853 
854 /*
855  * Return non-zero if locks 'x' and 'y' overlap.
856  */
857 static int
858 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
859 {
860 
861 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
862 }
863 
864 /*
865  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
866  */
867 static int
868 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
869 {
870 
871 	return x->lf_owner != y->lf_owner
872 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
873 		&& lf_overlaps(x, y);
874 }
875 
876 /*
877  * Allocate a lock edge from the free list
878  */
879 static struct lockf_edge *
880 lf_alloc_edge(void)
881 {
882 
883 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
884 }
885 
886 /*
887  * Free a lock edge.
888  */
889 static void
890 lf_free_edge(struct lockf_edge *e)
891 {
892 
893 	free(e, M_LOCKF);
894 }
895 
896 
897 /*
898  * Ensure that the lock's owner has a corresponding vertex in the
899  * owner graph.
900  */
901 static void
902 lf_alloc_vertex(struct lockf_entry *lock)
903 {
904 	struct owner_graph *g = &lf_owner_graph;
905 
906 	if (!lock->lf_owner->lo_vertex)
907 		lock->lf_owner->lo_vertex =
908 			graph_alloc_vertex(g, lock->lf_owner);
909 }
910 
911 /*
912  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
913  * the new edge would cause a cycle in the owner graph.
914  */
915 static int
916 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
917 {
918 	struct owner_graph *g = &lf_owner_graph;
919 	struct lockf_edge *e;
920 	int error;
921 
922 #ifdef DIAGNOSTIC
923 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
924 		KASSERT(e->le_to != y, ("adding lock edge twice"));
925 #endif
926 
927 	/*
928 	 * Make sure the two owners have entries in the owner graph.
929 	 */
930 	lf_alloc_vertex(x);
931 	lf_alloc_vertex(y);
932 
933 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
934 	    y->lf_owner->lo_vertex);
935 	if (error)
936 		return (error);
937 
938 	e = lf_alloc_edge();
939 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
940 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
941 	e->le_from = x;
942 	e->le_to = y;
943 
944 	return (0);
945 }
946 
947 /*
948  * Remove an edge from the lock graph.
949  */
950 static void
951 lf_remove_edge(struct lockf_edge *e)
952 {
953 	struct owner_graph *g = &lf_owner_graph;
954 	struct lockf_entry *x = e->le_from;
955 	struct lockf_entry *y = e->le_to;
956 
957 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
958 	LIST_REMOVE(e, le_outlink);
959 	LIST_REMOVE(e, le_inlink);
960 	e->le_from = NULL;
961 	e->le_to = NULL;
962 	lf_free_edge(e);
963 }
964 
965 /*
966  * Remove all out-going edges from lock x.
967  */
968 static void
969 lf_remove_outgoing(struct lockf_entry *x)
970 {
971 	struct lockf_edge *e;
972 
973 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
974 		lf_remove_edge(e);
975 	}
976 }
977 
978 /*
979  * Remove all in-coming edges from lock x.
980  */
981 static void
982 lf_remove_incoming(struct lockf_entry *x)
983 {
984 	struct lockf_edge *e;
985 
986 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
987 		lf_remove_edge(e);
988 	}
989 }
990 
991 /*
992  * Walk the list of locks for the file and create an out-going edge
993  * from lock to each blocking lock.
994  */
995 static int
996 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
997 {
998 	struct lockf_entry *overlap;
999 	int error;
1000 
1001 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1002 		/*
1003 		 * We may assume that the active list is sorted by
1004 		 * lf_start.
1005 		 */
1006 		if (overlap->lf_start > lock->lf_end)
1007 			break;
1008 		if (!lf_blocks(lock, overlap))
1009 			continue;
1010 
1011 		/*
1012 		 * We've found a blocking lock. Add the corresponding
1013 		 * edge to the graphs and see if it would cause a
1014 		 * deadlock.
1015 		 */
1016 		error = lf_add_edge(lock, overlap);
1017 
1018 		/*
1019 		 * The only error that lf_add_edge returns is EDEADLK.
1020 		 * Remove any edges we added and return the error.
1021 		 */
1022 		if (error) {
1023 			lf_remove_outgoing(lock);
1024 			return (error);
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * We also need to add edges to sleeping locks that block
1030 	 * us. This ensures that lf_wakeup_lock cannot grant two
1031 	 * mutually blocking locks simultaneously and also enforces a
1032 	 * 'first come, first served' fairness model. Note that this
1033 	 * only happens if we are blocked by at least one active lock
1034 	 * due to the call to lf_getblock in lf_setlock below.
1035 	 */
1036 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1037 		if (!lf_blocks(lock, overlap))
1038 			continue;
1039 		/*
1040 		 * We've found a blocking lock. Add the corresponding
1041 		 * edge to the graphs and see if it would cause a
1042 		 * deadlock.
1043 		 */
1044 		error = lf_add_edge(lock, overlap);
1045 
1046 		/*
1047 		 * The only error that lf_add_edge returns is EDEADLK.
1048 		 * Remove any edges we added and return the error.
1049 		 */
1050 		if (error) {
1051 			lf_remove_outgoing(lock);
1052 			return (error);
1053 		}
1054 	}
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Walk the list of pending locks for the file and create an in-coming
1061  * edge from lock to each blocking lock.
1062  */
1063 static int
1064 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1065 {
1066 	struct lockf_entry *overlap;
1067 	int error;
1068 
1069 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1070 		if (!lf_blocks(lock, overlap))
1071 			continue;
1072 
1073 		/*
1074 		 * We've found a blocking lock. Add the corresponding
1075 		 * edge to the graphs and see if it would cause a
1076 		 * deadlock.
1077 		 */
1078 		error = lf_add_edge(overlap, lock);
1079 
1080 		/*
1081 		 * The only error that lf_add_edge returns is EDEADLK.
1082 		 * Remove any edges we added and return the error.
1083 		 */
1084 		if (error) {
1085 			lf_remove_incoming(lock);
1086 			return (error);
1087 		}
1088 	}
1089 	return (0);
1090 }
1091 
1092 /*
1093  * Insert lock into the active list, keeping list entries ordered by
1094  * increasing values of lf_start.
1095  */
1096 static void
1097 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1098 {
1099 	struct lockf_entry *lf, *lfprev;
1100 
1101 	if (LIST_EMPTY(&state->ls_active)) {
1102 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1103 		return;
1104 	}
1105 
1106 	lfprev = NULL;
1107 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1108 		if (lf->lf_start > lock->lf_start) {
1109 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1110 			return;
1111 		}
1112 		lfprev = lf;
1113 	}
1114 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1115 }
1116 
1117 /*
1118  * Wake up a sleeping lock and remove it from the pending list now
1119  * that all its dependencies have been resolved. The caller should
1120  * arrange for the lock to be added to the active list, adjusting any
1121  * existing locks for the same owner as needed.
