xref: /freebsd/sys/kern/kern_lockf.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  *	The Regents of the University of California.  All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 4. Neither the name of the University nor the names of its contributors
43  *    may be used to endorse or promote products derived from this software
44  *    without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_debug_lockf.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82 
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85 
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88 
89 static int	lockf_debug = 0; /* control debug output */
90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91 #endif
92 
93 MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94 
95 struct owner_edge;
96 struct owner_vertex;
97 struct owner_vertex_list;
98 struct owner_graph;
99 
100 #define NOLOCKF (struct lockf_entry *)0
101 #define SELF	0x1
102 #define OTHERS	0x2
103 static void	 lf_init(void *);
104 static int	 lf_hash_owner(caddr_t, struct flock *, int);
105 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106     int);
107 static struct lockf_entry *
108 		 lf_alloc_lock(struct lock_owner *);
109 static void	 lf_free_lock(struct lockf_entry *);
110 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113 static void	 lf_free_edge(struct lockf_edge *);
114 static struct lockf_edge *
115 		 lf_alloc_edge(void);
116 static void	 lf_alloc_vertex(struct lockf_entry *);
117 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118 static void	 lf_remove_edge(struct lockf_edge *);
119 static void	 lf_remove_outgoing(struct lockf_entry *);
120 static void	 lf_remove_incoming(struct lockf_entry *);
121 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124     int);
125 static struct lockf_entry *
126 		 lf_getblock(struct lockf *, struct lockf_entry *);
127 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131     int all, struct lockf_entry_list *);
132 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133 	struct lockf_entry_list*);
134 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135 	struct lockf_entry_list*);
136 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137     struct vnode *, void **cookiep);
138 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139 static void	 lf_split(struct lockf *, struct lockf_entry *,
140     struct lockf_entry *, struct lockf_entry_list *);
141 #ifdef LOCKF_DEBUG
142 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143     struct owner_vertex_list *path);
144 static void	 graph_check(struct owner_graph *g, int checkorder);
145 static void	 graph_print_vertices(struct owner_vertex_list *set);
146 #endif
147 static int	 graph_delta_forward(struct owner_graph *g,
148     struct owner_vertex *x, struct owner_vertex *y,
149     struct owner_vertex_list *delta);
150 static int	 graph_delta_backward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int	 graph_add_indices(int *indices, int n,
154     struct owner_vertex_list *set);
155 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156     int nextunused, struct owner_vertex_list *set);
157 static int	 graph_add_edge(struct owner_graph *g,
158     struct owner_vertex *x, struct owner_vertex *y);
159 static void	 graph_remove_edge(struct owner_graph *g,
160     struct owner_vertex *x, struct owner_vertex *y);
161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162     struct lock_owner *lo);
163 static void	 graph_free_vertex(struct owner_graph *g,
164     struct owner_vertex *v);
165 static struct owner_graph * graph_init(struct owner_graph *g);
166 #ifdef LOCKF_DEBUG
167 static void	 lf_print(char *, struct lockf_entry *);
168 static void	 lf_printlist(char *, struct lockf_entry *);
169 static void	 lf_print_owner(struct lock_owner *);
170 #endif
171 
172 /*
173  * This structure is used to keep track of both local and remote lock
174  * owners. The lf_owner field of the struct lockf_entry points back at
175  * the lock owner structure. Each possible lock owner (local proc for
176  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177  * pair for remote locks) is represented by a unique instance of
178  * struct lock_owner.
179  *
180  * If a lock owner has a lock that blocks some other lock or a lock
181  * that is waiting for some other lock, it also has a vertex in the
182  * owner_graph below.
183  *
184  * Locks:
185  * (s)		locked by state->ls_lock
186  * (S)		locked by lf_lock_states_lock
187  * (l)		locked by lf_lock_owners_lock
188  * (g)		locked by lf_owner_graph_lock
189  * (c)		const until freeing
190  */
191 #define	LOCK_OWNER_HASH_SIZE	256
192 
193 struct lock_owner {
194 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195 	int	lo_refs;	    /* (l) Number of locks referring to this */
196 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199 	int	lo_sysid;	    /* (c) System Id of the lock owner */
200 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201 };
202 
203 LIST_HEAD(lock_owner_list, lock_owner);
204 
205 static struct sx		lf_lock_states_lock;
206 static struct lockf_list	lf_lock_states; /* (S) */
207 static struct sx		lf_lock_owners_lock;
208 static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209 
210 /*
211  * Structures for deadlock detection.
212  *
213  * We have two types of directed graph, the first is the set of locks,
214  * both active and pending on a vnode. Within this graph, active locks
215  * are terminal nodes in the graph (i.e. have no out-going
216  * edges). Pending locks have out-going edges to each blocking active
217  * lock that prevents the lock from being granted and also to each
218  * older pending lock that would block them if it was active. The
219  * graph for each vnode is naturally acyclic; new edges are only ever
220  * added to or from new nodes (either new pending locks which only add
221  * out-going edges or new active locks which only add in-coming edges)
222  * therefore they cannot create loops in the lock graph.
223  *
224  * The second graph is a global graph of lock owners. Each lock owner
225  * is a vertex in that graph and an edge is added to the graph
226  * whenever an edge is added to a vnode graph, with end points
227  * corresponding to owner of the new pending lock and the owner of the
228  * lock upon which it waits. In order to prevent deadlock, we only add
229  * an edge to this graph if the new edge would not create a cycle.
