xref: /freebsd/sys/kern/kern_lockf.c (revision 545ddfbe7d4fe8adfb862903b24eac1d5896c1ef)
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  *	The Regents of the University of California.  All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 4. Neither the name of the University nor the names of its contributors
43  *    may be used to endorse or promote products derived from this software
44  *    without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_debug_lockf.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82 
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85 
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88 
89 static int	lockf_debug = 0; /* control debug output */
90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91 #endif
92 
93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94 
95 struct owner_edge;
96 struct owner_vertex;
97 struct owner_vertex_list;
98 struct owner_graph;
99 
100 #define NOLOCKF (struct lockf_entry *)0
101 #define SELF	0x1
102 #define OTHERS	0x2
103 static void	 lf_init(void *);
104 static int	 lf_hash_owner(caddr_t, struct flock *, int);
105 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106     int);
107 static struct lockf_entry *
108 		 lf_alloc_lock(struct lock_owner *);
109 static int	 lf_free_lock(struct lockf_entry *);
110 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113 static void	 lf_free_edge(struct lockf_edge *);
114 static struct lockf_edge *
115 		 lf_alloc_edge(void);
116 static void	 lf_alloc_vertex(struct lockf_entry *);
117 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118 static void	 lf_remove_edge(struct lockf_edge *);
119 static void	 lf_remove_outgoing(struct lockf_entry *);
120 static void	 lf_remove_incoming(struct lockf_entry *);
121 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124     int);
125 static struct lockf_entry *
126 		 lf_getblock(struct lockf *, struct lockf_entry *);
127 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131     int all, struct lockf_entry_list *);
132 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133 	struct lockf_entry_list*);
134 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135 	struct lockf_entry_list*);
136 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137     struct vnode *, void **cookiep);
138 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139 static void	 lf_split(struct lockf *, struct lockf_entry *,
140     struct lockf_entry *, struct lockf_entry_list *);
141 #ifdef LOCKF_DEBUG
142 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143     struct owner_vertex_list *path);
144 static void	 graph_check(struct owner_graph *g, int checkorder);
145 static void	 graph_print_vertices(struct owner_vertex_list *set);
146 #endif
147 static int	 graph_delta_forward(struct owner_graph *g,
148     struct owner_vertex *x, struct owner_vertex *y,
149     struct owner_vertex_list *delta);
150 static int	 graph_delta_backward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int	 graph_add_indices(int *indices, int n,
154     struct owner_vertex_list *set);
155 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156     int nextunused, struct owner_vertex_list *set);
157 static int	 graph_add_edge(struct owner_graph *g,
158     struct owner_vertex *x, struct owner_vertex *y);
159 static void	 graph_remove_edge(struct owner_graph *g,
160     struct owner_vertex *x, struct owner_vertex *y);
161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162     struct lock_owner *lo);
163 static void	 graph_free_vertex(struct owner_graph *g,
164     struct owner_vertex *v);
165 static struct owner_graph * graph_init(struct owner_graph *g);
166 #ifdef LOCKF_DEBUG
167 static void	 lf_print(char *, struct lockf_entry *);
168 static void	 lf_printlist(char *, struct lockf_entry *);
169 static void	 lf_print_owner(struct lock_owner *);
170 #endif
171 
172 /*
173  * This structure is used to keep track of both local and remote lock
174  * owners. The lf_owner field of the struct lockf_entry points back at
175  * the lock owner structure. Each possible lock owner (local proc for
176  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177  * pair for remote locks) is represented by a unique instance of
178  * struct lock_owner.
179  *
180  * If a lock owner has a lock that blocks some other lock or a lock
181  * that is waiting for some other lock, it also has a vertex in the
182  * owner_graph below.
183  *
184  * Locks:
185  * (s)		locked by state->ls_lock
186  * (S)		locked by lf_lock_states_lock
187  * (l)		locked by lf_lock_owners_lock
188  * (g)		locked by lf_owner_graph_lock
189  * (c)		const until freeing
190  */
191 #define	LOCK_OWNER_HASH_SIZE	256
192 
193 struct lock_owner {
194 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195 	int	lo_refs;	    /* (l) Number of locks referring to this */
196 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199 	int	lo_sysid;	    /* (c) System Id of the lock owner */
200 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201 };
202 
203 LIST_HEAD(lock_owner_list, lock_owner);
204 
205 static struct sx		lf_lock_states_lock;
206 static struct lockf_list	lf_lock_states; /* (S) */
207 static struct sx		lf_lock_owners_lock;
208 static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209 
210 /*
211  * Structures for deadlock detection.
212  *
213  * We have two types of directed graph, the first is the set of locks,
214  * both active and pending on a vnode. Within this graph, active locks
215  * are terminal nodes in the graph (i.e. have no out-going
216  * edges). Pending locks have out-going edges to each blocking active
217  * lock that prevents the lock from being granted and also to each
218  * older pending lock that would block them if it was active. The
219  * graph for each vnode is naturally acyclic; new edges are only ever
220  * added to or from new nodes (either new pending locks which only add
221  * out-going edges or new active locks which only add in-coming edges)
222  * therefore they cannot create loops in the lock graph.
223  *
224  * The second graph is a global graph of lock owners. Each lock owner
225  * is a vertex in that graph and an edge is added to the graph
226  * whenever an edge is added to a vnode graph, with end points
227  * corresponding to owner of the new pending lock and the owner of the
228  * lock upon which it waits. In order to prevent deadlock, we only add
229  * an edge to this graph if the new edge would not create a cycle.
230  *
231  * The lock owner graph is topologically sorted, i.e. if a node has
232  * any outgoing edges, then it has an order strictly less than any
233  * node to which it has an outgoing edge. We preserve this ordering
234  * (and detect cycles) on edge insertion using Algorithm PK from the
235  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237  * No. 1.7)
238  */
239 struct owner_vertex;
240 
241 struct owner_edge {
242 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244 	int		e_refs;		  /* (g) number of times added */
245 	struct owner_vertex *e_from;	  /* (c) out-going from here */
246 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247 };
248 LIST_HEAD(owner_edge_list, owner_edge);
249 
250 struct owner_vertex {
251 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253 	int		v_order;	  /* (g) order of vertex in graph */
254 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257 };
258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
259 
260 struct owner_graph {
261 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262 	int		g_size;		  /* (g) number of vertices */
263 	int		g_space;	  /* (g) space allocated for vertices */
264 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266 };
267 
268 static struct sx		lf_owner_graph_lock;
269 static struct owner_graph	lf_owner_graph;
270 
271 /*
272  * Initialise various structures and locks.
273  */
274 static void
275 lf_init(void *dummy)
276 {
277 	int i;
278 
279 	sx_init(&lf_lock_states_lock, "lock states lock");
280 	LIST_INIT(&lf_lock_states);
281 
282 	sx_init(&lf_lock_owners_lock, "lock owners lock");
283 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284 		LIST_INIT(&lf_lock_owners[i]);
285 
286 	sx_init(&lf_owner_graph_lock, "owner graph lock");
287 	graph_init(&lf_owner_graph);
288 }
289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290 
291 /*
292  * Generate a hash value for a lock owner.
293  */
294 static int
295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296 {
297 	uint32_t h;
298 
299 	if (flags & F_REMOTE) {
300 		h = HASHSTEP(0, fl->l_pid);
301 		h = HASHSTEP(h, fl->l_sysid);
302 	} else if (flags & F_FLOCK) {
303 		h = ((uintptr_t) id) >> 7;
304 	} else {
305 		struct proc *p = (struct proc *) id;
306 		h = HASHSTEP(0, p->p_pid);
307 		h = HASHSTEP(h, 0);
308 	}
309 
310 	return (h % LOCK_OWNER_HASH_SIZE);
311 }
312 
313 /*
314  * Return true if a lock owner matches the details passed to
315  * lf_advlock.
316  */
317 static int
318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319     int flags)
320 {
321 	if (flags & F_REMOTE) {
322 		return lo->lo_pid == fl->l_pid
323 			&& lo->lo_sysid == fl->l_sysid;
324 	} else {
325 		return lo->lo_id == id;
326 	}
327 }
328 
329 static struct lockf_entry *
330 lf_alloc_lock(struct lock_owner *lo)
331 {
332 	struct lockf_entry *lf;
333 
334 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335 
336 #ifdef LOCKF_DEBUG
337 	if (lockf_debug & 4)
338 		printf("Allocated lock %p\n", lf);
339 #endif
340 	if (lo) {
341 		sx_xlock(&lf_lock_owners_lock);
342 		lo->lo_refs++;
343 		sx_xunlock(&lf_lock_owners_lock);
344 		lf->lf_owner = lo;
345 	}
346 
347 	return (lf);
348 }
349 
350 static int
351 lf_free_lock(struct lockf_entry *lock)
352 {
353 
354 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355 	if (--lock->lf_refs > 0)
356 		return (0);
357 	/*
358 	 * Adjust the lock_owner reference count and
359 	 * reclaim the entry if this is the last lock
360 	 * for that owner.