1122  */
1123 static void
1124 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1125 {
1126 
1127 	/*
1128 	 * Remove from ls_pending list and wake up the caller
1129 	 * or start the async notification, as appropriate.
1130 	 */
1131 	LIST_REMOVE(wakelock, lf_link);
1132 #ifdef LOCKF_DEBUG
1133 	if (lockf_debug & 1)
1134 		lf_print("lf_wakeup_lock: awakening", wakelock);
1135 #endif /* LOCKF_DEBUG */
1136 	if (wakelock->lf_async_task) {
1137 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1138 	} else {
1139 		wakeup(wakelock);
1140 	}
1141 }
1142 
1143 /*
1144  * Re-check all dependent locks and remove edges to locks that we no
1145  * longer block. If 'all' is non-zero, the lock has been removed and
1146  * we must remove all the dependencies, otherwise it has simply been
1147  * reduced but remains active. Any pending locks which have been been
1148  * unblocked are added to 'granted'
1149  */
1150 static void
1151 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1152 	struct lockf_entry_list *granted)
1153 {
1154 	struct lockf_edge *e, *ne;
1155 	struct lockf_entry *deplock;
1156 
1157 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1158 		deplock = e->le_from;
1159 		if (all || !lf_blocks(lock, deplock)) {
1160 			sx_xlock(&lf_owner_graph_lock);
1161 			lf_remove_edge(e);
1162 			sx_xunlock(&lf_owner_graph_lock);
1163 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1164 				lf_wakeup_lock(state, deplock);
1165 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1166 			}
1167 		}
1168 	}
1169 }
1170 
1171 /*
1172  * Set the start of an existing active lock, updating dependencies and
1173  * adding any newly woken locks to 'granted'.
1174  */
1175 static void
1176 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1177 	struct lockf_entry_list *granted)
1178 {
1179 
1180 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1181 	lock->lf_start = new_start;
1182 	LIST_REMOVE(lock, lf_link);
1183 	lf_insert_lock(state, lock);
1184 	lf_update_dependancies(state, lock, FALSE, granted);
1185 }
1186 
1187 /*
1188  * Set the end of an existing active lock, updating dependencies and
1189  * adding any newly woken locks to 'granted'.
1190  */
1191 static void
1192 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1193 	struct lockf_entry_list *granted)
1194 {
1195 
1196 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1197 	lock->lf_end = new_end;
1198 	lf_update_dependancies(state, lock, FALSE, granted);
1199 }
1200 
1201 /*
1202  * Add a lock to the active list, updating or removing any current
1203  * locks owned by the same owner and processing any pending locks that
1204  * become unblocked as a result. This code is also used for unlock
1205  * since the logic for updating existing locks is identical.
1206  *
1207  * As a result of processing the new lock, we may unblock existing
1208  * pending locks as a result of downgrading/unlocking. We simply
1209  * activate the newly granted locks by looping.
1210  *
1211  * Since the new lock already has its dependencies set up, we always
1212  * add it to the list (unless its an unlock request). This may
1213  * fragment the lock list in some pathological cases but its probably
1214  * not a real problem.
1215  */
1216 static void
1217 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1218 {
1219 	struct lockf_entry *overlap, *lf;
1220 	struct lockf_entry_list granted;
1221 	int ovcase;
1222 
1223 	LIST_INIT(&granted);
1224 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1225 
1226 	while (!LIST_EMPTY(&granted)) {
1227 		lock = LIST_FIRST(&granted);
1228 		LIST_REMOVE(lock, lf_link);
1229 
1230 		/*
1231 		 * Skip over locks owned by other processes.  Handle
1232 		 * any locks that overlap and are owned by ourselves.
1233 		 */
1234 		overlap = LIST_FIRST(&state->ls_active);
1235 		for (;;) {
1236 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1237 
1238 #ifdef LOCKF_DEBUG
1239 			if (ovcase && (lockf_debug & 2)) {
1240 				printf("lf_setlock: overlap %d", ovcase);
1241 				lf_print("", overlap);
1242 			}
1243 #endif
1244 			/*
1245 			 * Six cases:
1246 			 *	0) no overlap
1247 			 *	1) overlap == lock
1248 			 *	2) overlap contains lock
1249 			 *	3) lock contains overlap
1250 			 *	4) overlap starts before lock
1251 			 *	5) overlap ends after lock
1252 			 */
1253 			switch (ovcase) {
1254 			case 0: /* no overlap */
1255 				break;
1256 
1257 			case 1: /* overlap == lock */
1258 				/*
1259 				 * We have already setup the
1260 				 * dependants for the new lock, taking
1261 				 * into account a possible downgrade
1262 				 * or unlock. Remove the old lock.
1263 				 */
1264 				LIST_REMOVE(overlap, lf_link);
1265 				lf_update_dependancies(state, overlap, TRUE,
1266 					&granted);
1267 				lf_free_lock(overlap);
1268 				break;
1269 
1270 			case 2: /* overlap contains lock */
1271 				/*
1272 				 * Just split the existing lock.
1273 				 */
1274 				lf_split(state, overlap, lock, &granted);
1275 				break;
1276 
1277 			case 3: /* lock contains overlap */
1278 				/*
1279 				 * Delete the overlap and advance to
1280 				 * the next entry in the list.
1281 				 */
1282 				lf = LIST_NEXT(overlap, lf_link);
1283 				LIST_REMOVE(overlap, lf_link);
1284 				lf_update_dependancies(state, overlap, TRUE,
1285 					&granted);
1286 				lf_free_lock(overlap);
1287 				overlap = lf;
1288 				continue;
1289 
1290 			case 4: /* overlap starts before lock */
1291 				/*
1292 				 * Just update the overlap end and
1293 				 * move on.
1294 				 */
1295 				lf_set_end(state, overlap, lock->lf_start - 1,
1296 				    &granted);
1297 				overlap = LIST_NEXT(overlap, lf_link);
1298 				continue;
1299 
1300 			case 5: /* overlap ends after lock */
1301 				/*
1302 				 * Change the start of overlap and
1303 				 * re-insert.
1304 				 */
1305 				lf_set_start(state, overlap, lock->lf_end + 1,
1306 				    &granted);
1307 				break;
1308 			}
1309 			break;
1310 		}
1311 #ifdef LOCKF_DEBUG
1312 		if (lockf_debug & 1) {
1313 			if (lock->lf_type != F_UNLCK)
1314 				lf_print("lf_activate_lock: activated", lock);
1315 			else
1316 				lf_print("lf_activate_lock: unlocked", lock);
1317 			lf_printlist("lf_activate_lock", lock);
1318 		}
1319 #endif /* LOCKF_DEBUG */
1320 		if (lock->lf_type != F_UNLCK)
1321 			lf_insert_lock(state, lock);
1322 	}
1323 }
1324 
1325 /*
1326  * Cancel a pending lock request, either as a result of a signal or a
1327  * cancel request for an async lock.