230  *
231  * The lock owner graph is topologically sorted, i.e. if a node has
232  * any outgoing edges, then it has an order strictly less than any
233  * node to which it has an outgoing edge. We preserve this ordering
234  * (and detect cycles) on edge insertion using Algorithm PK from the
235  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237  * No. 1.7)
238  */
239 struct owner_vertex;
240 
241 struct owner_edge {
242 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244 	int		e_refs;		  /* (g) number of times added */
245 	struct owner_vertex *e_from;	  /* (c) out-going from here */
246 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247 };
248 LIST_HEAD(owner_edge_list, owner_edge);
249 
250 struct owner_vertex {
251 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253 	int		v_order;	  /* (g) order of vertex in graph */
254 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257 };
258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
259 
260 struct owner_graph {
261 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262 	int		g_size;		  /* (g) number of vertices */
263 	int		g_space;	  /* (g) space allocated for vertices */
264 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266 };
267 
268 static struct sx		lf_owner_graph_lock;
269 static struct owner_graph	lf_owner_graph;
270 
271 /*
272  * Initialise various structures and locks.
273  */
274 static void
275 lf_init(void *dummy)
276 {
277 	int i;
278 
279 	sx_init(&lf_lock_states_lock, "lock states lock");
280 	LIST_INIT(&lf_lock_states);
281 
282 	sx_init(&lf_lock_owners_lock, "lock owners lock");
283 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284 		LIST_INIT(&lf_lock_owners[i]);
285 
286 	sx_init(&lf_owner_graph_lock, "owner graph lock");
287 	graph_init(&lf_owner_graph);
288 }
289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290 
291 /*
292  * Generate a hash value for a lock owner.
293  */
294 static int
295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296 {
297 	uint32_t h;
298 
299 	if (flags & F_REMOTE) {
300 		h = HASHSTEP(0, fl->l_pid);
301 		h = HASHSTEP(h, fl->l_sysid);
302 	} else if (flags & F_FLOCK) {
303 		h = ((uintptr_t) id) >> 7;
304 	} else {
305 		struct proc *p = (struct proc *) id;
306 		h = HASHSTEP(0, p->p_pid);
307 		h = HASHSTEP(h, 0);
308 	}
309 
310 	return (h % LOCK_OWNER_HASH_SIZE);
311 }
312 
313 /*
314  * Return true if a lock owner matches the details passed to
315  * lf_advlock.
316  */
317 static int
318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319     int flags)
320 {
321 	if (flags & F_REMOTE) {
322 		return lo->lo_pid == fl->l_pid
323 			&& lo->lo_sysid == fl->l_sysid;
324 	} else {
325 		return lo->lo_id == id;
326 	}
327 }
328 
329 static struct lockf_entry *
330 lf_alloc_lock(struct lock_owner *lo)
331 {
332 	struct lockf_entry *lf;
333 
334 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335 
336 #ifdef LOCKF_DEBUG
337 	if (lockf_debug & 4)
338 		printf("Allocated lock %p\n", lf);
339 #endif
340 	if (lo) {
341 		sx_xlock(&lf_lock_owners_lock);
342 		lo->lo_refs++;
343 		sx_xunlock(&lf_lock_owners_lock);
344 		lf->lf_owner = lo;
345 	}
346 
347 	return (lf);
348 }
349 
350 static void
351 lf_free_lock(struct lockf_entry *lock)
352 {
353 	/*
354 	 * Adjust the lock_owner reference count and
355 	 * reclaim the entry if this is the last lock
356 	 * for that owner.
357 	 */
358 	struct lock_owner *lo = lock->lf_owner;
359 	if (lo) {
360 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
361 		    ("freeing lock with dependancies"));
362 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
363 		    ("freeing lock with dependants"));
364 		sx_xlock(&lf_lock_owners_lock);
365 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
366 		lo->lo_refs--;
367 		if (lo->lo_refs == 0) {
368 #ifdef LOCKF_DEBUG
369 			if (lockf_debug & 1)
370 				printf("lf_free_lock: freeing lock owner %p\n",
371 				    lo);
372 #endif
373 			if (lo->lo_vertex) {
374 				sx_xlock(&lf_owner_graph_lock);
375 				graph_free_vertex(&lf_owner_graph,
376 				    lo->lo_vertex);
377 				sx_xunlock(&lf_owner_graph_lock);
378 			}
379 			LIST_REMOVE(lo, lo_link);
380 			free(lo, M_LOCKF);
381 #ifdef LOCKF_DEBUG
382 			if (lockf_debug & 4)
383 				printf("Freed lock owner %p\n", lo);
384 #endif
385 		}
386 		sx_unlock(&lf_lock_owners_lock);
387 	}
388 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
389 		vrele(lock->lf_vnode);
390 		lock->lf_vnode = NULL;
391 	}
392 #ifdef LOCKF_DEBUG
393 	if (lockf_debug & 4)
394 		printf("Freed lock %p\n", lock);
395 #endif
396 	free(lock, M_LOCKF);
397 }
398 
399 /*
400  * Advisory record locking support
401  */
402 int
403 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
404     u_quad_t size)
405 {
406 	struct lockf *state, *freestate = NULL;
407 	struct flock *fl = ap->a_fl;
408 	struct lockf_entry *lock;
409 	struct vnode *vp = ap->a_vp;
410 	caddr_t id = ap->a_id;
411 	int flags = ap->a_flags;
412 	int hash;
413 	struct lock_owner *lo;
414 	off_t start, end, oadd;
415 	int error;
416 
417 	/*
418 	 * Handle the F_UNLKSYS case first - no need to mess about
419 	 * creating a lock owner for this one.