361 	 */
362 	struct lock_owner *lo = lock->lf_owner;
363 	if (lo) {
364 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
365 		    ("freeing lock with dependancies"));
366 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
367 		    ("freeing lock with dependants"));
368 		sx_xlock(&lf_lock_owners_lock);
369 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370 		lo->lo_refs--;
371 		if (lo->lo_refs == 0) {
372 #ifdef LOCKF_DEBUG
373 			if (lockf_debug & 1)
374 				printf("lf_free_lock: freeing lock owner %p\n",
375 				    lo);
376 #endif
377 			if (lo->lo_vertex) {
378 				sx_xlock(&lf_owner_graph_lock);
379 				graph_free_vertex(&lf_owner_graph,
380 				    lo->lo_vertex);
381 				sx_xunlock(&lf_owner_graph_lock);
382 			}
383 			LIST_REMOVE(lo, lo_link);
384 			free(lo, M_LOCKF);
385 #ifdef LOCKF_DEBUG
386 			if (lockf_debug & 4)
387 				printf("Freed lock owner %p\n", lo);
388 #endif
389 		}
390 		sx_unlock(&lf_lock_owners_lock);
391 	}
392 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393 		vrele(lock->lf_vnode);
394 		lock->lf_vnode = NULL;
395 	}
396 #ifdef LOCKF_DEBUG
397 	if (lockf_debug & 4)
398 		printf("Freed lock %p\n", lock);
399 #endif
400 	free(lock, M_LOCKF);
401 	return (1);
402 }
403 
404 /*
405  * Advisory record locking support
406  */
407 int
408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409     u_quad_t size)
410 {
411 	struct lockf *state, *freestate = NULL;
412 	struct flock *fl = ap->a_fl;
413 	struct lockf_entry *lock;
414 	struct vnode *vp = ap->a_vp;
415 	caddr_t id = ap->a_id;
416 	int flags = ap->a_flags;
417 	int hash;
418 	struct lock_owner *lo;
419 	off_t start, end, oadd;
420 	int error;
421 
422 	/*
423 	 * Handle the F_UNLKSYS case first - no need to mess about
424 	 * creating a lock owner for this one.
425 	 */
426 	if (ap->a_op == F_UNLCKSYS) {
427 		lf_clearremotesys(fl->l_sysid);
428 		return (0);
429 	}
430 
431 	/*
432 	 * Convert the flock structure into a start and end.
433 	 */
434 	switch (fl->l_whence) {
435 
436 	case SEEK_SET:
437 	case SEEK_CUR:
438 		/*
439 		 * Caller is responsible for adding any necessary offset
440 		 * when SEEK_CUR is used.
441 		 */
442 		start = fl->l_start;
443 		break;
444 
445 	case SEEK_END:
446 		if (size > OFF_MAX ||
447 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448 			return (EOVERFLOW);
449 		start = size + fl->l_start;
450 		break;
451 
452 	default:
453 		return (EINVAL);
454 	}
455 	if (start < 0)
456 		return (EINVAL);
457 	if (fl->l_len < 0) {
458 		if (start == 0)
459 			return (EINVAL);
460 		end = start - 1;
461 		start += fl->l_len;
462 		if (start < 0)
463 			return (EINVAL);
464 	} else if (fl->l_len == 0) {
465 		end = OFF_MAX;
466 	} else {
467 		oadd = fl->l_len - 1;
468 		if (oadd > OFF_MAX - start)
469 			return (EOVERFLOW);
470 		end = start + oadd;
471 	}
472 
473 retry_setlock:
474 
475 	/*
476 	 * Avoid the common case of unlocking when inode has no locks.
477 	 */
478 	VI_LOCK(vp);
479 	if ((*statep) == NULL) {
480 		if (ap->a_op != F_SETLK) {
481 			fl->l_type = F_UNLCK;
482 			VI_UNLOCK(vp);
483 			return (0);
484 		}
485 	}
486 	VI_UNLOCK(vp);
487 
488 	/*
489 	 * Map our arguments to an existing lock owner or create one
490 	 * if this is the first time we have seen this owner.
491 	 */
492 	hash = lf_hash_owner(id, fl, flags);
493 	sx_xlock(&lf_lock_owners_lock);
494 	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
495 		if (lf_owner_matches(lo, id, fl, flags))
496 			break;
497 	if (!lo) {
498 		/*
499 		 * We initialise the lock with a reference
500 		 * count which matches the new lockf_entry
501 		 * structure created below.
502 		 */
503 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
504 		    M_WAITOK|M_ZERO);
505 #ifdef LOCKF_DEBUG
506 		if (lockf_debug & 4)
507 			printf("Allocated lock owner %p\n", lo);
508 #endif
509 
510 		lo->lo_refs = 1;
511 		lo->lo_flags = flags;
512 		lo->lo_id = id;
513 		if (flags & F_REMOTE) {
514 			lo->lo_pid = fl->l_pid;
515 			lo->lo_sysid = fl->l_sysid;
516 		} else if (flags & F_FLOCK) {
517 			lo->lo_pid = -1;
518 			lo->lo_sysid = 0;
519 		} else {
520 			struct proc *p = (struct proc *) id;
521 			lo->lo_pid = p->p_pid;
522 			lo->lo_sysid = 0;
523 		}
524 		lo->lo_vertex = NULL;
525 
526 #ifdef LOCKF_DEBUG
527 		if (lockf_debug & 1) {
528 			printf("lf_advlockasync: new lock owner %p ", lo);
529 			lf_print_owner(lo);
530 			printf("\n");
531 		}
532 #endif
533 
534 		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
535 	} else {
536 		/*
537 		 * We have seen this lock owner before, increase its
538 		 * reference count to account for the new lockf_entry
539 		 * structure we create below.
540 		 */
541 		lo->lo_refs++;
542 	}
543 	sx_xunlock(&lf_lock_owners_lock);
544 
545 	/*
546 	 * Create the lockf structure. We initialise the lf_owner
547 	 * field here instead of in lf_alloc_lock() to avoid paying
548 	 * the lf_lock_owners_lock tax twice.
549 	 */
550 	lock = lf_alloc_lock(NULL);
551 	lock->lf_refs = 1;
552 	lock->lf_start = start;
553 	lock->lf_end = end;
554 	lock->lf_owner = lo;
555 	lock->lf_vnode = vp;
556 	if (flags & F_REMOTE) {
557 		/*
558 		 * For remote locks, the caller may release its ref to
559 		 * the vnode at any time - we have to ref it here to
560 		 * prevent it from being recycled unexpectedly.
561 		 */
562 		vref(vp);
563 	}
564 
565 	/*
566 	 * XXX The problem is that VTOI is ufs specific, so it will
567 	 * break LOCKF_DEBUG for all other FS's other than UFS because
568 	 * it casts the vnode->data ptr to struct inode *.
569 	 */
570 /*	lock->lf_inode = VTOI(ap->a_vp); */
571 	lock->lf_inode = (struct inode *)0;
572 	lock->lf_type = fl->l_type;
573 	LIST_INIT(&lock->lf_outedges);
574 	LIST_INIT(&lock->lf_inedges);
575 	lock->lf_async_task = ap->a_task;
576 	lock->lf_flags = ap->a_flags;
577 
578 	/*
579 	 * Do the requested operation. First find our state structure
580 	 * and create a new one if necessary - the caller's *statep
581 	 * variable and the state's ls_threads count is protected by
582 	 * the vnode interlock.
583 	 */
584 	VI_LOCK(vp);
585 	if (vp->v_iflag & VI_DOOMED) {
586 		VI_UNLOCK(vp);
587 		lf_free_lock(lock);
588 		return (ENOENT);
589 	}
590 
591 	/*
592 	 * Allocate a state structure if necessary.
593 	 */
594 	state = *statep;
595 	if (state == NULL) {
596 		struct lockf *ls;
597 
598 		VI_UNLOCK(vp);
599 
600 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
601 		sx_init(&ls->ls_lock, "ls_lock");
602 		LIST_INIT(&ls->ls_active);
603 		LIST_INIT(&ls->ls_pending);
604 		ls->ls_threads = 1;
605 
606 		sx_xlock(&lf_lock_states_lock);
607 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
608 		sx_xunlock(&lf_lock_states_lock);
609 
610 		/*
611 		 * Cope if we lost a race with some other thread while
612 		 * trying to allocate memory.
613 		 */
614 		VI_LOCK(vp);
615 		if (vp->v_iflag & VI_DOOMED) {
616 			VI_UNLOCK(vp);
617 			sx_xlock(&lf_lock_states_lock);
618 			LIST_REMOVE(ls, ls_link);
619 			sx_xunlock(&lf_lock_states_lock);
620 			sx_destroy(&ls->ls_lock);
621 			free(ls, M_LOCKF);
622 			lf_free_lock(lock);
623 			return (ENOENT);
624 		}
625 		if ((*statep) == NULL) {
626 			state = *statep = ls;
627 			VI_UNLOCK(vp);
628 		} else {
629 			state = *statep;
630 			state->ls_threads++;
631 			VI_UNLOCK(vp);
632 
633 			sx_xlock(&lf_lock_states_lock);
634 			LIST_REMOVE(ls, ls_link);
635 			sx_xunlock(&lf_lock_states_lock);
636 			sx_destroy(&ls->ls_lock);
637 			free(ls, M_LOCKF);
638 		}
639 	} else {
640 		state->ls_threads++;
641 		VI_UNLOCK(vp);
642 	}
643 
644 	sx_xlock(&state->ls_lock);
645 	/*
646 	 * Recheck the doomed vnode after state->ls_lock is
647 	 * locked. lf_purgelocks() requires that no new threads add
648 	 * pending locks when vnode is marked by VI_DOOMED flag.
649 	 */
650 	VI_LOCK(vp);
651 	if (vp->v_iflag & VI_DOOMED) {
652 		state->ls_threads--;
653 		wakeup(state);
654 		VI_UNLOCK(vp);
655 		sx_xunlock(&state->ls_lock);
656 		lf_free_lock(lock);
657 		return (ENOENT);
658 	}
659 	VI_UNLOCK(vp);
660 
661 	switch (ap->a_op) {
662 	case F_SETLK:
663 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
664 		break;
665 
666 	case F_UNLCK:
667 		error = lf_clearlock(state, lock);
668 		lf_free_lock(lock);
669 		break;
670 
671 	case F_GETLK:
672 		error = lf_getlock(state, lock, fl);
673 		lf_free_lock(lock);
674 		break;
675 
676 	case F_CANCEL:
677 		if (ap->a_cookiep)
678 			error = lf_cancel(state, lock, *ap->a_cookiep);
679 		else
680 			error = EINVAL;
681 		lf_free_lock(lock);
682 		break;
683 
684 	default:
685 		lf_free_lock(lock);
686 		error = EINVAL;
687 		break;
688 	}
689 
690 #ifdef INVARIANTS
691 	/*
692 	 * Check for some can't happen stuff. In this case, the active
693 	 * lock list becoming disordered or containing mutually
694 	 * blocking locks. We also check the pending list for locks
695 	 * which should be active (i.e. have no out-going edges).