1328  */
1329 static void
1330 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1331 {
1332 	struct lockf_entry_list granted;
1333 
1334 	/*
1335 	 * Note it is theoretically possible that cancelling this lock
1336 	 * may allow some other pending lock to become
1337 	 * active. Consider this case:
1338 	 *
1339 	 * Owner	Action		Result		Dependencies
1340 	 *
1341 	 * A:		lock [0..0]	succeeds
1342 	 * B:		lock [2..2]	succeeds
1343 	 * C:		lock [1..2]	blocked		C->B
1344 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1345 	 * A:		unlock [0..0]			C->B,D->C
1346 	 * C:		cancel [1..2]
1347 	 */
1348 
1349 	LIST_REMOVE(lock, lf_link);
1350 
1351 	/*
1352 	 * Removing out-going edges is simple.
1353 	 */
1354 	sx_xlock(&lf_owner_graph_lock);
1355 	lf_remove_outgoing(lock);
1356 	sx_xunlock(&lf_owner_graph_lock);
1357 
1358 	/*
1359 	 * Removing in-coming edges may allow some other lock to
1360 	 * become active - we use lf_update_dependancies to figure
1361 	 * this out.
1362 	 */
1363 	LIST_INIT(&granted);
1364 	lf_update_dependancies(state, lock, TRUE, &granted);
1365 	lf_free_lock(lock);
1366 
1367 	/*
1368 	 * Feed any newly active locks to lf_activate_lock.
1369 	 */
1370 	while (!LIST_EMPTY(&granted)) {
1371 		lock = LIST_FIRST(&granted);
1372 		LIST_REMOVE(lock, lf_link);
1373 		lf_activate_lock(state, lock);
1374 	}
1375 }
1376 
1377 /*
1378  * Set a byte-range lock.
1379  */
1380 static int
1381 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1382     void **cookiep)
1383 {
1384 	static char lockstr[] = "lockf";
1385 	int error, priority, stops_deferred;
1386 
1387 #ifdef LOCKF_DEBUG
1388 	if (lockf_debug & 1)
1389 		lf_print("lf_setlock", lock);
1390 #endif /* LOCKF_DEBUG */
1391 
1392 	/*
1393 	 * Set the priority
1394 	 */
1395 	priority = PLOCK;
1396 	if (lock->lf_type == F_WRLCK)
1397 		priority += 4;
1398 	if (!(lock->lf_flags & F_NOINTR))
1399 		priority |= PCATCH;
1400 	/*
1401 	 * Scan lock list for this file looking for locks that would block us.
1402 	 */
1403 	if (lf_getblock(state, lock)) {
1404 		/*
1405 		 * Free the structure and return if nonblocking.
1406 		 */
1407 		if ((lock->lf_flags & F_WAIT) == 0
1408 		    && lock->lf_async_task == NULL) {
1409 			lf_free_lock(lock);
1410 			error = EAGAIN;
1411 			goto out;
1412 		}
1413 
1414 		/*
1415 		 * For flock type locks, we must first remove
1416 		 * any shared locks that we hold before we sleep
1417 		 * waiting for an exclusive lock.
1418 		 */
1419 		if ((lock->lf_flags & F_FLOCK) &&
1420 		    lock->lf_type == F_WRLCK) {
1421 			lock->lf_type = F_UNLCK;
1422 			lf_activate_lock(state, lock);
1423 			lock->lf_type = F_WRLCK;
1424 		}
1425 
1426 		/*
1427 		 * We are blocked. Create edges to each blocking lock,
1428 		 * checking for deadlock using the owner graph. For
1429 		 * simplicity, we run deadlock detection for all
1430 		 * locks, posix and otherwise.
1431 		 */
1432 		sx_xlock(&lf_owner_graph_lock);
1433 		error = lf_add_outgoing(state, lock);
1434 		sx_xunlock(&lf_owner_graph_lock);
1435 
1436 		if (error) {
1437 #ifdef LOCKF_DEBUG
1438 			if (lockf_debug & 1)
1439 				lf_print("lf_setlock: deadlock", lock);
1440 #endif
1441 			lf_free_lock(lock);
1442 			goto out;
1443 		}
1444 
1445 		/*
1446 		 * We have added edges to everything that blocks
1447 		 * us. Sleep until they all go away.
1448 		 */
1449 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1450 #ifdef LOCKF_DEBUG
1451 		if (lockf_debug & 1) {
1452 			struct lockf_edge *e;
1453 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1454 				lf_print("lf_setlock: blocking on", e->le_to);
1455 				lf_printlist("lf_setlock", e->le_to);
1456 			}
1457 		}
1458 #endif /* LOCKF_DEBUG */
1459 
1460 		if ((lock->lf_flags & F_WAIT) == 0) {
1461 			/*
1462 			 * The caller requested async notification -
1463 			 * this callback happens when the blocking
1464 			 * lock is released, allowing the caller to
1465 			 * make another attempt to take the lock.
1466 			 */
1467 			*cookiep = (void *) lock;
1468 			error = EINPROGRESS;
1469 			goto out;
1470 		}
1471 
1472 		lock->lf_refs++;
1473 		stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1474 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1475 		sigallowstop(stops_deferred);
1476 		if (lf_free_lock(lock)) {
1477 			error = EDOOFUS;
1478 			goto out;
1479 		}
1480 
1481 		/*
1482 		 * We may have been awakened by a signal and/or by a
1483 		 * debugger continuing us (in which cases we must
1484 		 * remove our lock graph edges) and/or by another
1485 		 * process releasing a lock (in which case our edges
1486 		 * have already been removed and we have been moved to
1487 		 * the active list). We may also have been woken by
1488 		 * lf_purgelocks which we report to the caller as
1489 		 * EINTR. In that case, lf_purgelocks will have
1490 		 * removed our lock graph edges.
1491 		 *
1492 		 * Note that it is possible to receive a signal after
1493 		 * we were successfully woken (and moved to the active
1494 		 * list) but before we resumed execution. In this
1495 		 * case, our lf_outedges list will be clear. We
1496 		 * pretend there was no error.
1497 		 *
1498 		 * Note also, if we have been sleeping long enough, we
1499 		 * may now have incoming edges from some newer lock
1500 		 * which is waiting behind us in the queue.
1501 		 */
1502 		if (lock->lf_flags & F_INTR) {
1503 			error = EINTR;
1504 			lf_free_lock(lock);
1505 			goto out;
1506 		}
1507 		if (LIST_EMPTY(&lock->lf_outedges)) {
1508 			error = 0;
1509 		} else {
1510 			lf_cancel_lock(state, lock);
1511 			goto out;
1512 		}
1513 #ifdef LOCKF_DEBUG
1514 		if (lockf_debug & 1) {
1515 			lf_print("lf_setlock: granted", lock);
1516 		}
1517 #endif
1518 		goto out;
1519 	}
1520 	/*
1521 	 * It looks like we are going to grant the lock. First add
1522 	 * edges from any currently pending lock that the new lock
1523 	 * would block.