420 	 */
421 	if (ap->a_op == F_UNLCKSYS) {
422 		lf_clearremotesys(fl->l_sysid);
423 		return (0);
424 	}
425 
426 	/*
427 	 * Convert the flock structure into a start and end.
428 	 */
429 	switch (fl->l_whence) {
430 
431 	case SEEK_SET:
432 	case SEEK_CUR:
433 		/*
434 		 * Caller is responsible for adding any necessary offset
435 		 * when SEEK_CUR is used.
436 		 */
437 		start = fl->l_start;
438 		break;
439 
440 	case SEEK_END:
441 		if (size > OFF_MAX ||
442 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
443 			return (EOVERFLOW);
444 		start = size + fl->l_start;
445 		break;
446 
447 	default:
448 		return (EINVAL);
449 	}
450 	if (start < 0)
451 		return (EINVAL);
452 	if (fl->l_len < 0) {
453 		if (start == 0)
454 			return (EINVAL);
455 		end = start - 1;
456 		start += fl->l_len;
457 		if (start < 0)
458 			return (EINVAL);
459 	} else if (fl->l_len == 0) {
460 		end = OFF_MAX;
461 	} else {
462 		oadd = fl->l_len - 1;
463 		if (oadd > OFF_MAX - start)
464 			return (EOVERFLOW);
465 		end = start + oadd;
466 	}
467 	/*
468 	 * Avoid the common case of unlocking when inode has no locks.
469 	 */
470 	if ((*statep) == NULL || LIST_EMPTY(&(*statep)->ls_active)) {
471 		if (ap->a_op != F_SETLK) {
472 			fl->l_type = F_UNLCK;
473 			return (0);
474 		}
475 	}
476 
477 	/*
478 	 * Map our arguments to an existing lock owner or create one
479 	 * if this is the first time we have seen this owner.
480 	 */
481 	hash = lf_hash_owner(id, fl, flags);
482 	sx_xlock(&lf_lock_owners_lock);
483 	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
484 		if (lf_owner_matches(lo, id, fl, flags))
485 			break;
486 	if (!lo) {
487 		/*
488 		 * We initialise the lock with a reference
489 		 * count which matches the new lockf_entry
490 		 * structure created below.
491 		 */
492 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
493 		    M_WAITOK|M_ZERO);
494 #ifdef LOCKF_DEBUG
495 		if (lockf_debug & 4)
496 			printf("Allocated lock owner %p\n", lo);
497 #endif
498 
499 		lo->lo_refs = 1;
500 		lo->lo_flags = flags;
501 		lo->lo_id = id;
502 		if (flags & F_REMOTE) {
503 			lo->lo_pid = fl->l_pid;
504 			lo->lo_sysid = fl->l_sysid;
505 		} else if (flags & F_FLOCK) {
506 			lo->lo_pid = -1;
507 			lo->lo_sysid = 0;
508 		} else {
509 			struct proc *p = (struct proc *) id;
510 			lo->lo_pid = p->p_pid;
511 			lo->lo_sysid = 0;
512 		}
513 		lo->lo_vertex = NULL;
514 
515 #ifdef LOCKF_DEBUG
516 		if (lockf_debug & 1) {
517 			printf("lf_advlockasync: new lock owner %p ", lo);
518 			lf_print_owner(lo);
519 			printf("\n");
520 		}
521 #endif
522 
523 		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
524 	} else {
525 		/*
526 		 * We have seen this lock owner before, increase its
527 		 * reference count to account for the new lockf_entry
528 		 * structure we create below.
529 		 */
530 		lo->lo_refs++;
531 	}
532 	sx_xunlock(&lf_lock_owners_lock);
533 
534 	/*
535 	 * Create the lockf structure. We initialise the lf_owner
536 	 * field here instead of in lf_alloc_lock() to avoid paying
537 	 * the lf_lock_owners_lock tax twice.
538 	 */
539 	lock = lf_alloc_lock(NULL);
540 	lock->lf_start = start;
541 	lock->lf_end = end;
542 	lock->lf_owner = lo;
543 	lock->lf_vnode = vp;
544 	if (flags & F_REMOTE) {
545 		/*
546 		 * For remote locks, the caller may release its ref to
547 		 * the vnode at any time - we have to ref it here to
548 		 * prevent it from being recycled unexpectedly.
549 		 */
550 		vref(vp);
551 	}
552 
553 	/*
554 	 * XXX The problem is that VTOI is ufs specific, so it will
555 	 * break LOCKF_DEBUG for all other FS's other than UFS because
556 	 * it casts the vnode->data ptr to struct inode *.