696 	 */
697 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
698 		struct lockf_entry *lf;
699 		if (LIST_NEXT(lock, lf_link))
700 			KASSERT((lock->lf_start
701 				<= LIST_NEXT(lock, lf_link)->lf_start),
702 			    ("locks disordered"));
703 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
704 			if (lock == lf)
705 				break;
706 			KASSERT(!lf_blocks(lock, lf),
707 			    ("two conflicting active locks"));
708 			if (lock->lf_owner == lf->lf_owner)
709 				KASSERT(!lf_overlaps(lock, lf),
710 				    ("two overlapping locks from same owner"));
711 		}
712 	}
713 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
714 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
715 		    ("pending lock which should be active"));
716 	}
717 #endif
718 	sx_xunlock(&state->ls_lock);
719 
720 	/*
721 	 * If we have removed the last active lock on the vnode and
722 	 * this is the last thread that was in-progress, we can free
723 	 * the state structure. We update the caller's pointer inside
724 	 * the vnode interlock but call free outside.
725 	 *
726 	 * XXX alternatively, keep the state structure around until
727 	 * the filesystem recycles - requires a callback from the
728 	 * filesystem.
729 	 */
730 	VI_LOCK(vp);
731 
732 	state->ls_threads--;
733 	wakeup(state);
734 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
735 		KASSERT(LIST_EMPTY(&state->ls_pending),
736 		    ("freeing state with pending locks"));
737 		freestate = state;
738 		*statep = NULL;
739 	}
740 
741 	VI_UNLOCK(vp);
742 
743 	if (freestate != NULL) {
744 		sx_xlock(&lf_lock_states_lock);
745 		LIST_REMOVE(freestate, ls_link);
746 		sx_xunlock(&lf_lock_states_lock);
747 		sx_destroy(&freestate->ls_lock);
748 		free(freestate, M_LOCKF);
749 		freestate = NULL;
750 	}
751 
752 	if (error == EDOOFUS) {
753 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
754 		goto retry_setlock;
755 	}
756 	return (error);
757 }
758 
759 int
760 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
761 {
762 	struct vop_advlockasync_args a;
763 
764 	a.a_vp = ap->a_vp;
765 	a.a_id = ap->a_id;
766 	a.a_op = ap->a_op;
767 	a.a_fl = ap->a_fl;
768 	a.a_flags = ap->a_flags;
769 	a.a_task = NULL;
770 	a.a_cookiep = NULL;
771 
772 	return (lf_advlockasync(&a, statep, size));
773 }
774 
775 void
776 lf_purgelocks(struct vnode *vp, struct lockf **statep)
777 {
778 	struct lockf *state;
779 	struct lockf_entry *lock, *nlock;
780 
781 	/*
782 	 * For this to work correctly, the caller must ensure that no
783 	 * other threads enter the locking system for this vnode,
784 	 * e.g. by checking VI_DOOMED. We wake up any threads that are
785 	 * sleeping waiting for locks on this vnode and then free all
786 	 * the remaining locks.
787 	 */
788 	VI_LOCK(vp);
789 	KASSERT(vp->v_iflag & VI_DOOMED,
790 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
791 	state = *statep;
792 	if (state) {
793 		*statep = NULL;
794 		state->ls_threads++;
795 		VI_UNLOCK(vp);
796 
797 		sx_xlock(&state->ls_lock);
798 		sx_xlock(&lf_owner_graph_lock);
799 		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
800 			LIST_REMOVE(lock, lf_link);
801 			lf_remove_outgoing(lock);
802 			lf_remove_incoming(lock);
803 
804 			/*
805 			 * If its an async lock, we can just free it
806 			 * here, otherwise we let the sleeping thread
807 			 * free it.
808 			 */
809 			if (lock->lf_async_task) {
810 				lf_free_lock(lock);
811 			} else {
812 				lock->lf_flags |= F_INTR;
813 				wakeup(lock);
814 			}
815 		}
816 		sx_xunlock(&lf_owner_graph_lock);
817 		sx_xunlock(&state->ls_lock);
818 
819 		/*
820 		 * Wait for all other threads, sleeping and otherwise
821 		 * to leave.
822 		 */
823 		VI_LOCK(vp);
824 		while (state->ls_threads > 1)
825 			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
826 		VI_UNLOCK(vp);
827 
828 		/*
829 		 * We can just free all the active locks since they
830 		 * will have no dependancies (we removed them all
831 		 * above). We don't need to bother locking since we
832 		 * are the last thread using this state structure.
833 		 */
834 		KASSERT(LIST_EMPTY(&state->ls_pending),
835 		    ("lock pending for %p", state));
836 		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
837 			LIST_REMOVE(lock, lf_link);
838 			lf_free_lock(lock);
839 		}
840 		sx_xlock(&lf_lock_states_lock);
841 		LIST_REMOVE(state, ls_link);
842 		sx_xunlock(&lf_lock_states_lock);
843 		sx_destroy(&state->ls_lock);
844 		free(state, M_LOCKF);
845 	} else {
846 		VI_UNLOCK(vp);
847 	}
848 }
849 
850 /*
851  * Return non-zero if locks 'x' and 'y' overlap.
852  */
853 static int
854 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
855 {
856 
857 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
858 }
859 
860 /*
861  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
862  */
863 static int
864 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
865 {
866 
867 	return x->lf_owner != y->lf_owner
868 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
869 		&& lf_overlaps(x, y);
870 }
871 
872 /*
873  * Allocate a lock edge from the free list
874  */
875 static struct lockf_edge *
876 lf_alloc_edge(void)
877 {
878 
879 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
880 }
881 
882 /*
883  * Free a lock edge.
884  */
885 static void
886 lf_free_edge(struct lockf_edge *e)
887 {
888 
889 	free(e, M_LOCKF);
890 }
891 
892 
893 /*
894  * Ensure that the lock's owner has a corresponding vertex in the
895  * owner graph.
896  */
897 static void
898 lf_alloc_vertex(struct lockf_entry *lock)
899 {
900 	struct owner_graph *g = &lf_owner_graph;
901 
902 	if (!lock->lf_owner->lo_vertex)
903 		lock->lf_owner->lo_vertex =
904 			graph_alloc_vertex(g, lock->lf_owner);
905 }
906 
907 /*
908  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
909  * the new edge would cause a cycle in the owner graph.
910  */
911 static int
912 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
913 {
914 	struct owner_graph *g = &lf_owner_graph;
915 	struct lockf_edge *e;
916 	int error;
917 
918 #ifdef INVARIANTS
919 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
920 		KASSERT(e->le_to != y, ("adding lock edge twice"));
921 #endif
922 
923 	/*
924 	 * Make sure the two owners have entries in the owner graph.
925 	 */
926 	lf_alloc_vertex(x);
927 	lf_alloc_vertex(y);
928 
929 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
930 	    y->lf_owner->lo_vertex);
931 	if (error)
932 		return (error);
933 
934 	e = lf_alloc_edge();
935 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
936 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
937 	e->le_from = x;
938 	e->le_to = y;
939 
940 	return (0);
941 }
942 
943 /*
944  * Remove an edge from the lock graph.
945  */
946 static void
947 lf_remove_edge(struct lockf_edge *e)
948 {
949 	struct owner_graph *g = &lf_owner_graph;
950 	struct lockf_entry *x = e->le_from;
951 	struct lockf_entry *y = e->le_to;
952 
953 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
954 	LIST_REMOVE(e, le_outlink);
955 	LIST_REMOVE(e, le_inlink);
956 	e->le_from = NULL;
957 	e->le_to = NULL;
958 	lf_free_edge(e);
959 }
960 
961 /*
962  * Remove all out-going edges from lock x.
963  */
964 static void
965 lf_remove_outgoing(struct lockf_entry *x)
966 {
967 	struct lockf_edge *e;
968 
969 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
970 		lf_remove_edge(e);
971 	}
972 }
973 
974 /*
975  * Remove all in-coming edges from lock x.
976  */
977 static void
978 lf_remove_incoming(struct lockf_entry *x)
979 {
980 	struct lockf_edge *e;
981 
982 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
983 		lf_remove_edge(e);
984 	}
985 }
986 
987 /*
988  * Walk the list of locks for the file and create an out-going edge
989  * from lock to each blocking lock.
990  */
991 static int
992 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
993 {
994 	struct lockf_entry *overlap;
995 	int error;
996 
997 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
998 		/*
999 		 * We may assume that the active list is sorted by
1000 		 * lf_start.
1001 		 */
1002 		if (overlap->lf_start > lock->lf_end)
1003 			break;
1004 		if (!lf_blocks(lock, overlap))
1005 			continue;
1006 
1007 		/*
1008 		 * We've found a blocking lock. Add the corresponding
1009 		 * edge to the graphs and see if it would cause a
1010 		 * deadlock.
1011 		 */
1012 		error = lf_add_edge(lock, overlap);
1013 
1014 		/*
1015 		 * The only error that lf_add_edge returns is EDEADLK.
1016 		 * Remove any edges we added and return the error.
1017 		 */
1018 		if (error) {
1019 			lf_remove_outgoing(lock);
1020 			return (error);
1021 		}
1022 	}
1023 
1024 	/*
1025 	 * We also need to add edges to sleeping locks that block
1026 	 * us. This ensures that lf_wakeup_lock cannot grant two
1027 	 * mutually blocking locks simultaneously and also enforces a
1028 	 * 'first come, first served' fairness model. Note that this
1029 	 * only happens if we are blocked by at least one active lock
1030 	 * due to the call to lf_getblock in lf_setlock below.
1031 	 */
1032 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1033 		if (!lf_blocks(lock, overlap))
1034 			continue;
1035 		/*
1036 		 * We've found a blocking lock. Add the corresponding
1037 		 * edge to the graphs and see if it would cause a
1038 		 * deadlock.
1039 		 */
1040 		error = lf_add_edge(lock, overlap);
1041 
1042 		/*
1043 		 * The only error that lf_add_edge returns is EDEADLK.