1524 	 */
1525 	sx_xlock(&lf_owner_graph_lock);
1526 	error = lf_add_incoming(state, lock);
1527 	sx_xunlock(&lf_owner_graph_lock);
1528 	if (error) {
1529 #ifdef LOCKF_DEBUG
1530 		if (lockf_debug & 1)
1531 			lf_print("lf_setlock: deadlock", lock);
1532 #endif
1533 		lf_free_lock(lock);
1534 		goto out;
1535 	}
1536 
1537 	/*
1538 	 * No blocks!!  Add the lock.  Note that we will
1539 	 * downgrade or upgrade any overlapping locks this
1540 	 * process already owns.
1541 	 */
1542 	lf_activate_lock(state, lock);
1543 	error = 0;
1544 out:
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Remove a byte-range lock on an inode.
1550  *
1551  * Generally, find the lock (or an overlap to that lock)
1552  * and remove it (or shrink it), then wakeup anyone we can.
1553  */
1554 static int
1555 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1556 {
1557 	struct lockf_entry *overlap;
1558 
1559 	overlap = LIST_FIRST(&state->ls_active);
1560 
1561 	if (overlap == NOLOCKF)
1562 		return (0);
1563 #ifdef LOCKF_DEBUG
1564 	if (unlock->lf_type != F_UNLCK)
1565 		panic("lf_clearlock: bad type");
1566 	if (lockf_debug & 1)
1567 		lf_print("lf_clearlock", unlock);
1568 #endif /* LOCKF_DEBUG */
1569 
1570 	lf_activate_lock(state, unlock);
1571 
1572 	return (0);
1573 }
1574 
1575 /*
1576  * Check whether there is a blocking lock, and if so return its
1577  * details in '*fl'.
1578  */
1579 static int
1580 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1581 {
1582 	struct lockf_entry *block;
1583 
1584 #ifdef LOCKF_DEBUG
1585 	if (lockf_debug & 1)
1586 		lf_print("lf_getlock", lock);
1587 #endif /* LOCKF_DEBUG */
1588 
1589 	if ((block = lf_getblock(state, lock))) {
1590 		fl->l_type = block->lf_type;
1591 		fl->l_whence = SEEK_SET;
1592 		fl->l_start = block->lf_start;
1593 		if (block->lf_end == OFF_MAX)
1594 			fl->l_len = 0;
1595 		else
1596 			fl->l_len = block->lf_end - block->lf_start + 1;
1597 		fl->l_pid = block->lf_owner->lo_pid;
1598 		fl->l_sysid = block->lf_owner->lo_sysid;
1599 	} else {
1600 		fl->l_type = F_UNLCK;
1601 	}
1602 	return (0);
1603 }
1604 
1605 /*
1606  * Cancel an async lock request.
1607  */
1608 static int
1609 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1610 {
1611 	struct lockf_entry *reallock;
1612 
1613 	/*
1614 	 * We need to match this request with an existing lock
1615 	 * request.
1616 	 */
1617 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1618 		if ((void *) reallock == cookie) {
1619 			/*
1620 			 * Double-check that this lock looks right
1621 			 * (maybe use a rolling ID for the cancel
1622 			 * cookie instead?)
1623 			 */
1624 			if (!(reallock->lf_vnode == lock->lf_vnode
1625 				&& reallock->lf_start == lock->lf_start
1626 				&& reallock->lf_end == lock->lf_end)) {
1627 				return (ENOENT);
1628 			}
1629 
1630 			/*
1631 			 * Make sure this lock was async and then just
1632 			 * remove it from its wait lists.
1633 			 */
1634 			if (!reallock->lf_async_task) {
1635 				return (ENOENT);
1636 			}
1637 
1638 			/*
1639 			 * Note that since any other thread must take
1640 			 * state->ls_lock before it can possibly
1641 			 * trigger the async callback, we are safe
1642 			 * from a race with lf_wakeup_lock, i.e. we
1643 			 * can free the lock (actually our caller does
1644 			 * this).
1645 			 */
1646 			lf_cancel_lock(state, reallock);
1647 			return (0);
1648 		}
1649 	}
1650 
1651 	/*
1652 	 * We didn't find a matching lock - not much we can do here.
1653 	 */
1654 	return (ENOENT);
1655 }
1656 
1657 /*
1658  * Walk the list of locks for an inode and
1659  * return the first blocking lock.
1660  */
1661 static struct lockf_entry *
1662 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1663 {
1664 	struct lockf_entry *overlap;
1665 
1666 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1667 		/*
1668 		 * We may assume that the active list is sorted by
1669 		 * lf_start.
1670 		 */
1671 		if (overlap->lf_start > lock->lf_end)
1672 			break;
1673 		if (!lf_blocks(lock, overlap))
1674 			continue;
1675 		return (overlap);
1676 	}
1677 	return (NOLOCKF);
1678 }
1679 
1680 /*
1681  * Walk the list of locks for an inode to find an overlapping lock (if
1682  * any) and return a classification of that overlap.
1683  *
1684  * Arguments:
1685  *	*overlap	The place in the lock list to start looking
1686  *	lock		The lock which is being tested
1687  *	type		Pass 'SELF' to test only locks with the same
1688  *			owner as lock, or 'OTHER' to test only locks
1689  *			with a different owner
1690  *
1691  * Returns one of six values:
1692  *	0) no overlap
1693  *	1) overlap == lock
1694  *	2) overlap contains lock
1695  *	3) lock contains overlap
1696  *	4) overlap starts before lock
1697  *	5) overlap ends after lock
1698  *
1699  * If there is an overlapping lock, '*overlap' is set to point at the
1700  * overlapping lock.
1701  *
1702  * NOTE: this returns only the FIRST overlapping lock.  There
1703  *	 may be more than one.