557 	 */
558 /*	lock->lf_inode = VTOI(ap->a_vp); */
559 	lock->lf_inode = (struct inode *)0;
560 	lock->lf_type = fl->l_type;
561 	LIST_INIT(&lock->lf_outedges);
562 	LIST_INIT(&lock->lf_inedges);
563 	lock->lf_async_task = ap->a_task;
564 	lock->lf_flags = ap->a_flags;
565 
566 	/*
567 	 * Do the requested operation. First find our state structure
568 	 * and create a new one if necessary - the caller's *statep
569 	 * variable and the state's ls_threads count is protected by
570 	 * the vnode interlock.
571 	 */
572 	VI_LOCK(vp);
573 	if (vp->v_iflag & VI_DOOMED) {
574 		VI_UNLOCK(vp);
575 		lf_free_lock(lock);
576 		return (ENOENT);
577 	}
578 
579 	/*
580 	 * Allocate a state structure if necessary.
581 	 */
582 	state = *statep;
583 	if (state == NULL) {
584 		struct lockf *ls;
585 
586 		VI_UNLOCK(vp);
587 
588 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
589 		sx_init(&ls->ls_lock, "ls_lock");
590 		LIST_INIT(&ls->ls_active);
591 		LIST_INIT(&ls->ls_pending);
592 		ls->ls_threads = 1;
593 
594 		sx_xlock(&lf_lock_states_lock);
595 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
596 		sx_xunlock(&lf_lock_states_lock);
597 
598 		/*
599 		 * Cope if we lost a race with some other thread while
600 		 * trying to allocate memory.
601 		 */
602 		VI_LOCK(vp);
603 		if (vp->v_iflag & VI_DOOMED) {
604 			VI_UNLOCK(vp);
605 			sx_xlock(&lf_lock_states_lock);
606 			LIST_REMOVE(ls, ls_link);
607 			sx_xunlock(&lf_lock_states_lock);
608 			sx_destroy(&ls->ls_lock);
609 			free(ls, M_LOCKF);
610 			lf_free_lock(lock);
611 			return (ENOENT);
612 		}
613 		if ((*statep) == NULL) {
614 			state = *statep = ls;
615 			VI_UNLOCK(vp);
616 		} else {
617 			state = *statep;
618 			state->ls_threads++;
619 			VI_UNLOCK(vp);
620 
621 			sx_xlock(&lf_lock_states_lock);
622 			LIST_REMOVE(ls, ls_link);
623 			sx_xunlock(&lf_lock_states_lock);
624 			sx_destroy(&ls->ls_lock);
625 			free(ls, M_LOCKF);
626 		}
627 	} else {
628 		state->ls_threads++;
629 		VI_UNLOCK(vp);
630 	}
631 
632 	sx_xlock(&state->ls_lock);
633 	switch(ap->a_op) {
634 	case F_SETLK:
635 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
636 		break;
637 
638 	case F_UNLCK:
639 		error = lf_clearlock(state, lock);
640 		lf_free_lock(lock);
641 		break;
642 
643 	case F_GETLK:
644 		error = lf_getlock(state, lock, fl);
645 		lf_free_lock(lock);
646 		break;
647 
648 	case F_CANCEL:
649 		if (ap->a_cookiep)
650 			error = lf_cancel(state, lock, *ap->a_cookiep);
651 		else
652 			error = EINVAL;
653 		lf_free_lock(lock);
654 		break;
655 
656 	default:
657 		lf_free_lock(lock);
658 		error = EINVAL;
659 		break;
660 	}
661 
662 #ifdef INVARIANTS
663 	/*
664 	 * Check for some can't happen stuff. In this case, the active
665 	 * lock list becoming disordered or containing mutually
666 	 * blocking locks. We also check the pending list for locks
667 	 * which should be active (i.e. have no out-going edges).
668 	 */
669 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
670 		struct lockf_entry *lf;
671 		if (LIST_NEXT(lock, lf_link))
672 			KASSERT((lock->lf_start
673 				<= LIST_NEXT(lock, lf_link)->lf_start),
674 			    ("locks disordered"));
675 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
676 			if (lock == lf)
677 				break;
678 			KASSERT(!lf_blocks(lock, lf),
679 			    ("two conflicting active locks"));
680 			if (lock->lf_owner == lf->lf_owner)
681 				KASSERT(!lf_overlaps(lock, lf),
682 				    ("two overlapping locks from same owner"));
683 		}
684 	}
685 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
686 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
687 		    ("pending lock which should be active"));
688 	}
689 #endif
690 	sx_xunlock(&state->ls_lock);
691 
692 	/*
693 	 * If we have removed the last active lock on the vnode and
694 	 * this is the last thread that was in-progress, we can free
695 	 * the state structure. We update the caller's pointer inside
696 	 * the vnode interlock but call free outside.
697 	 *
698 	 * XXX alternatively, keep the state structure around until
699 	 * the filesystem recycles - requires a callback from the
700 	 * filesystem.