1044 		 * Remove any edges we added and return the error.
1045 		 */
1046 		if (error) {
1047 			lf_remove_outgoing(lock);
1048 			return (error);
1049 		}
1050 	}
1051 
1052 	return (0);
1053 }
1054 
1055 /*
1056  * Walk the list of pending locks for the file and create an in-coming
1057  * edge from lock to each blocking lock.
1058  */
1059 static int
1060 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1061 {
1062 	struct lockf_entry *overlap;
1063 	int error;
1064 
1065 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1066 		if (!lf_blocks(lock, overlap))
1067 			continue;
1068 
1069 		/*
1070 		 * We've found a blocking lock. Add the corresponding
1071 		 * edge to the graphs and see if it would cause a
1072 		 * deadlock.
1073 		 */
1074 		error = lf_add_edge(overlap, lock);
1075 
1076 		/*
1077 		 * The only error that lf_add_edge returns is EDEADLK.
1078 		 * Remove any edges we added and return the error.
1079 		 */
1080 		if (error) {
1081 			lf_remove_incoming(lock);
1082 			return (error);
1083 		}
1084 	}
1085 	return (0);
1086 }
1087 
1088 /*
1089  * Insert lock into the active list, keeping list entries ordered by
1090  * increasing values of lf_start.
1091  */
1092 static void
1093 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1094 {
1095 	struct lockf_entry *lf, *lfprev;
1096 
1097 	if (LIST_EMPTY(&state->ls_active)) {
1098 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1099 		return;
1100 	}
1101 
1102 	lfprev = NULL;
1103 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1104 		if (lf->lf_start > lock->lf_start) {
1105 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1106 			return;
1107 		}
1108 		lfprev = lf;
1109 	}
1110 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1111 }
1112 
1113 /*
1114  * Wake up a sleeping lock and remove it from the pending list now
1115  * that all its dependancies have been resolved. The caller should
1116  * arrange for the lock to be added to the active list, adjusting any
1117  * existing locks for the same owner as needed.
1118  */
1119 static void
1120 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1121 {
1122 
1123 	/*
1124 	 * Remove from ls_pending list and wake up the caller
1125 	 * or start the async notification, as appropriate.
1126 	 */
1127 	LIST_REMOVE(wakelock, lf_link);
1128 #ifdef LOCKF_DEBUG
1129 	if (lockf_debug & 1)
1130 		lf_print("lf_wakeup_lock: awakening", wakelock);
1131 #endif /* LOCKF_DEBUG */
1132 	if (wakelock->lf_async_task) {
1133 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1134 	} else {
1135 		wakeup(wakelock);
1136 	}
1137 }
1138 
1139 /*
1140  * Re-check all dependant locks and remove edges to locks that we no
1141  * longer block. If 'all' is non-zero, the lock has been removed and
1142  * we must remove all the dependancies, otherwise it has simply been
1143  * reduced but remains active. Any pending locks which have been been
1144  * unblocked are added to 'granted'
1145  */
1146 static void
1147 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1148 	struct lockf_entry_list *granted)
1149 {
1150 	struct lockf_edge *e, *ne;
1151 	struct lockf_entry *deplock;
1152 
1153 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1154 		deplock = e->le_from;
1155 		if (all || !lf_blocks(lock, deplock)) {
1156 			sx_xlock(&lf_owner_graph_lock);
1157 			lf_remove_edge(e);
1158 			sx_xunlock(&lf_owner_graph_lock);
1159 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1160 				lf_wakeup_lock(state, deplock);
1161 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1162 			}
1163 		}
1164 	}
1165 }
1166 
1167 /*
1168  * Set the start of an existing active lock, updating dependancies and
1169  * adding any newly woken locks to 'granted'.
1170  */
1171 static void
1172 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1173 	struct lockf_entry_list *granted)
1174 {
1175 
1176 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1177 	lock->lf_start = new_start;
1178 	LIST_REMOVE(lock, lf_link);
1179 	lf_insert_lock(state, lock);
1180 	lf_update_dependancies(state, lock, FALSE, granted);
1181 }
1182 
1183 /*
1184  * Set the end of an existing active lock, updating dependancies and
1185  * adding any newly woken locks to 'granted'.
1186  */
1187 static void
1188 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1189 	struct lockf_entry_list *granted)
1190 {
1191 
1192 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1193 	lock->lf_end = new_end;
1194 	lf_update_dependancies(state, lock, FALSE, granted);
1195 }
1196 
1197 /*
1198  * Add a lock to the active list, updating or removing any current
1199  * locks owned by the same owner and processing any pending locks that
1200  * become unblocked as a result. This code is also used for unlock
1201  * since the logic for updating existing locks is identical.
1202  *
1203  * As a result of processing the new lock, we may unblock existing
1204  * pending locks as a result of downgrading/unlocking. We simply
1205  * activate the newly granted locks by looping.
1206  *
1207  * Since the new lock already has its dependancies set up, we always
1208  * add it to the list (unless its an unlock request). This may
1209  * fragment the lock list in some pathological cases but its probably
1210  * not a real problem.
1211  */
1212 static void
1213 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1214 {
1215 	struct lockf_entry *overlap, *lf;
1216 	struct lockf_entry_list granted;
1217 	int ovcase;
1218 
1219 	LIST_INIT(&granted);
1220 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1221 
1222 	while (!LIST_EMPTY(&granted)) {
1223 		lock = LIST_FIRST(&granted);
1224 		LIST_REMOVE(lock, lf_link);
1225 
1226 		/*
1227 		 * Skip over locks owned by other processes.  Handle
1228 		 * any locks that overlap and are owned by ourselves.
1229 		 */
1230 		overlap = LIST_FIRST(&state->ls_active);
1231 		for (;;) {
1232 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1233 
1234 #ifdef LOCKF_DEBUG
1235 			if (ovcase && (lockf_debug & 2)) {
1236 				printf("lf_setlock: overlap %d", ovcase);
1237 				lf_print("", overlap);
1238 			}
1239 #endif
1240 			/*
1241 			 * Six cases:
1242 			 *	0) no overlap
1243 			 *	1) overlap == lock
1244 			 *	2) overlap contains lock
1245 			 *	3) lock contains overlap
1246 			 *	4) overlap starts before lock
1247 			 *	5) overlap ends after lock
1248 			 */
1249 			switch (ovcase) {
1250 			case 0: /* no overlap */
1251 				break;
1252 
1253 			case 1: /* overlap == lock */
1254 				/*
1255 				 * We have already setup the
1256 				 * dependants for the new lock, taking
1257 				 * into account a possible downgrade
1258 				 * or unlock. Remove the old lock.
1259 				 */
1260 				LIST_REMOVE(overlap, lf_link);
1261 				lf_update_dependancies(state, overlap, TRUE,
1262 					&granted);
1263 				lf_free_lock(overlap);
1264 				break;
1265 
1266 			case 2: /* overlap contains lock */
1267 				/*
1268 				 * Just split the existing lock.
1269 				 */
1270 				lf_split(state, overlap, lock, &granted);
1271 				break;
1272 
1273 			case 3: /* lock contains overlap */
1274 				/*
1275 				 * Delete the overlap and advance to
1276 				 * the next entry in the list.
1277 				 */
1278 				lf = LIST_NEXT(overlap, lf_link);
1279 				LIST_REMOVE(overlap, lf_link);
1280 				lf_update_dependancies(state, overlap, TRUE,
1281 					&granted);
1282 				lf_free_lock(overlap);
1283 				overlap = lf;
1284 				continue;
1285 
1286 			case 4: /* overlap starts before lock */
1287 				/*
1288 				 * Just update the overlap end and
1289 				 * move on.
1290 				 */
1291 				lf_set_end(state, overlap, lock->lf_start - 1,
1292 				    &granted);
1293 				overlap = LIST_NEXT(overlap, lf_link);
1294 				continue;
1295 
1296 			case 5: /* overlap ends after lock */
1297 				/*
1298 				 * Change the start of overlap and
1299 				 * re-insert.
1300 				 */
1301 				lf_set_start(state, overlap, lock->lf_end + 1,
1302 				    &granted);
1303 				break;
1304 			}
1305 			break;
1306 		}
1307 #ifdef LOCKF_DEBUG
1308 		if (lockf_debug & 1) {
1309 			if (lock->lf_type != F_UNLCK)
1310 				lf_print("lf_activate_lock: activated", lock);
1311 			else
1312 				lf_print("lf_activate_lock: unlocked", lock);
1313 			lf_printlist("lf_activate_lock", lock);
1314 		}
1315 #endif /* LOCKF_DEBUG */
1316 		if (lock->lf_type != F_UNLCK)
1317 			lf_insert_lock(state, lock);
1318 	}
1319 }
1320 
1321 /*
1322  * Cancel a pending lock request, either as a result of a signal or a
1323  * cancel request for an async lock.
1324  */
1325 static void
1326 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1327 {
1328 	struct lockf_entry_list granted;
1329 
1330 	/*
1331 	 * Note it is theoretically possible that cancelling this lock
1332 	 * may allow some other pending lock to become
1333 	 * active. Consider this case:
1334 	 *
1335 	 * Owner	Action		Result		Dependancies
1336 	 *
1337 	 * A:		lock [0..0]	succeeds
1338 	 * B:		lock [2..2]	succeeds
1339 	 * C:		lock [1..2]	blocked		C->B
1340 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1341 	 * A:		unlock [0..0]			C->B,D->C
1342 	 * C:		cancel [1..2]
1343 	 */
1344 
1345 	LIST_REMOVE(lock, lf_link);
1346 
1347 	/*
1348 	 * Removing out-going edges is simple.
1349 	 */
1350 	sx_xlock(&lf_owner_graph_lock);
1351 	lf_remove_outgoing(lock);
1352 	sx_xunlock(&lf_owner_graph_lock);
1353 
1354 	/*
1355 	 * Removing in-coming edges may allow some other lock to
1356 	 * become active - we use lf_update_dependancies to figure
1357 	 * this out.