1704  */
1705 static int
1706 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1707 {
1708 	struct lockf_entry *lf;
1709 	off_t start, end;
1710 	int res;
1711 
1712 	if ((*overlap) == NOLOCKF) {
1713 		return (0);
1714 	}
1715 #ifdef LOCKF_DEBUG
1716 	if (lockf_debug & 2)
1717 		lf_print("lf_findoverlap: looking for overlap in", lock);
1718 #endif /* LOCKF_DEBUG */
1719 	start = lock->lf_start;
1720 	end = lock->lf_end;
1721 	res = 0;
1722 	while (*overlap) {
1723 		lf = *overlap;
1724 		if (lf->lf_start > end)
1725 			break;
1726 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1727 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1728 			*overlap = LIST_NEXT(lf, lf_link);
1729 			continue;
1730 		}
1731 #ifdef LOCKF_DEBUG
1732 		if (lockf_debug & 2)
1733 			lf_print("\tchecking", lf);
1734 #endif /* LOCKF_DEBUG */
1735 		/*
1736 		 * OK, check for overlap
1737 		 *
1738 		 * Six cases:
1739 		 *	0) no overlap
1740 		 *	1) overlap == lock
1741 		 *	2) overlap contains lock
1742 		 *	3) lock contains overlap
1743 		 *	4) overlap starts before lock
1744 		 *	5) overlap ends after lock
1745 		 */
1746 		if (start > lf->lf_end) {
1747 			/* Case 0 */
1748 #ifdef LOCKF_DEBUG
1749 			if (lockf_debug & 2)
1750 				printf("no overlap\n");
1751 #endif /* LOCKF_DEBUG */
1752 			*overlap = LIST_NEXT(lf, lf_link);
1753 			continue;
1754 		}
1755 		if (lf->lf_start == start && lf->lf_end == end) {
1756 			/* Case 1 */
1757 #ifdef LOCKF_DEBUG
1758 			if (lockf_debug & 2)
1759 				printf("overlap == lock\n");
1760 #endif /* LOCKF_DEBUG */
1761 			res = 1;
1762 			break;
1763 		}
1764 		if (lf->lf_start <= start && lf->lf_end >= end) {
1765 			/* Case 2 */
1766 #ifdef LOCKF_DEBUG
1767 			if (lockf_debug & 2)
1768 				printf("overlap contains lock\n");
1769 #endif /* LOCKF_DEBUG */
1770 			res = 2;
1771 			break;
1772 		}
1773 		if (start <= lf->lf_start && end >= lf->lf_end) {
1774 			/* Case 3 */
1775 #ifdef LOCKF_DEBUG
1776 			if (lockf_debug & 2)
1777 				printf("lock contains overlap\n");
1778 #endif /* LOCKF_DEBUG */
1779 			res = 3;
1780 			break;
1781 		}
1782 		if (lf->lf_start < start && lf->lf_end >= start) {
1783 			/* Case 4 */
1784 #ifdef LOCKF_DEBUG
1785 			if (lockf_debug & 2)
1786 				printf("overlap starts before lock\n");
1787 #endif /* LOCKF_DEBUG */
1788 			res = 4;
1789 			break;
1790 		}
1791 		if (lf->lf_start > start && lf->lf_end > end) {
1792 			/* Case 5 */
1793 #ifdef LOCKF_DEBUG
1794 			if (lockf_debug & 2)
1795 				printf("overlap ends after lock\n");
1796 #endif /* LOCKF_DEBUG */
1797 			res = 5;
1798 			break;
1799 		}
1800 		panic("lf_findoverlap: default");
1801 	}
1802 	return (res);
1803 }
1804 
1805 /*
1806  * Split an the existing 'lock1', based on the extent of the lock
1807  * described by 'lock2'. The existing lock should cover 'lock2'
1808  * entirely.
1809  *
1810  * Any pending locks which have been been unblocked are added to
1811  * 'granted'
1812  */
1813 static void
1814 lf_split(struct lockf *state, struct lockf_entry *lock1,
1815     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1816 {
1817 	struct lockf_entry *splitlock;
1818 
1819 #ifdef LOCKF_DEBUG
1820 	if (lockf_debug & 2) {
1821 		lf_print("lf_split", lock1);
1822 		lf_print("splitting from", lock2);
1823 	}
1824 #endif /* LOCKF_DEBUG */
1825 	/*
1826 	 * Check to see if we don't need to split at all.
1827 	 */
1828 	if (lock1->lf_start == lock2->lf_start) {
1829 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1830 		return;
1831 	}
1832 	if (lock1->lf_end == lock2->lf_end) {
1833 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1834 		return;
1835 	}
1836 	/*
1837 	 * Make a new lock consisting of the last part of
1838 	 * the encompassing lock.
1839 	 */
1840 	splitlock = lf_alloc_lock(lock1->lf_owner);
1841 	memcpy(splitlock, lock1, sizeof *splitlock);
1842 	splitlock->lf_refs = 1;
1843 	if (splitlock->lf_flags & F_REMOTE)
1844 		vref(splitlock->lf_vnode);
1845 
1846 	/*
1847 	 * This cannot cause a deadlock since any edges we would add
1848 	 * to splitlock already exist in lock1. We must be sure to add
1849 	 * necessary dependencies to splitlock before we reduce lock1
1850 	 * otherwise we may accidentally grant a pending lock that
1851 	 * was blocked by the tail end of lock1.
1852 	 */
1853 	splitlock->lf_start = lock2->lf_end + 1;
1854 	LIST_INIT(&splitlock->lf_outedges);
1855 	LIST_INIT(&splitlock->lf_inedges);
1856 	sx_xlock(&lf_owner_graph_lock);
1857 	lf_add_incoming(state, splitlock);
1858 	sx_xunlock(&lf_owner_graph_lock);
1859 
1860 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1861 
1862 	/*
1863 	 * OK, now link it in
1864 	 */
1865 	lf_insert_lock(state, splitlock);
1866 }
1867 
1868 struct lockdesc {
1869 	STAILQ_ENTRY(lockdesc) link;
1870 	struct vnode *vp;
1871 	struct flock fl;
1872 };
1873 STAILQ_HEAD(lockdesclist, lockdesc);
1874 
1875 int
1876 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1877 {
1878 	struct lockf *ls;
1879 	struct lockf_entry *lf;
1880 	struct lockdesc *ldesc;
1881 	struct lockdesclist locks;
1882 	int error;
1883 
1884 	/*
1885 	 * In order to keep the locking simple, we iterate over the
1886 	 * active lock lists to build a list of locks that need
1887 	 * releasing. We then call the iterator for each one in turn.
1888 	 *
1889 	 * We take an extra reference to the vnode for the duration to
1890 	 * make sure it doesn't go away before we are finished.
1891 	 */
1892 	STAILQ_INIT(&locks);
1893 	sx_xlock(&lf_lock_states_lock);
1894 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1895 		sx_xlock(&ls->ls_lock);
1896 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1897 			if (lf->lf_owner->lo_sysid != sysid)
1898 				continue;
1899 
1900 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1901 			    M_WAITOK);
1902 			ldesc->vp = lf->lf_vnode;
1903 			vref(ldesc->vp);
1904 			ldesc->fl.l_start = lf->lf_start;
1905 			if (lf->lf_end == OFF_MAX)
1906 				ldesc->fl.l_len = 0;
1907 			else
1908 				ldesc->fl.l_len =
1909 					lf->lf_end - lf->lf_start + 1;
1910 			ldesc->fl.l_whence = SEEK_SET;
1911 			ldesc->fl.l_type = F_UNLCK;
1912 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1913 			ldesc->fl.l_sysid = sysid;
1914 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1915 		}
1916 		sx_xunlock(&ls->ls_lock);
1917 	}
1918 	sx_xunlock(&lf_lock_states_lock);
1919 
1920 	/*
1921 	 * Call the iterator function for each lock in turn. If the
1922 	 * iterator returns an error code, just free the rest of the
1923 	 * lockdesc structures.