701 	 */
702 	VI_LOCK(vp);
703 
704 	state->ls_threads--;
705 	wakeup(state);
706 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
707 		KASSERT(LIST_EMPTY(&state->ls_pending),
708 		    ("freeing state with pending locks"));
709 		freestate = state;
710 		*statep = NULL;
711 	}
712 
713 	VI_UNLOCK(vp);
714 
715 	if (freestate) {
716 		sx_xlock(&lf_lock_states_lock);
717 		LIST_REMOVE(freestate, ls_link);
718 		sx_xunlock(&lf_lock_states_lock);
719 		sx_destroy(&freestate->ls_lock);
720 		free(freestate, M_LOCKF);
721 	}
722 	return (error);
723 }
724 
725 int
726 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
727 {
728 	struct vop_advlockasync_args a;
729 
730 	a.a_vp = ap->a_vp;
731 	a.a_id = ap->a_id;
732 	a.a_op = ap->a_op;
733 	a.a_fl = ap->a_fl;
734 	a.a_flags = ap->a_flags;
735 	a.a_task = NULL;
736 	a.a_cookiep = NULL;
737 
738 	return (lf_advlockasync(&a, statep, size));
739 }
740 
741 void
742 lf_purgelocks(struct vnode *vp, struct lockf **statep)
743 {
744 	struct lockf *state;
745 	struct lockf_entry *lock, *nlock;
746 
747 	/*
748 	 * For this to work correctly, the caller must ensure that no
749 	 * other threads enter the locking system for this vnode,
750 	 * e.g. by checking VI_DOOMED. We wake up any threads that are
751 	 * sleeping waiting for locks on this vnode and then free all
752 	 * the remaining locks.
753 	 */
754 	VI_LOCK(vp);
755 	state = *statep;
756 	if (state) {
757 		state->ls_threads++;
758 		VI_UNLOCK(vp);
759 
760 		sx_xlock(&state->ls_lock);
761 		sx_xlock(&lf_owner_graph_lock);
762 		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
763 			LIST_REMOVE(lock, lf_link);
764 			lf_remove_outgoing(lock);
765 			lf_remove_incoming(lock);
766 
767 			/*
768 			 * If its an async lock, we can just free it
769 			 * here, otherwise we let the sleeping thread
770 			 * free it.
771 			 */
772 			if (lock->lf_async_task) {
773 				lf_free_lock(lock);
774 			} else {
775 				lock->lf_flags |= F_INTR;
776 				wakeup(lock);
777 			}
778 		}
779 		sx_xunlock(&lf_owner_graph_lock);
780 		sx_xunlock(&state->ls_lock);
781 
782 		/*
783 		 * Wait for all other threads, sleeping and otherwise
784 		 * to leave.
785 		 */
786 		VI_LOCK(vp);
787 		while (state->ls_threads > 1)
788 			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
789 		*statep = 0;
790 		VI_UNLOCK(vp);
791 
792 		/*
793 		 * We can just free all the active locks since they
794 		 * will have no dependancies (we removed them all
795 		 * above). We don't need to bother locking since we
796 		 * are the last thread using this state structure.
797 		 */
798 		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799 			LIST_REMOVE(lock, lf_link);
800 			lf_free_lock(lock);
801 		}
802 		sx_xlock(&lf_lock_states_lock);
803 		LIST_REMOVE(state, ls_link);
804 		sx_xunlock(&lf_lock_states_lock);
805 		sx_destroy(&state->ls_lock);
806 		free(state, M_LOCKF);
807 	} else {
808 		VI_UNLOCK(vp);
809 	}
810 }
811 
812 /*
813  * Return non-zero if locks 'x' and 'y' overlap.
814  */
815 static int
816 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
817 {
818 
819 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
820 }
821 
822 /*
823  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
824  */
825 static int
826 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
827 {
828 
829 	return x->lf_owner != y->lf_owner
830 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
831 		&& lf_overlaps(x, y);
832 }
833 
834 /*
835  * Allocate a lock edge from the free list
836  */
837 static struct lockf_edge *
838 lf_alloc_edge(void)
839 {
840 
841 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
842 }
843 
844 /*
845  * Free a lock edge.
846  */
847 static void
848 lf_free_edge(struct lockf_edge *e)
849 {
850 
851 	free(e, M_LOCKF);
852 }
853 
854 
855 /*
856  * Ensure that the lock's owner has a corresponding vertex in the
857  * owner graph.
858  */
859 static void
860 lf_alloc_vertex(struct lockf_entry *lock)
861 {
862 	struct owner_graph *g = &lf_owner_graph;
863 
864 	if (!lock->lf_owner->lo_vertex)
865 		lock->lf_owner->lo_vertex =
866 			graph_alloc_vertex(g, lock->lf_owner);
867 }
868 
869 /*
870  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
871  * the new edge would cause a cycle in the owner graph.
872  */
873 static int
874 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
875 {
876 	struct owner_graph *g = &lf_owner_graph;
877 	struct lockf_edge *e;
878 	int error;
879 
880 #ifdef INVARIANTS
881 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
882 		KASSERT(e->le_to != y, ("adding lock edge twice"));
883 #endif
884 
885 	/*
886 	 * Make sure the two owners have entries in the owner graph.
887 	 */
888 	lf_alloc_vertex(x);
889 	lf_alloc_vertex(y);
890 
891 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
892 	    y->lf_owner->lo_vertex);
893 	if (error)
894 		return (error);
895 
896 	e = lf_alloc_edge();
897 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
898 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
899 	e->le_from = x;
900 	e->le_to = y;
901 
902 	return (0);
903 }
904 
905 /*
906  * Remove an edge from the lock graph.