1358 	 */
1359 	LIST_INIT(&granted);
1360 	lf_update_dependancies(state, lock, TRUE, &granted);
1361 	lf_free_lock(lock);
1362 
1363 	/*
1364 	 * Feed any newly active locks to lf_activate_lock.
1365 	 */
1366 	while (!LIST_EMPTY(&granted)) {
1367 		lock = LIST_FIRST(&granted);
1368 		LIST_REMOVE(lock, lf_link);
1369 		lf_activate_lock(state, lock);
1370 	}
1371 }
1372 
1373 /*
1374  * Set a byte-range lock.
1375  */
1376 static int
1377 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1378     void **cookiep)
1379 {
1380 	static char lockstr[] = "lockf";
1381 	int priority, error;
1382 
1383 #ifdef LOCKF_DEBUG
1384 	if (lockf_debug & 1)
1385 		lf_print("lf_setlock", lock);
1386 #endif /* LOCKF_DEBUG */
1387 
1388 	/*
1389 	 * Set the priority
1390 	 */
1391 	priority = PLOCK;
1392 	if (lock->lf_type == F_WRLCK)
1393 		priority += 4;
1394 	if (!(lock->lf_flags & F_NOINTR))
1395 		priority |= PCATCH;
1396 	/*
1397 	 * Scan lock list for this file looking for locks that would block us.
1398 	 */
1399 	if (lf_getblock(state, lock)) {
1400 		/*
1401 		 * Free the structure and return if nonblocking.
1402 		 */
1403 		if ((lock->lf_flags & F_WAIT) == 0
1404 		    && lock->lf_async_task == NULL) {
1405 			lf_free_lock(lock);
1406 			error = EAGAIN;
1407 			goto out;
1408 		}
1409 
1410 		/*
1411 		 * For flock type locks, we must first remove
1412 		 * any shared locks that we hold before we sleep
1413 		 * waiting for an exclusive lock.
1414 		 */
1415 		if ((lock->lf_flags & F_FLOCK) &&
1416 		    lock->lf_type == F_WRLCK) {
1417 			lock->lf_type = F_UNLCK;
1418 			lf_activate_lock(state, lock);
1419 			lock->lf_type = F_WRLCK;
1420 		}
1421 
1422 		/*
1423 		 * We are blocked. Create edges to each blocking lock,
1424 		 * checking for deadlock using the owner graph. For
1425 		 * simplicity, we run deadlock detection for all
1426 		 * locks, posix and otherwise.
1427 		 */
1428 		sx_xlock(&lf_owner_graph_lock);
1429 		error = lf_add_outgoing(state, lock);
1430 		sx_xunlock(&lf_owner_graph_lock);
1431 
1432 		if (error) {
1433 #ifdef LOCKF_DEBUG
1434 			if (lockf_debug & 1)
1435 				lf_print("lf_setlock: deadlock", lock);
1436 #endif
1437 			lf_free_lock(lock);
1438 			goto out;
1439 		}
1440 
1441 		/*
1442 		 * We have added edges to everything that blocks
1443 		 * us. Sleep until they all go away.
1444 		 */
1445 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1446 #ifdef LOCKF_DEBUG
1447 		if (lockf_debug & 1) {
1448 			struct lockf_edge *e;
1449 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1450 				lf_print("lf_setlock: blocking on", e->le_to);
1451 				lf_printlist("lf_setlock", e->le_to);
1452 			}
1453 		}
1454 #endif /* LOCKF_DEBUG */
1455 
1456 		if ((lock->lf_flags & F_WAIT) == 0) {
1457 			/*
1458 			 * The caller requested async notification -
1459 			 * this callback happens when the blocking
1460 			 * lock is released, allowing the caller to
1461 			 * make another attempt to take the lock.
1462 			 */
1463 			*cookiep = (void *) lock;
1464 			error = EINPROGRESS;
1465 			goto out;
1466 		}
1467 
1468 		lock->lf_refs++;
1469 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1470 		if (lf_free_lock(lock)) {
1471 			error = EDOOFUS;
1472 			goto out;
1473 		}
1474 
1475 		/*
1476 		 * We may have been awakened by a signal and/or by a
1477 		 * debugger continuing us (in which cases we must
1478 		 * remove our lock graph edges) and/or by another
1479 		 * process releasing a lock (in which case our edges
1480 		 * have already been removed and we have been moved to
1481 		 * the active list). We may also have been woken by
1482 		 * lf_purgelocks which we report to the caller as
1483 		 * EINTR. In that case, lf_purgelocks will have
1484 		 * removed our lock graph edges.
1485 		 *
1486 		 * Note that it is possible to receive a signal after
1487 		 * we were successfully woken (and moved to the active
1488 		 * list) but before we resumed execution. In this
1489 		 * case, our lf_outedges list will be clear. We
1490 		 * pretend there was no error.
1491 		 *
1492 		 * Note also, if we have been sleeping long enough, we
1493 		 * may now have incoming edges from some newer lock
1494 		 * which is waiting behind us in the queue.
1495 		 */
1496 		if (lock->lf_flags & F_INTR) {
1497 			error = EINTR;
1498 			lf_free_lock(lock);
1499 			goto out;
1500 		}
1501 		if (LIST_EMPTY(&lock->lf_outedges)) {
1502 			error = 0;
1503 		} else {
1504 			lf_cancel_lock(state, lock);
1505 			goto out;
1506 		}
1507 #ifdef LOCKF_DEBUG
1508 		if (lockf_debug & 1) {
1509 			lf_print("lf_setlock: granted", lock);
1510 		}
1511 #endif
1512 		goto out;
1513 	}
1514 	/*
1515 	 * It looks like we are going to grant the lock. First add
1516 	 * edges from any currently pending lock that the new lock
1517 	 * would block.
1518 	 */
1519 	sx_xlock(&lf_owner_graph_lock);
1520 	error = lf_add_incoming(state, lock);
1521 	sx_xunlock(&lf_owner_graph_lock);
1522 	if (error) {
1523 #ifdef LOCKF_DEBUG
1524 		if (lockf_debug & 1)
1525 			lf_print("lf_setlock: deadlock", lock);
1526 #endif
1527 		lf_free_lock(lock);
1528 		goto out;
1529 	}
1530 
1531 	/*
1532 	 * No blocks!!  Add the lock.  Note that we will
1533 	 * downgrade or upgrade any overlapping locks this
1534 	 * process already owns.
1535 	 */
1536 	lf_activate_lock(state, lock);
1537 	error = 0;
1538 out:
1539 	return (error);
1540 }
1541 
1542 /*
1543  * Remove a byte-range lock on an inode.
1544  *
1545  * Generally, find the lock (or an overlap to that lock)
1546  * and remove it (or shrink it), then wakeup anyone we can.
1547  */
1548 static int
1549 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1550 {
1551 	struct lockf_entry *overlap;
1552 
1553 	overlap = LIST_FIRST(&state->ls_active);
1554 
1555 	if (overlap == NOLOCKF)
1556 		return (0);
1557 #ifdef LOCKF_DEBUG
1558 	if (unlock->lf_type != F_UNLCK)
1559 		panic("lf_clearlock: bad type");
1560 	if (lockf_debug & 1)
1561 		lf_print("lf_clearlock", unlock);
1562 #endif /* LOCKF_DEBUG */
1563 
1564 	lf_activate_lock(state, unlock);
1565 
1566 	return (0);
1567 }
1568 
1569 /*
1570  * Check whether there is a blocking lock, and if so return its
1571  * details in '*fl'.
1572  */
1573 static int
1574 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1575 {
1576 	struct lockf_entry *block;
1577 
1578 #ifdef LOCKF_DEBUG
1579 	if (lockf_debug & 1)
1580 		lf_print("lf_getlock", lock);
1581 #endif /* LOCKF_DEBUG */
1582 
1583 	if ((block = lf_getblock(state, lock))) {
1584 		fl->l_type = block->lf_type;
1585 		fl->l_whence = SEEK_SET;
1586 		fl->l_start = block->lf_start;
1587 		if (block->lf_end == OFF_MAX)
1588 			fl->l_len = 0;
1589 		else
1590 			fl->l_len = block->lf_end - block->lf_start + 1;
1591 		fl->l_pid = block->lf_owner->lo_pid;
1592 		fl->l_sysid = block->lf_owner->lo_sysid;
1593 	} else {
1594 		fl->l_type = F_UNLCK;
1595 	}
1596 	return (0);
1597 }
1598 
1599 /*
1600  * Cancel an async lock request.
1601  */
1602 static int
1603 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1604 {
1605 	struct lockf_entry *reallock;
1606 
1607 	/*
1608 	 * We need to match this request with an existing lock
1609 	 * request.
1610 	 */
1611 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1612 		if ((void *) reallock == cookie) {
1613 			/*
1614 			 * Double-check that this lock looks right
1615 			 * (maybe use a rolling ID for the cancel
1616 			 * cookie instead?)
1617 			 */
1618 			if (!(reallock->lf_vnode == lock->lf_vnode
1619 				&& reallock->lf_start == lock->lf_start
1620 				&& reallock->lf_end == lock->lf_end)) {
1621 				return (ENOENT);
1622 			}
1623 
1624 			/*
1625 			 * Make sure this lock was async and then just
1626 			 * remove it from its wait lists.
1627 			 */
1628 			if (!reallock->lf_async_task) {
1629 				return (ENOENT);
1630 			}
1631 
1632 			/*
1633 			 * Note that since any other thread must take
1634 			 * state->ls_lock before it can possibly
1635 			 * trigger the async callback, we are safe
1636 			 * from a race with lf_wakeup_lock, i.e. we
1637 			 * can free the lock (actually our caller does
1638 			 * this).
1639 			 */
1640 			lf_cancel_lock(state, reallock);
1641 			return (0);
1642 		}
1643 	}
1644 
1645 	/*
1646 	 * We didn't find a matching lock - not much we can do here.
1647 	 */
1648 	return (ENOENT);
1649 }
1650 
1651 /*
1652  * Walk the list of locks for an inode and
1653  * return the first blocking lock.