1924 	 */
1925 	error = 0;
1926 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1927 		STAILQ_REMOVE_HEAD(&locks, link);
1928 		if (!error)
1929 			error = fn(ldesc->vp, &ldesc->fl, arg);
1930 		vrele(ldesc->vp);
1931 		free(ldesc, M_LOCKF);
1932 	}
1933 
1934 	return (error);
1935 }
1936 
1937 int
1938 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1939 {
1940 	struct lockf *ls;
1941 	struct lockf_entry *lf;
1942 	struct lockdesc *ldesc;
1943 	struct lockdesclist locks;
1944 	int error;
1945 
1946 	/*
1947 	 * In order to keep the locking simple, we iterate over the
1948 	 * active lock lists to build a list of locks that need
1949 	 * releasing. We then call the iterator for each one in turn.
1950 	 *
1951 	 * We take an extra reference to the vnode for the duration to
1952 	 * make sure it doesn't go away before we are finished.
1953 	 */
1954 	STAILQ_INIT(&locks);
1955 	VI_LOCK(vp);
1956 	ls = vp->v_lockf;
1957 	if (!ls) {
1958 		VI_UNLOCK(vp);
1959 		return (0);
1960 	}
1961 	ls->ls_threads++;
1962 	VI_UNLOCK(vp);
1963 
1964 	sx_xlock(&ls->ls_lock);
1965 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1966 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1967 		    M_WAITOK);
1968 		ldesc->vp = lf->lf_vnode;
1969 		vref(ldesc->vp);
1970 		ldesc->fl.l_start = lf->lf_start;
1971 		if (lf->lf_end == OFF_MAX)
1972 			ldesc->fl.l_len = 0;
1973 		else
1974 			ldesc->fl.l_len =
1975 				lf->lf_end - lf->lf_start + 1;
1976 		ldesc->fl.l_whence = SEEK_SET;
1977 		ldesc->fl.l_type = F_UNLCK;
1978 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1979 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1980 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1981 	}
1982 	sx_xunlock(&ls->ls_lock);
1983 	VI_LOCK(vp);
1984 	ls->ls_threads--;
1985 	wakeup(ls);
1986 	VI_UNLOCK(vp);
1987 
1988 	/*
1989 	 * Call the iterator function for each lock in turn. If the
1990 	 * iterator returns an error code, just free the rest of the
1991 	 * lockdesc structures.
1992 	 */
1993 	error = 0;
1994 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1995 		STAILQ_REMOVE_HEAD(&locks, link);
1996 		if (!error)
1997 			error = fn(ldesc->vp, &ldesc->fl, arg);
1998 		vrele(ldesc->vp);
1999 		free(ldesc, M_LOCKF);
2000 	}
2001 
2002 	return (error);
2003 }
2004 
2005 static int
2006 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2007 {
2008 
2009 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2010 	return (0);
2011 }
2012 
2013 void
2014 lf_clearremotesys(int sysid)
2015 {
2016 
2017 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2018 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2019 }
2020 
2021 int
2022 lf_countlocks(int sysid)
2023 {
2024 	int i;
2025 	struct lock_owner *lo;
2026 	int count;
2027 
2028 	count = 0;
2029 	sx_xlock(&lf_lock_owners_lock);
2030 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2031 		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2032 			if (lo->lo_sysid == sysid)
2033 				count += lo->lo_refs;
2034 	sx_xunlock(&lf_lock_owners_lock);
2035 
2036 	return (count);
2037 }
2038 
2039 #ifdef LOCKF_DEBUG
2040 
2041 /*
2042  * Return non-zero if y is reachable from x using a brute force
2043  * search. If reachable and path is non-null, return the route taken
2044  * in path.
2045  */
2046 static int
2047 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2048     struct owner_vertex_list *path)
2049 {
2050 	struct owner_edge *e;
2051 
2052 	if (x == y) {
2053 		if (path)
2054 			TAILQ_INSERT_HEAD(path, x, v_link);
2055 		return 1;
2056 	}
2057 
2058 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2059 		if (graph_reaches(e->e_to, y, path)) {
2060 			if (path)
2061 				TAILQ_INSERT_HEAD(path, x, v_link);
2062 			return 1;
2063 		}
2064 	}
2065 	return 0;
2066 }
2067 
2068 /*
2069  * Perform consistency checks on the graph. Make sure the values of
2070  * v_order are correct. If checkorder is non-zero, check no vertex can
2071  * reach any other vertex with a smaller order.
2072  */
2073 static void
2074 graph_check(struct owner_graph *g, int checkorder)
2075 {
2076 	int i, j;
2077 
2078 	for (i = 0; i < g->g_size; i++) {
2079 		if (!g->g_vertices[i]->v_owner)
2080 			continue;
2081 		KASSERT(g->g_vertices[i]->v_order == i,
2082 		    ("lock graph vertices disordered"));
2083 		if (checkorder) {
2084 			for (j = 0; j < i; j++) {
2085 				if (!g->g_vertices[j]->v_owner)
2086 					continue;
2087 				KASSERT(!graph_reaches(g->g_vertices[i],
2088 					g->g_vertices[j], NULL),
2089 				    ("lock graph vertices disordered"));
2090 			}
2091 		}
2092 	}
2093 }
2094 
2095 static void
2096 graph_print_vertices(struct owner_vertex_list *set)
2097 {
2098 	struct owner_vertex *v;
2099 
2100 	printf("{ ");
2101 	TAILQ_FOREACH(v, set, v_link) {
2102 		printf("%d:", v->v_order);
2103 		lf_print_owner(v->v_owner);
2104 		if (TAILQ_NEXT(v, v_link))
2105 			printf(", ");
2106 	}
2107 	printf(" }\n");
2108 }
2109 
2110 #endif
2111 
2112 /*
2113  * Calculate the sub-set of vertices v from the affected region [y..x]
2114  * where v is reachable from y. Return -1 if a loop was detected
2115  * (i.e. x is reachable from y, otherwise the number of vertices in
2116  * this subset.
2117  */
2118 static int
2119 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2120     struct owner_vertex *y, struct owner_vertex_list *delta)
2121 {
2122 	uint32_t gen;
2123 	struct owner_vertex *v;
2124 	struct owner_edge *e;
2125 	int n;
2126 
2127 	/*
2128 	 * We start with a set containing just y. Then for each vertex
2129 	 * v in the set so far unprocessed, we add each vertex that v
2130 	 * has an out-edge to and that is within the affected region
2131 	 * [y..x]. If we see the vertex x on our travels, stop
2132 	 * immediately.
2133 	 */
2134 	TAILQ_INIT(delta);
2135 	TAILQ_INSERT_TAIL(delta, y, v_link);
2136 	v = y;
2137 	n = 1;
2138 	gen = g->g_gen;
2139 	while (v) {
2140 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2141 			if (e->e_to == x)
2142 				return -1;
2143 			if (e->e_to->v_order < x->v_order
2144 			    && e->e_to->v_gen != gen) {
2145 				e->e_to->v_gen = gen;
2146 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2147 				n++;
2148 			}
2149 		}
2150 		v = TAILQ_NEXT(v, v_link);
2151 	}
2152 
2153 	return (n);
2154 }
2155 
2156 /*
2157  * Calculate the sub-set of vertices v from the affected region [y..x]
2158  * where v reaches x. Return the number of vertices in this subset.