907  */
908 static void
909 lf_remove_edge(struct lockf_edge *e)
910 {
911 	struct owner_graph *g = &lf_owner_graph;
912 	struct lockf_entry *x = e->le_from;
913 	struct lockf_entry *y = e->le_to;
914 
915 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
916 	LIST_REMOVE(e, le_outlink);
917 	LIST_REMOVE(e, le_inlink);
918 	e->le_from = NULL;
919 	e->le_to = NULL;
920 	lf_free_edge(e);
921 }
922 
923 /*
924  * Remove all out-going edges from lock x.
925  */
926 static void
927 lf_remove_outgoing(struct lockf_entry *x)
928 {
929 	struct lockf_edge *e;
930 
931 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
932 		lf_remove_edge(e);
933 	}
934 }
935 
936 /*
937  * Remove all in-coming edges from lock x.
938  */
939 static void
940 lf_remove_incoming(struct lockf_entry *x)
941 {
942 	struct lockf_edge *e;
943 
944 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
945 		lf_remove_edge(e);
946 	}
947 }
948 
949 /*
950  * Walk the list of locks for the file and create an out-going edge
951  * from lock to each blocking lock.
952  */
953 static int
954 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
955 {
956 	struct lockf_entry *overlap;
957 	int error;
958 
959 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
960 		/*
961 		 * We may assume that the active list is sorted by
962 		 * lf_start.
963 		 */
964 		if (overlap->lf_start > lock->lf_end)
965 			break;
966 		if (!lf_blocks(lock, overlap))
967 			continue;
968 
969 		/*
970 		 * We've found a blocking lock. Add the corresponding
971 		 * edge to the graphs and see if it would cause a
972 		 * deadlock.
973 		 */
974 		error = lf_add_edge(lock, overlap);
975 
976 		/*
977 		 * The only error that lf_add_edge returns is EDEADLK.
978 		 * Remove any edges we added and return the error.
979 		 */
980 		if (error) {
981 			lf_remove_outgoing(lock);
982 			return (error);
983 		}
984 	}
985 
986 	/*
987 	 * We also need to add edges to sleeping locks that block
988 	 * us. This ensures that lf_wakeup_lock cannot grant two
989 	 * mutually blocking locks simultaneously and also enforces a
990 	 * 'first come, first served' fairness model. Note that this
991 	 * only happens if we are blocked by at least one active lock
992 	 * due to the call to lf_getblock in lf_setlock below.
993 	 */
994 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
995 		if (!lf_blocks(lock, overlap))
996 			continue;
997 		/*
998 		 * We've found a blocking lock. Add the corresponding
999 		 * edge to the graphs and see if it would cause a
1000 		 * deadlock.
1001 		 */
1002 		error = lf_add_edge(lock, overlap);
1003 
1004 		/*
1005 		 * The only error that lf_add_edge returns is EDEADLK.
1006 		 * Remove any edges we added and return the error.
1007 		 */
1008 		if (error) {
1009 			lf_remove_outgoing(lock);
1010 			return (error);
1011 		}
1012 	}
1013 
1014 	return (0);
1015 }
1016 
1017 /*
1018  * Walk the list of pending locks for the file and create an in-coming
1019  * edge from lock to each blocking lock.
1020  */
1021 static int
1022 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1023 {
1024 	struct lockf_entry *overlap;
1025 	int error;
1026 
1027 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1028 		if (!lf_blocks(lock, overlap))
1029 			continue;
1030 
1031 		/*
1032 		 * We've found a blocking lock. Add the corresponding
1033 		 * edge to the graphs and see if it would cause a
1034 		 * deadlock.
1035 		 */
1036 		error = lf_add_edge(overlap, lock);
1037 
1038 		/*
1039 		 * The only error that lf_add_edge returns is EDEADLK.
1040 		 * Remove any edges we added and return the error.
1041 		 */
1042 		if (error) {
1043 			lf_remove_incoming(lock);
1044 			return (error);
1045 		}
1046 	}
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Insert lock into the active list, keeping list entries ordered by
1052  * increasing values of lf_start.
1053  */
1054 static void
1055 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1056 {
1057 	struct lockf_entry *lf, *lfprev;
1058 
1059 	if (LIST_EMPTY(&state->ls_active)) {
1060 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1061 		return;
1062 	}
1063 
1064 	lfprev = NULL;
1065 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1066 		if (lf->lf_start > lock->lf_start) {
1067 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1068 			return;
1069 		}
1070 		lfprev = lf;
1071 	}
1072 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1073 }
1074 
1075 /*
1076  * Wake up a sleeping lock and remove it from the pending list now
1077  * that all its dependancies have been resolved. The caller should
1078  * arrange for the lock to be added to the active list, adjusting any
1079  * existing locks for the same owner as needed.
1080  */
1081 static void
1082 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1083 {
1084 
1085 	/*
1086 	 * Remove from ls_pending list and wake up the caller
1087 	 * or start the async notification, as appropriate.