1654  */
1655 static struct lockf_entry *
1656 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1657 {
1658 	struct lockf_entry *overlap;
1659 
1660 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1661 		/*
1662 		 * We may assume that the active list is sorted by
1663 		 * lf_start.
1664 		 */
1665 		if (overlap->lf_start > lock->lf_end)
1666 			break;
1667 		if (!lf_blocks(lock, overlap))
1668 			continue;
1669 		return (overlap);
1670 	}
1671 	return (NOLOCKF);
1672 }
1673 
1674 /*
1675  * Walk the list of locks for an inode to find an overlapping lock (if
1676  * any) and return a classification of that overlap.
1677  *
1678  * Arguments:
1679  *	*overlap	The place in the lock list to start looking
1680  *	lock		The lock which is being tested
1681  *	type		Pass 'SELF' to test only locks with the same
1682  *			owner as lock, or 'OTHER' to test only locks
1683  *			with a different owner
1684  *
1685  * Returns one of six values:
1686  *	0) no overlap
1687  *	1) overlap == lock
1688  *	2) overlap contains lock
1689  *	3) lock contains overlap
1690  *	4) overlap starts before lock
1691  *	5) overlap ends after lock
1692  *
1693  * If there is an overlapping lock, '*overlap' is set to point at the
1694  * overlapping lock.
1695  *
1696  * NOTE: this returns only the FIRST overlapping lock.  There
1697  *	 may be more than one.
1698  */
1699 static int
1700 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1701 {
1702 	struct lockf_entry *lf;
1703 	off_t start, end;
1704 	int res;
1705 
1706 	if ((*overlap) == NOLOCKF) {
1707 		return (0);
1708 	}
1709 #ifdef LOCKF_DEBUG
1710 	if (lockf_debug & 2)
1711 		lf_print("lf_findoverlap: looking for overlap in", lock);
1712 #endif /* LOCKF_DEBUG */
1713 	start = lock->lf_start;
1714 	end = lock->lf_end;
1715 	res = 0;
1716 	while (*overlap) {
1717 		lf = *overlap;
1718 		if (lf->lf_start > end)
1719 			break;
1720 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1721 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1722 			*overlap = LIST_NEXT(lf, lf_link);
1723 			continue;
1724 		}
1725 #ifdef LOCKF_DEBUG
1726 		if (lockf_debug & 2)
1727 			lf_print("\tchecking", lf);
1728 #endif /* LOCKF_DEBUG */
1729 		/*
1730 		 * OK, check for overlap
1731 		 *
1732 		 * Six cases:
1733 		 *	0) no overlap
1734 		 *	1) overlap == lock
1735 		 *	2) overlap contains lock
1736 		 *	3) lock contains overlap
1737 		 *	4) overlap starts before lock
1738 		 *	5) overlap ends after lock
1739 		 */
1740 		if (start > lf->lf_end) {
1741 			/* Case 0 */
1742 #ifdef LOCKF_DEBUG
1743 			if (lockf_debug & 2)
1744 				printf("no overlap\n");
1745 #endif /* LOCKF_DEBUG */
1746 			*overlap = LIST_NEXT(lf, lf_link);
1747 			continue;
1748 		}
1749 		if (lf->lf_start == start && lf->lf_end == end) {
1750 			/* Case 1 */
1751 #ifdef LOCKF_DEBUG
1752 			if (lockf_debug & 2)
1753 				printf("overlap == lock\n");
1754 #endif /* LOCKF_DEBUG */
1755 			res = 1;
1756 			break;
1757 		}
1758 		if (lf->lf_start <= start && lf->lf_end >= end) {
1759 			/* Case 2 */
1760 #ifdef LOCKF_DEBUG
1761 			if (lockf_debug & 2)
1762 				printf("overlap contains lock\n");
1763 #endif /* LOCKF_DEBUG */
1764 			res = 2;
1765 			break;
1766 		}
1767 		if (start <= lf->lf_start && end >= lf->lf_end) {
1768 			/* Case 3 */
1769 #ifdef LOCKF_DEBUG
1770 			if (lockf_debug & 2)
1771 				printf("lock contains overlap\n");
1772 #endif /* LOCKF_DEBUG */
1773 			res = 3;
1774 			break;
1775 		}
1776 		if (lf->lf_start < start && lf->lf_end >= start) {
1777 			/* Case 4 */
1778 #ifdef LOCKF_DEBUG
1779 			if (lockf_debug & 2)
1780 				printf("overlap starts before lock\n");
1781 #endif /* LOCKF_DEBUG */
1782 			res = 4;
1783 			break;
1784 		}
1785 		if (lf->lf_start > start && lf->lf_end > end) {
1786 			/* Case 5 */
1787 #ifdef LOCKF_DEBUG
1788 			if (lockf_debug & 2)
1789 				printf("overlap ends after lock\n");
1790 #endif /* LOCKF_DEBUG */
1791 			res = 5;
1792 			break;
1793 		}
1794 		panic("lf_findoverlap: default");
1795 	}
1796 	return (res);
1797 }
1798 
1799 /*
1800  * Split an the existing 'lock1', based on the extent of the lock
1801  * described by 'lock2'. The existing lock should cover 'lock2'
1802  * entirely.
1803  *
1804  * Any pending locks which have been been unblocked are added to
1805  * 'granted'
1806  */
1807 static void
1808 lf_split(struct lockf *state, struct lockf_entry *lock1,
1809     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1810 {
1811 	struct lockf_entry *splitlock;
1812 
1813 #ifdef LOCKF_DEBUG
1814 	if (lockf_debug & 2) {
1815 		lf_print("lf_split", lock1);
1816 		lf_print("splitting from", lock2);
1817 	}
1818 #endif /* LOCKF_DEBUG */
1819 	/*
1820 	 * Check to see if we don't need to split at all.
1821 	 */
1822 	if (lock1->lf_start == lock2->lf_start) {
1823 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1824 		return;
1825 	}
1826 	if (lock1->lf_end == lock2->lf_end) {
1827 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1828 		return;
1829 	}
1830 	/*
1831 	 * Make a new lock consisting of the last part of
1832 	 * the encompassing lock.
1833 	 */
1834 	splitlock = lf_alloc_lock(lock1->lf_owner);
1835 	memcpy(splitlock, lock1, sizeof *splitlock);
1836 	splitlock->lf_refs = 1;
1837 	if (splitlock->lf_flags & F_REMOTE)
1838 		vref(splitlock->lf_vnode);
1839 
1840 	/*
1841 	 * This cannot cause a deadlock since any edges we would add
1842 	 * to splitlock already exist in lock1. We must be sure to add
1843 	 * necessary dependancies to splitlock before we reduce lock1
1844 	 * otherwise we may accidentally grant a pending lock that
1845 	 * was blocked by the tail end of lock1.
1846 	 */
1847 	splitlock->lf_start = lock2->lf_end + 1;
1848 	LIST_INIT(&splitlock->lf_outedges);
1849 	LIST_INIT(&splitlock->lf_inedges);
1850 	sx_xlock(&lf_owner_graph_lock);
1851 	lf_add_incoming(state, splitlock);
1852 	sx_xunlock(&lf_owner_graph_lock);
1853 
1854 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1855 
1856 	/*
1857 	 * OK, now link it in
1858 	 */
1859 	lf_insert_lock(state, splitlock);
1860 }
1861 
1862 struct lockdesc {
1863 	STAILQ_ENTRY(lockdesc) link;
1864 	struct vnode *vp;
1865 	struct flock fl;
1866 };
1867 STAILQ_HEAD(lockdesclist, lockdesc);
1868 
1869 int
1870 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1871 {
1872 	struct lockf *ls;
1873 	struct lockf_entry *lf;
1874 	struct lockdesc *ldesc;
1875 	struct lockdesclist locks;
1876 	int error;
1877 
1878 	/*
1879 	 * In order to keep the locking simple, we iterate over the
1880 	 * active lock lists to build a list of locks that need
1881 	 * releasing. We then call the iterator for each one in turn.
1882 	 *
1883 	 * We take an extra reference to the vnode for the duration to
1884 	 * make sure it doesn't go away before we are finished.
1885 	 */
1886 	STAILQ_INIT(&locks);
1887 	sx_xlock(&lf_lock_states_lock);
1888 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1889 		sx_xlock(&ls->ls_lock);
1890 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1891 			if (lf->lf_owner->lo_sysid != sysid)
1892 				continue;
1893 
1894 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1895 			    M_WAITOK);
1896 			ldesc->vp = lf->lf_vnode;
1897 			vref(ldesc->vp);
1898 			ldesc->fl.l_start = lf->lf_start;
1899 			if (lf->lf_end == OFF_MAX)
1900 				ldesc->fl.l_len = 0;
1901 			else
1902 				ldesc->fl.l_len =
1903 					lf->lf_end - lf->lf_start + 1;
1904 			ldesc->fl.l_whence = SEEK_SET;
1905 			ldesc->fl.l_type = F_UNLCK;
1906 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1907 			ldesc->fl.l_sysid = sysid;
1908 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1909 		}
1910 		sx_xunlock(&ls->ls_lock);
1911 	}
1912 	sx_xunlock(&lf_lock_states_lock);
1913 
1914 	/*
1915 	 * Call the iterator function for each lock in turn. If the
1916 	 * iterator returns an error code, just free the rest of the
1917 	 * lockdesc structures.
1918 	 */
1919 	error = 0;
1920 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1921 		STAILQ_REMOVE_HEAD(&locks, link);
1922 		if (!error)
1923 			error = fn(ldesc->vp, &ldesc->fl, arg);
1924 		vrele(ldesc->vp);
1925 		free(ldesc, M_LOCKF);
1926 	}
1927 
1928 	return (error);
1929 }
1930 
1931 int
1932 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1933 {
1934 	struct lockf *ls;
1935 	struct lockf_entry *lf;
1936 	struct lockdesc *ldesc;
1937 	struct lockdesclist locks;
1938 	int error;
1939 
1940 	/*
1941 	 * In order to keep the locking simple, we iterate over the
1942 	 * active lock lists to build a list of locks that need
1943 	 * releasing. We then call the iterator for each one in turn.