2159  */
2160 static int
2161 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2162     struct owner_vertex *y, struct owner_vertex_list *delta)
2163 {
2164 	uint32_t gen;
2165 	struct owner_vertex *v;
2166 	struct owner_edge *e;
2167 	int n;
2168 
2169 	/*
2170 	 * We start with a set containing just x. Then for each vertex
2171 	 * v in the set so far unprocessed, we add each vertex that v
2172 	 * has an in-edge from and that is within the affected region
2173 	 * [y..x].
2174 	 */
2175 	TAILQ_INIT(delta);
2176 	TAILQ_INSERT_TAIL(delta, x, v_link);
2177 	v = x;
2178 	n = 1;
2179 	gen = g->g_gen;
2180 	while (v) {
2181 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2182 			if (e->e_from->v_order > y->v_order
2183 			    && e->e_from->v_gen != gen) {
2184 				e->e_from->v_gen = gen;
2185 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2186 				n++;
2187 			}
2188 		}
2189 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2190 	}
2191 
2192 	return (n);
2193 }
2194 
2195 static int
2196 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2197 {
2198 	struct owner_vertex *v;
2199 	int i, j;
2200 
2201 	TAILQ_FOREACH(v, set, v_link) {
2202 		for (i = n;
2203 		     i > 0 && indices[i - 1] > v->v_order; i--)
2204 			;
2205 		for (j = n - 1; j >= i; j--)
2206 			indices[j + 1] = indices[j];
2207 		indices[i] = v->v_order;
2208 		n++;
2209 	}
2210 
2211 	return (n);
2212 }
2213 
2214 static int
2215 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2216     struct owner_vertex_list *set)
2217 {
2218 	struct owner_vertex *v, *vlowest;
2219 
2220 	while (!TAILQ_EMPTY(set)) {
2221 		vlowest = NULL;
2222 		TAILQ_FOREACH(v, set, v_link) {
2223 			if (!vlowest || v->v_order < vlowest->v_order)
2224 				vlowest = v;
2225 		}
2226 		TAILQ_REMOVE(set, vlowest, v_link);
2227 		vlowest->v_order = indices[nextunused];
2228 		g->g_vertices[vlowest->v_order] = vlowest;
2229 		nextunused++;
2230 	}
2231 
2232 	return (nextunused);
2233 }
2234 
2235 static int
2236 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2237     struct owner_vertex *y)
2238 {
2239 	struct owner_edge *e;
2240 	struct owner_vertex_list deltaF, deltaB;
2241 	int nF, nB, n, vi, i;
2242 	int *indices;
2243 
2244 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2245 
2246 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2247 		if (e->e_to == y) {
2248 			e->e_refs++;
2249 			return (0);
2250 		}
2251 	}
2252 
2253 #ifdef LOCKF_DEBUG
2254 	if (lockf_debug & 8) {
2255 		printf("adding edge %d:", x->v_order);
2256 		lf_print_owner(x->v_owner);
2257 		printf(" -> %d:", y->v_order);
2258 		lf_print_owner(y->v_owner);
2259 		printf("\n");
2260 	}
2261 #endif
2262 	if (y->v_order < x->v_order) {
2263 		/*
2264 		 * The new edge violates the order. First find the set
2265 		 * of affected vertices reachable from y (deltaF) and
2266 		 * the set of affect vertices affected that reach x
2267 		 * (deltaB), using the graph generation number to
2268 		 * detect whether we have visited a given vertex
2269 		 * already. We re-order the graph so that each vertex
2270 		 * in deltaB appears before each vertex in deltaF.
2271 		 *
2272 		 * If x is a member of deltaF, then the new edge would
2273 		 * create a cycle. Otherwise, we may assume that
2274 		 * deltaF and deltaB are disjoint.
2275 		 */
2276 		g->g_gen++;
2277 		if (g->g_gen == 0) {
2278 			/*
2279 			 * Generation wrap.
2280 			 */
2281 			for (vi = 0; vi < g->g_size; vi++) {
2282 				g->g_vertices[vi]->v_gen = 0;
2283 			}
2284 			g->g_gen++;
2285 		}
2286 		nF = graph_delta_forward(g, x, y, &deltaF);
2287 		if (nF < 0) {
2288 #ifdef LOCKF_DEBUG
2289 			if (lockf_debug & 8) {
2290 				struct owner_vertex_list path;
2291 				printf("deadlock: ");
2292 				TAILQ_INIT(&path);
2293 				graph_reaches(y, x, &path);
2294 				graph_print_vertices(&path);
2295 			}
2296 #endif
2297 			return (EDEADLK);
2298 		}
2299 
2300 #ifdef LOCKF_DEBUG
2301 		if (lockf_debug & 8) {
2302 			printf("re-ordering graph vertices\n");
2303 			printf("deltaF = ");
2304 			graph_print_vertices(&deltaF);
2305 		}
2306 #endif
2307 
2308 		nB = graph_delta_backward(g, x, y, &deltaB);
2309 
2310 #ifdef LOCKF_DEBUG
2311 		if (lockf_debug & 8) {
2312 			printf("deltaB = ");
2313 			graph_print_vertices(&deltaB);
2314 		}
2315 #endif
2316 
2317 		/*
2318 		 * We first build a set of vertex indices (vertex
2319 		 * order values) that we may use, then we re-assign
2320 		 * orders first to those vertices in deltaB, then to
2321 		 * deltaF. Note that the contents of deltaF and deltaB
2322 		 * may be partially disordered - we perform an
2323 		 * insertion sort while building our index set.
2324 		 */
2325 		indices = g->g_indexbuf;
2326 		n = graph_add_indices(indices, 0, &deltaF);
2327 		graph_add_indices(indices, n, &deltaB);
2328 
2329 		/*
2330 		 * We must also be sure to maintain the relative
2331 		 * ordering of deltaF and deltaB when re-assigning
2332 		 * vertices. We do this by iteratively removing the
2333 		 * lowest ordered element from the set and assigning
2334 		 * it the next value from our new ordering.