1088 	 */
1089 	LIST_REMOVE(wakelock, lf_link);
1090 #ifdef LOCKF_DEBUG
1091 	if (lockf_debug & 1)
1092 		lf_print("lf_wakeup_lock: awakening", wakelock);
1093 #endif /* LOCKF_DEBUG */
1094 	if (wakelock->lf_async_task) {
1095 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1096 	} else {
1097 		wakeup(wakelock);
1098 	}
1099 }
1100 
1101 /*
1102  * Re-check all dependant locks and remove edges to locks that we no
1103  * longer block. If 'all' is non-zero, the lock has been removed and
1104  * we must remove all the dependancies, otherwise it has simply been
1105  * reduced but remains active. Any pending locks which have been been
1106  * unblocked are added to 'granted'
1107  */
1108 static void
1109 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1110 	struct lockf_entry_list *granted)
1111 {
1112 	struct lockf_edge *e, *ne;
1113 	struct lockf_entry *deplock;
1114 
1115 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1116 		deplock = e->le_from;
1117 		if (all || !lf_blocks(lock, deplock)) {
1118 			sx_xlock(&lf_owner_graph_lock);
1119 			lf_remove_edge(e);
1120 			sx_xunlock(&lf_owner_graph_lock);
1121 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1122 				lf_wakeup_lock(state, deplock);
1123 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1124 			}
1125 		}
1126 	}
1127 }
1128 
1129 /*
1130  * Set the start of an existing active lock, updating dependancies and
1131  * adding any newly woken locks to 'granted'.
1132  */
1133 static void
1134 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1135 	struct lockf_entry_list *granted)
1136 {
1137 
1138 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1139 	lock->lf_start = new_start;
1140 	LIST_REMOVE(lock, lf_link);
1141 	lf_insert_lock(state, lock);
1142 	lf_update_dependancies(state, lock, FALSE, granted);
1143 }
1144 
1145 /*
1146  * Set the end of an existing active lock, updating dependancies and
1147  * adding any newly woken locks to 'granted'.
1148  */
1149 static void
1150 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1151 	struct lockf_entry_list *granted)
1152 {
1153 
1154 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1155 	lock->lf_end = new_end;
1156 	lf_update_dependancies(state, lock, FALSE, granted);
1157 }
1158 
1159 /*
1160  * Add a lock to the active list, updating or removing any current
1161  * locks owned by the same owner and processing any pending locks that
1162  * become unblocked as a result. This code is also used for unlock
1163  * since the logic for updating existing locks is identical.
1164  *
1165  * As a result of processing the new lock, we may unblock existing
1166  * pending locks as a result of downgrading/unlocking. We simply
1167  * activate the newly granted locks by looping.
1168  *
1169  * Since the new lock already has its dependancies set up, we always
1170  * add it to the list (unless its an unlock request). This may
1171  * fragment the lock list in some pathological cases but its probably
1172  * not a real problem.
1173  */
1174 static void
1175 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1176 {
1177 	struct lockf_entry *overlap, *lf;
1178 	struct lockf_entry_list granted;
1179 	int ovcase;
1180 
1181 	LIST_INIT(&granted);
1182 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1183 
1184 	while (!LIST_EMPTY(&granted)) {
1185 		lock = LIST_FIRST(&granted);
1186 		LIST_REMOVE(lock, lf_link);
1187 
1188 		/*
1189 		 * Skip over locks owned by other processes.  Handle
1190 		 * any locks that overlap and are owned by ourselves.
1191 		 */
1192 		overlap = LIST_FIRST(&state->ls_active);
1193 		for (;;) {
1194 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1195 
1196 #ifdef LOCKF_DEBUG
1197 			if (ovcase && (lockf_debug & 2)) {
1198 				printf("lf_setlock: overlap %d", ovcase);
1199 				lf_print("", overlap);
1200 			}
1201 #endif
1202 			/*
1203 			 * Six cases:
1204 			 *	0) no overlap
1205 			 *	1) overlap == lock
1206 			 *	2) overlap contains lock
1207 			 *	3) lock contains overlap
1208 			 *	4) overlap starts before lock
1209 			 *	5) overlap ends after lock
1210 			 */
1211 			switch (ovcase) {
1212 			case 0: /* no overlap */
1213 				break;
1214 
1215 			case 1: /* overlap == lock */
1216 				/*
1217 				 * We have already setup the
1218 				 * dependants for the new lock, taking
1219 				 * into account a possible downgrade
1220 				 * or unlock. Remove the old lock.
1221 				 */
1222 				LIST_REMOVE(overlap, lf_link);
1223 				lf_update_dependancies(state, overlap, TRUE,
1224 					&granted);
1225 				lf_free_lock(overlap);
1226 				break;
1227 
1228 			case 2: /* overlap contains lock */
1229 				/*
1230 				 * Just split the existing lock.
1231 				 */
1232 				lf_split(state, overlap, lock, &granted);
1233 				break;
1234 
1235 			case 3: /* lock contains overlap */
1236 				/*
1237 				 * Delete the overlap and advance to
1238 				 * the next entry in the list.
1239 				 */
1240 				lf = LIST_NEXT(overlap, lf_link);
1241 				LIST_REMOVE(overlap, lf_link);
1242 				lf_update_dependancies(state, overlap, TRUE,
1243 					&granted);
1244 				lf_free_lock(overlap);
1245 				overlap = lf;
1246 				continue;
1247 
1248 			case 4: /* overlap starts before lock */
1249 				/*
1250 				 * Just update the overlap end and
1251 				 * move on.
1252 				 */
1253 				lf_set_end(state, overlap, lock->lf_start - 1,
1254 				    &granted);
1255 				overlap = LIST_NEXT(overlap, lf_link);
1256 				continue;
1257 
1258 			case 5: /* overlap ends after lock */
1259 				/*
1260 				 * Change the start of overlap and
1261 				 * re-insert.