1944 	 *
1945 	 * We take an extra reference to the vnode for the duration to
1946 	 * make sure it doesn't go away before we are finished.
1947 	 */
1948 	STAILQ_INIT(&locks);
1949 	VI_LOCK(vp);
1950 	ls = vp->v_lockf;
1951 	if (!ls) {
1952 		VI_UNLOCK(vp);
1953 		return (0);
1954 	}
1955 	ls->ls_threads++;
1956 	VI_UNLOCK(vp);
1957 
1958 	sx_xlock(&ls->ls_lock);
1959 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1960 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1961 		    M_WAITOK);
1962 		ldesc->vp = lf->lf_vnode;
1963 		vref(ldesc->vp);
1964 		ldesc->fl.l_start = lf->lf_start;
1965 		if (lf->lf_end == OFF_MAX)
1966 			ldesc->fl.l_len = 0;
1967 		else
1968 			ldesc->fl.l_len =
1969 				lf->lf_end - lf->lf_start + 1;
1970 		ldesc->fl.l_whence = SEEK_SET;
1971 		ldesc->fl.l_type = F_UNLCK;
1972 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1973 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1974 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1975 	}
1976 	sx_xunlock(&ls->ls_lock);
1977 	VI_LOCK(vp);
1978 	ls->ls_threads--;
1979 	wakeup(ls);
1980 	VI_UNLOCK(vp);
1981 
1982 	/*
1983 	 * Call the iterator function for each lock in turn. If the
1984 	 * iterator returns an error code, just free the rest of the
1985 	 * lockdesc structures.
1986 	 */
1987 	error = 0;
1988 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1989 		STAILQ_REMOVE_HEAD(&locks, link);
1990 		if (!error)
1991 			error = fn(ldesc->vp, &ldesc->fl, arg);
1992 		vrele(ldesc->vp);
1993 		free(ldesc, M_LOCKF);
1994 	}
1995 
1996 	return (error);
1997 }
1998 
1999 static int
2000 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2001 {
2002 
2003 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2004 	return (0);
2005 }
2006 
2007 void
2008 lf_clearremotesys(int sysid)
2009 {
2010 
2011 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2012 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2013 }
2014 
2015 int
2016 lf_countlocks(int sysid)
2017 {
2018 	int i;
2019 	struct lock_owner *lo;
2020 	int count;
2021 
2022 	count = 0;
2023 	sx_xlock(&lf_lock_owners_lock);
2024 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2025 		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2026 			if (lo->lo_sysid == sysid)
2027 				count += lo->lo_refs;
2028 	sx_xunlock(&lf_lock_owners_lock);
2029 
2030 	return (count);
2031 }
2032 
2033 #ifdef LOCKF_DEBUG
2034 
2035 /*
2036  * Return non-zero if y is reachable from x using a brute force
2037  * search. If reachable and path is non-null, return the route taken
2038  * in path.
2039  */
2040 static int
2041 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2042     struct owner_vertex_list *path)
2043 {
2044 	struct owner_edge *e;
2045 
2046 	if (x == y) {
2047 		if (path)
2048 			TAILQ_INSERT_HEAD(path, x, v_link);
2049 		return 1;
2050 	}
2051 
2052 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2053 		if (graph_reaches(e->e_to, y, path)) {
2054 			if (path)
2055 				TAILQ_INSERT_HEAD(path, x, v_link);
2056 			return 1;
2057 		}
2058 	}
2059 	return 0;
2060 }
2061 
2062 /*
2063  * Perform consistency checks on the graph. Make sure the values of
2064  * v_order are correct. If checkorder is non-zero, check no vertex can
2065  * reach any other vertex with a smaller order.
2066  */
2067 static void
2068 graph_check(struct owner_graph *g, int checkorder)
2069 {
2070 	int i, j;
2071 
2072 	for (i = 0; i < g->g_size; i++) {
2073 		if (!g->g_vertices[i]->v_owner)
2074 			continue;
2075 		KASSERT(g->g_vertices[i]->v_order == i,
2076 		    ("lock graph vertices disordered"));
2077 		if (checkorder) {
2078 			for (j = 0; j < i; j++) {
2079 				if (!g->g_vertices[j]->v_owner)
2080 					continue;
2081 				KASSERT(!graph_reaches(g->g_vertices[i],
2082 					g->g_vertices[j], NULL),
2083 				    ("lock graph vertices disordered"));
2084 			}
2085 		}
2086 	}
2087 }
2088 
2089 static void
2090 graph_print_vertices(struct owner_vertex_list *set)
2091 {
2092 	struct owner_vertex *v;
2093 
2094 	printf("{ ");
2095 	TAILQ_FOREACH(v, set, v_link) {
2096 		printf("%d:", v->v_order);
2097 		lf_print_owner(v->v_owner);
2098 		if (TAILQ_NEXT(v, v_link))
2099 			printf(", ");
2100 	}
2101 	printf(" }\n");
2102 }
2103 
2104 #endif
2105 
2106 /*
2107  * Calculate the sub-set of vertices v from the affected region [y..x]
2108  * where v is reachable from y. Return -1 if a loop was detected
2109  * (i.e. x is reachable from y, otherwise the number of vertices in
2110  * this subset.
2111  */
2112 static int
2113 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2114     struct owner_vertex *y, struct owner_vertex_list *delta)
2115 {
2116 	uint32_t gen;
2117 	struct owner_vertex *v;
2118 	struct owner_edge *e;
2119 	int n;
2120 
2121 	/*
2122 	 * We start with a set containing just y. Then for each vertex
2123 	 * v in the set so far unprocessed, we add each vertex that v
2124 	 * has an out-edge to and that is within the affected region
2125 	 * [y..x]. If we see the vertex x on our travels, stop
2126 	 * immediately.
2127 	 */
2128 	TAILQ_INIT(delta);
2129 	TAILQ_INSERT_TAIL(delta, y, v_link);
2130 	v = y;
2131 	n = 1;
2132 	gen = g->g_gen;
2133 	while (v) {
2134 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2135 			if (e->e_to == x)
2136 				return -1;
2137 			if (e->e_to->v_order < x->v_order
2138 			    && e->e_to->v_gen != gen) {
2139 				e->e_to->v_gen = gen;
2140 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2141 				n++;
2142 			}
2143 		}
2144 		v = TAILQ_NEXT(v, v_link);
2145 	}
2146 
2147 	return (n);
2148 }
2149 
2150 /*
2151  * Calculate the sub-set of vertices v from the affected region [y..x]
2152  * where v reaches x. Return the number of vertices in this subset.
2153  */
2154 static int
2155 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2156     struct owner_vertex *y, struct owner_vertex_list *delta)
2157 {
2158 	uint32_t gen;
2159 	struct owner_vertex *v;
2160 	struct owner_edge *e;
2161 	int n;
2162 
2163 	/*
2164 	 * We start with a set containing just x. Then for each vertex
2165 	 * v in the set so far unprocessed, we add each vertex that v
2166 	 * has an in-edge from and that is within the affected region
2167 	 * [y..x].
2168 	 */
2169 	TAILQ_INIT(delta);
2170 	TAILQ_INSERT_TAIL(delta, x, v_link);
2171 	v = x;
2172 	n = 1;
2173 	gen = g->g_gen;
2174 	while (v) {
2175 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2176 			if (e->e_from->v_order > y->v_order
2177 			    && e->e_from->v_gen != gen) {
2178 				e->e_from->v_gen = gen;
2179 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2180 				n++;
2181 			}
2182 		}
2183 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2184 	}
2185 
2186 	return (n);
2187 }
2188 
2189 static int
2190 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2191 {
2192 	struct owner_vertex *v;
2193 	int i, j;
2194 
2195 	TAILQ_FOREACH(v, set, v_link) {
2196 		for (i = n;
2197 		     i > 0 && indices[i - 1] > v->v_order; i--)
2198 			;
2199 		for (j = n - 1; j >= i; j--)
2200 			indices[j + 1] = indices[j];
2201 		indices[i] = v->v_order;
2202 		n++;
2203 	}
2204 
2205 	return (n);
2206 }
2207 
2208 static int
2209 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2210     struct owner_vertex_list *set)
2211 {
2212 	struct owner_vertex *v, *vlowest;
2213 
2214 	while (!TAILQ_EMPTY(set)) {
2215 		vlowest = NULL;
2216 		TAILQ_FOREACH(v, set, v_link) {
2217 			if (!vlowest || v->v_order < vlowest->v_order)
2218 				vlowest = v;
2219 		}
2220 		TAILQ_REMOVE(set, vlowest, v_link);
2221 		vlowest->v_order = indices[nextunused];
2222 		g->g_vertices[vlowest->v_order] = vlowest;
2223 		nextunused++;
2224 	}
2225 
2226 	return (nextunused);
2227 }
2228 
2229 static int
2230 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2231     struct owner_vertex *y)
2232 {
2233 	struct owner_edge *e;
2234 	struct owner_vertex_list deltaF, deltaB;
2235 	int nF, nB, n, vi, i;
2236 	int *indices;
2237 
2238 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2239 
2240 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2241 		if (e->e_to == y) {
2242 			e->e_refs++;
2243 			return (0);
2244 		}
2245 	}
2246 
2247 #ifdef LOCKF_DEBUG
2248 	if (lockf_debug & 8) {
2249 		printf("adding edge %d:", x->v_order);
2250 		lf_print_owner(x->v_owner);
2251 		printf(" -> %d:", y->v_order);
2252 		lf_print_owner(y->v_owner);
2253 		printf("\n");
2254 	}
2255 #endif
2256 	if (y->v_order < x->v_order) {
2257 		/*
2258 		 * The new edge violates the order. First find the set
2259 		 * of affected vertices reachable from y (deltaF) and
2260 		 * the set of affect vertices affected that reach x
2261 		 * (deltaB), using the graph generation number to
2262 		 * detect whether we have visited a given vertex
2263 		 * already. We re-order the graph so that each vertex
2264 		 * in deltaB appears before each vertex in deltaF.