2335 		 */
2336 		i = graph_assign_indices(g, indices, 0, &deltaB);
2337 		graph_assign_indices(g, indices, i, &deltaF);
2338 
2339 #ifdef LOCKF_DEBUG
2340 		if (lockf_debug & 8) {
2341 			struct owner_vertex_list set;
2342 			TAILQ_INIT(&set);
2343 			for (i = 0; i < nB + nF; i++)
2344 				TAILQ_INSERT_TAIL(&set,
2345 				    g->g_vertices[indices[i]], v_link);
2346 			printf("new ordering = ");
2347 			graph_print_vertices(&set);
2348 		}
2349 #endif
2350 	}
2351 
2352 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2353 
2354 #ifdef LOCKF_DEBUG
2355 	if (lockf_debug & 8) {
2356 		graph_check(g, TRUE);
2357 	}
2358 #endif
2359 
2360 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2361 
2362 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2363 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2364 	e->e_refs = 1;
2365 	e->e_from = x;
2366 	e->e_to = y;
2367 
2368 	return (0);
2369 }
2370 
2371 /*
2372  * Remove an edge x->y from the graph.
2373  */
2374 static void
2375 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2376     struct owner_vertex *y)
2377 {
2378 	struct owner_edge *e;
2379 
2380 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2381 
2382 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2383 		if (e->e_to == y)
2384 			break;
2385 	}
2386 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2387 
2388 	e->e_refs--;
2389 	if (e->e_refs == 0) {
2390 #ifdef LOCKF_DEBUG
2391 		if (lockf_debug & 8) {
2392 			printf("removing edge %d:", x->v_order);
2393 			lf_print_owner(x->v_owner);
2394 			printf(" -> %d:", y->v_order);
2395 			lf_print_owner(y->v_owner);
2396 			printf("\n");
2397 		}
2398 #endif
2399 		LIST_REMOVE(e, e_outlink);
2400 		LIST_REMOVE(e, e_inlink);
2401 		free(e, M_LOCKF);
2402 	}
2403 }
2404 
2405 /*
2406  * Allocate a vertex from the free list. Return ENOMEM if there are
2407  * none.
2408  */
2409 static struct owner_vertex *
2410 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2411 {
2412 	struct owner_vertex *v;
2413 
2414 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2415 
2416 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2417 	if (g->g_size == g->g_space) {
2418 		g->g_vertices = realloc(g->g_vertices,
2419 		    2 * g->g_space * sizeof(struct owner_vertex *),
2420 		    M_LOCKF, M_WAITOK);
2421 		free(g->g_indexbuf, M_LOCKF);
2422 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2423 		    M_LOCKF, M_WAITOK);
2424 		g->g_space = 2 * g->g_space;
2425 	}
2426 	v->v_order = g->g_size;
2427 	v->v_gen = g->g_gen;
2428 	g->g_vertices[g->g_size] = v;
2429 	g->g_size++;
2430 
2431 	LIST_INIT(&v->v_outedges);
2432 	LIST_INIT(&v->v_inedges);
2433 	v->v_owner = lo;
2434 
2435 	return (v);
2436 }
2437 
2438 static void
2439 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2440 {
2441 	struct owner_vertex *w;
2442 	int i;
2443 
2444 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2445 
2446 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2447 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2448 
2449 	/*
2450 	 * Remove from the graph's array and close up the gap,
2451 	 * renumbering the other vertices.
2452 	 */
2453 	for (i = v->v_order + 1; i < g->g_size; i++) {
2454 		w = g->g_vertices[i];
2455 		w->v_order--;
2456 		g->g_vertices[i - 1] = w;
2457 	}
2458 	g->g_size--;
2459 
2460 	free(v, M_LOCKF);
2461 }
2462 
2463 static struct owner_graph *
2464 graph_init(struct owner_graph *g)
2465 {
2466 
2467 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2468 	    M_LOCKF, M_WAITOK);
2469 	g->g_size = 0;
2470 	g->g_space = 10;
2471 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2472 	g->g_gen = 0;
2473 
2474 	return (g);
2475 }
2476 
2477 #ifdef LOCKF_DEBUG
2478 /*
2479  * Print description of a lock owner
2480  */
2481 static void
2482 lf_print_owner(struct lock_owner *lo)
2483 {
2484 
2485 	if (lo->lo_flags & F_REMOTE) {
2486 		printf("remote pid %d, system %d",
2487 		    lo->lo_pid, lo->lo_sysid);
2488 	} else if (lo->lo_flags & F_FLOCK) {
2489 		printf("file %p", lo->lo_id);
2490 	} else {
2491 		printf("local pid %d", lo->lo_pid);
2492 	}
2493 }
2494 
2495 /*
2496  * Print out a lock.
2497  */
2498 static void
2499 lf_print(char *tag, struct lockf_entry *lock)
2500 {
2501 
2502 	printf("%s: lock %p for ", tag, (void *)lock);
2503 	lf_print_owner(lock->lf_owner);
2504 	if (lock->lf_inode != (struct inode *)0)
2505 		printf(" in ino %ju on dev <%s>,",
2506 		    (uintmax_t)lock->lf_inode->i_number,
2507 		    devtoname(ITODEV(lock->lf_inode)));
2508 	printf(" %s, start %jd, end ",
2509 	    lock->lf_type == F_RDLCK ? "shared" :
2510 	    lock->lf_type == F_WRLCK ? "exclusive" :
2511 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2512 	    (intmax_t)lock->lf_start);
2513 	if (lock->lf_end == OFF_MAX)
2514 		printf("EOF");
2515 	else
2516 		printf("%jd", (intmax_t)lock->lf_end);
2517 	if (!LIST_EMPTY(&lock->lf_outedges))
2518 		printf(" block %p\n",
2519 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2520 	else
2521 		printf("\n");
2522 }
2523 
2524 static void
2525 lf_printlist(char *tag, struct lockf_entry *lock)
2526 {
2527 	struct lockf_entry *lf, *blk;
2528 	struct lockf_edge *e;
2529 
2530 	if (lock->lf_inode == (struct inode *)0)
2531 		return;
2532 
2533 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2534 	    tag, (uintmax_t)lock->lf_inode->i_number,
2535 	    devtoname(ITODEV(lock->lf_inode)));
2536 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2537 		printf("\tlock %p for ",(void *)lf);
2538 		lf_print_owner(lock->lf_owner);
2539 		printf(", %s, start %jd, end %jd",
2540 		    lf->lf_type == F_RDLCK ? "shared" :
2541 		    lf->lf_type == F_WRLCK ? "exclusive" :
2542 		    lf->lf_type == F_UNLCK ? "unlock" :
2543 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2544 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2545 			blk = e->le_to;
2546 			printf("\n\t\tlock request %p for ", (void *)blk);
2547 			lf_print_owner(blk->lf_owner);
2548 			printf(", %s, start %jd, end %jd",
2549 			    blk->lf_type == F_RDLCK ? "shared" :
2550 			    blk->lf_type == F_WRLCK ? "exclusive" :
2551 			    blk->lf_type == F_UNLCK ? "unlock" :
2552 			    "unknown", (intmax_t)blk->lf_start,
2553 			    (intmax_t)blk->lf_end);
2554 			if (!LIST_EMPTY(&blk->lf_inedges))
2555 				panic("lf_printlist: bad list");
2556 		}
2557 		printf("\n");
2558 	}
2559 }
2560 #endif /* LOCKF_DEBUG */
2561