2265 		 *
2266 		 * If x is a member of deltaF, then the new edge would
2267 		 * create a cycle. Otherwise, we may assume that
2268 		 * deltaF and deltaB are disjoint.
2269 		 */
2270 		g->g_gen++;
2271 		if (g->g_gen == 0) {
2272 			/*
2273 			 * Generation wrap.
2274 			 */
2275 			for (vi = 0; vi < g->g_size; vi++) {
2276 				g->g_vertices[vi]->v_gen = 0;
2277 			}
2278 			g->g_gen++;
2279 		}
2280 		nF = graph_delta_forward(g, x, y, &deltaF);
2281 		if (nF < 0) {
2282 #ifdef LOCKF_DEBUG
2283 			if (lockf_debug & 8) {
2284 				struct owner_vertex_list path;
2285 				printf("deadlock: ");
2286 				TAILQ_INIT(&path);
2287 				graph_reaches(y, x, &path);
2288 				graph_print_vertices(&path);
2289 			}
2290 #endif
2291 			return (EDEADLK);
2292 		}
2293 
2294 #ifdef LOCKF_DEBUG
2295 		if (lockf_debug & 8) {
2296 			printf("re-ordering graph vertices\n");
2297 			printf("deltaF = ");
2298 			graph_print_vertices(&deltaF);
2299 		}
2300 #endif
2301 
2302 		nB = graph_delta_backward(g, x, y, &deltaB);
2303 
2304 #ifdef LOCKF_DEBUG
2305 		if (lockf_debug & 8) {
2306 			printf("deltaB = ");
2307 			graph_print_vertices(&deltaB);
2308 		}
2309 #endif
2310 
2311 		/*
2312 		 * We first build a set of vertex indices (vertex
2313 		 * order values) that we may use, then we re-assign
2314 		 * orders first to those vertices in deltaB, then to
2315 		 * deltaF. Note that the contents of deltaF and deltaB
2316 		 * may be partially disordered - we perform an
2317 		 * insertion sort while building our index set.
2318 		 */
2319 		indices = g->g_indexbuf;
2320 		n = graph_add_indices(indices, 0, &deltaF);
2321 		graph_add_indices(indices, n, &deltaB);
2322 
2323 		/*
2324 		 * We must also be sure to maintain the relative
2325 		 * ordering of deltaF and deltaB when re-assigning
2326 		 * vertices. We do this by iteratively removing the
2327 		 * lowest ordered element from the set and assigning
2328 		 * it the next value from our new ordering.
2329 		 */
2330 		i = graph_assign_indices(g, indices, 0, &deltaB);
2331 		graph_assign_indices(g, indices, i, &deltaF);
2332 
2333 #ifdef LOCKF_DEBUG
2334 		if (lockf_debug & 8) {
2335 			struct owner_vertex_list set;
2336 			TAILQ_INIT(&set);
2337 			for (i = 0; i < nB + nF; i++)
2338 				TAILQ_INSERT_TAIL(&set,
2339 				    g->g_vertices[indices[i]], v_link);
2340 			printf("new ordering = ");
2341 			graph_print_vertices(&set);
2342 		}
2343 #endif
2344 	}
2345 
2346 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2347 
2348 #ifdef LOCKF_DEBUG
2349 	if (lockf_debug & 8) {
2350 		graph_check(g, TRUE);
2351 	}
2352 #endif
2353 
2354 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2355 
2356 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2357 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2358 	e->e_refs = 1;
2359 	e->e_from = x;
2360 	e->e_to = y;
2361 
2362 	return (0);
2363 }
2364 
2365 /*
2366  * Remove an edge x->y from the graph.
2367  */
2368 static void
2369 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2370     struct owner_vertex *y)
2371 {
2372 	struct owner_edge *e;
2373 
2374 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2375 
2376 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2377 		if (e->e_to == y)
2378 			break;
2379 	}
2380 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2381 
2382 	e->e_refs--;
2383 	if (e->e_refs == 0) {
2384 #ifdef LOCKF_DEBUG
2385 		if (lockf_debug & 8) {
2386 			printf("removing edge %d:", x->v_order);
2387 			lf_print_owner(x->v_owner);
2388 			printf(" -> %d:", y->v_order);
2389 			lf_print_owner(y->v_owner);
2390 			printf("\n");
2391 		}
2392 #endif
2393 		LIST_REMOVE(e, e_outlink);
2394 		LIST_REMOVE(e, e_inlink);
2395 		free(e, M_LOCKF);
2396 	}
2397 }
2398 
2399 /*
2400  * Allocate a vertex from the free list. Return ENOMEM if there are
2401  * none.
2402  */
2403 static struct owner_vertex *
2404 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2405 {
2406 	struct owner_vertex *v;
2407 
2408 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2409 
2410 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2411 	if (g->g_size == g->g_space) {
2412 		g->g_vertices = realloc(g->g_vertices,
2413 		    2 * g->g_space * sizeof(struct owner_vertex *),
2414 		    M_LOCKF, M_WAITOK);
2415 		free(g->g_indexbuf, M_LOCKF);
2416 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2417 		    M_LOCKF, M_WAITOK);
2418 		g->g_space = 2 * g->g_space;
2419 	}
2420 	v->v_order = g->g_size;
2421 	v->v_gen = g->g_gen;
2422 	g->g_vertices[g->g_size] = v;
2423 	g->g_size++;
2424 
2425 	LIST_INIT(&v->v_outedges);
2426 	LIST_INIT(&v->v_inedges);
2427 	v->v_owner = lo;
2428 
2429 	return (v);
2430 }
2431 
2432 static void
2433 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2434 {
2435 	struct owner_vertex *w;
2436 	int i;
2437 
2438 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2439 
2440 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2441 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2442 
2443 	/*
2444 	 * Remove from the graph's array and close up the gap,
2445 	 * renumbering the other vertices.
2446 	 */
2447 	for (i = v->v_order + 1; i < g->g_size; i++) {
2448 		w = g->g_vertices[i];
2449 		w->v_order--;
2450 		g->g_vertices[i - 1] = w;
2451 	}
2452 	g->g_size--;
2453 
2454 	free(v, M_LOCKF);
2455 }
2456 
2457 static struct owner_graph *
2458 graph_init(struct owner_graph *g)
2459 {
2460 
2461 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2462 	    M_LOCKF, M_WAITOK);
2463 	g->g_size = 0;
2464 	g->g_space = 10;
2465 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2466 	g->g_gen = 0;
2467 
2468 	return (g);
2469 }
2470 
2471 #ifdef LOCKF_DEBUG
2472 /*
2473  * Print description of a lock owner
2474  */
2475 static void
2476 lf_print_owner(struct lock_owner *lo)
2477 {
2478 
2479 	if (lo->lo_flags & F_REMOTE) {
2480 		printf("remote pid %d, system %d",
2481 		    lo->lo_pid, lo->lo_sysid);
2482 	} else if (lo->lo_flags & F_FLOCK) {
2483 		printf("file %p", lo->lo_id);
2484 	} else {
2485 		printf("local pid %d", lo->lo_pid);
2486 	}
2487 }
2488 
2489 /*
2490  * Print out a lock.
2491  */
2492 static void
2493 lf_print(char *tag, struct lockf_entry *lock)
2494 {
2495 
2496 	printf("%s: lock %p for ", tag, (void *)lock);
2497 	lf_print_owner(lock->lf_owner);
2498 	if (lock->lf_inode != (struct inode *)0)
2499 		printf(" in ino %ju on dev <%s>,",
2500 		    (uintmax_t)lock->lf_inode->i_number,
2501 		    devtoname(lock->lf_inode->i_dev));
2502 	printf(" %s, start %jd, end ",
2503 	    lock->lf_type == F_RDLCK ? "shared" :
2504 	    lock->lf_type == F_WRLCK ? "exclusive" :
2505 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2506 	    (intmax_t)lock->lf_start);
2507 	if (lock->lf_end == OFF_MAX)
2508 		printf("EOF");
2509 	else
2510 		printf("%jd", (intmax_t)lock->lf_end);
2511 	if (!LIST_EMPTY(&lock->lf_outedges))
2512 		printf(" block %p\n",
2513 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2514 	else
2515 		printf("\n");
2516 }
2517 
2518 static void
2519 lf_printlist(char *tag, struct lockf_entry *lock)
2520 {
2521 	struct lockf_entry *lf, *blk;
2522 	struct lockf_edge *e;
2523 
2524 	if (lock->lf_inode == (struct inode *)0)
2525 		return;
2526 
2527 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2528 	    tag, (uintmax_t)lock->lf_inode->i_number,
2529 	    devtoname(lock->lf_inode->i_dev));
2530 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2531 		printf("\tlock %p for ",(void *)lf);
2532 		lf_print_owner(lock->lf_owner);
2533 		printf(", %s, start %jd, end %jd",
2534 		    lf->lf_type == F_RDLCK ? "shared" :
2535 		    lf->lf_type == F_WRLCK ? "exclusive" :
2536 		    lf->lf_type == F_UNLCK ? "unlock" :
2537 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2538 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2539 			blk = e->le_to;
2540 			printf("\n\t\tlock request %p for ", (void *)blk);
2541 			lf_print_owner(blk->lf_owner);
2542 			printf(", %s, start %jd, end %jd",
2543 			    blk->lf_type == F_RDLCK ? "shared" :
2544 			    blk->lf_type == F_WRLCK ? "exclusive" :
2545 			    blk->lf_type == F_UNLCK ? "unlock" :
2546 			    "unknown", (intmax_t)blk->lf_start,
2547 			    (intmax_t)blk->lf_end);
2548 			if (!LIST_EMPTY(&blk->lf_inedges))
2549 				panic("lf_printlist: bad list");
2550 		}
2551 		printf("\n");
2552 	}
2553 }
2554 #endif /* LOCKF_DEBUG */
2555