1262 				 */
1263 				lf_set_start(state, overlap, lock->lf_end + 1,
1264 				    &granted);
1265 				break;
1266 			}
1267 			break;
1268 		}
1269 #ifdef LOCKF_DEBUG
1270 		if (lockf_debug & 1) {
1271 			if (lock->lf_type != F_UNLCK)
1272 				lf_print("lf_activate_lock: activated", lock);
1273 			else
1274 				lf_print("lf_activate_lock: unlocked", lock);
1275 			lf_printlist("lf_activate_lock", lock);
1276 		}
1277 #endif /* LOCKF_DEBUG */
1278 		if (lock->lf_type != F_UNLCK)
1279 			lf_insert_lock(state, lock);
1280 	}
1281 }
1282 
1283 /*
1284  * Cancel a pending lock request, either as a result of a signal or a
1285  * cancel request for an async lock.
1286  */
1287 static void
1288 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1289 {
1290 	struct lockf_entry_list granted;
1291 
1292 	/*
1293 	 * Note it is theoretically possible that cancelling this lock
1294 	 * may allow some other pending lock to become
1295 	 * active. Consider this case:
1296 	 *
1297 	 * Owner	Action		Result		Dependancies
1298 	 *
1299 	 * A:		lock [0..0]	succeeds
1300 	 * B:		lock [2..2]	succeeds
1301 	 * C:		lock [1..2]	blocked		C->B
1302 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1303 	 * A:		unlock [0..0]			C->B,D->C
1304 	 * C:		cancel [1..2]
1305 	 */
1306 
1307 	LIST_REMOVE(lock, lf_link);
1308 
1309 	/*
1310 	 * Removing out-going edges is simple.
1311 	 */
1312 	sx_xlock(&lf_owner_graph_lock);
1313 	lf_remove_outgoing(lock);
1314 	sx_xunlock(&lf_owner_graph_lock);
1315 
1316 	/*
1317 	 * Removing in-coming edges may allow some other lock to
1318 	 * become active - we use lf_update_dependancies to figure
1319 	 * this out.
1320 	 */
1321 	LIST_INIT(&granted);
1322 	lf_update_dependancies(state, lock, TRUE, &granted);
1323 	lf_free_lock(lock);
1324 
1325 	/*
1326 	 * Feed any newly active locks to lf_activate_lock.
1327 	 */
1328 	while (!LIST_EMPTY(&granted)) {
1329 		lock = LIST_FIRST(&granted);
1330 		LIST_REMOVE(lock, lf_link);
1331 		lf_activate_lock(state, lock);
1332 	}
1333 }
1334 
1335 /*
1336  * Set a byte-range lock.
1337  */
1338 static int
1339 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1340     void **cookiep)
1341 {
1342 	struct lockf_entry *block;
1343 	static char lockstr[] = "lockf";
1344 	int priority, error;
1345 
1346 #ifdef LOCKF_DEBUG
1347 	if (lockf_debug & 1)
1348 		lf_print("lf_setlock", lock);
1349 #endif /* LOCKF_DEBUG */
1350 
1351 	/*
1352 	 * Set the priority
1353 	 */
1354 	priority = PLOCK;
1355 	if (lock->lf_type == F_WRLCK)
1356 		priority += 4;
1357 	priority |= PCATCH;
1358 	/*
1359 	 * Scan lock list for this file looking for locks that would block us.
1360 	 */
1361 	while ((block = lf_getblock(state, lock))) {
1362 		/*
1363 		 * Free the structure and return if nonblocking.
1364 		 */
1365 		if ((lock->lf_flags & F_WAIT) == 0
1366 		    && lock->lf_async_task == NULL) {
1367 			lf_free_lock(lock);
1368 			error = EAGAIN;
1369 			goto out;
1370 		}
1371 
1372 		/*
1373 		 * We are blocked. Create edges to each blocking lock,
1374 		 * checking for deadlock using the owner graph. For
1375 		 * simplicity, we run deadlock detection for all
1376 		 * locks, posix and otherwise.
1377 		 */
1378 		sx_xlock(&lf_owner_graph_lock);
1379 		error = lf_add_outgoing(state, lock);
1380 		sx_xunlock(&lf_owner_graph_lock);
1381 
1382 		if (error) {
1383 #ifdef LOCKF_DEBUG
1384 			if (lockf_debug & 1)
1385 				lf_print("lf_setlock: deadlock", lock);
1386 #endif
1387 			lf_free_lock(lock);
1388 			goto out;
1389 		}
1390 
1391 		/*
1392 		 * For flock type locks, we must first remove
1393 		 * any shared locks that we hold before we sleep
1394 		 * waiting for an exclusive lock.
1395 		 */
1396 		if ((lock->lf_flags & F_FLOCK) &&
1397 		    lock->lf_type == F_WRLCK) {
1398 			lock->lf_type = F_UNLCK;
1399 			lf_activate_lock(state, lock);
1400 			lock->lf_type = F_WRLCK;
1401 		}
1402 		/*
1403 		 * We have added edges to everything that blocks
1404 		 * us. Sleep until they all go away.
1405 		 */
1406 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1407 #ifdef LOCKF_DEBUG
1408 		if (lockf_debug & 1) {
1409 			struct lockf_edge *e;
1410 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1411 				lf_print("lf_setlock: blocking on", e->le_to);
1412 				lf_printlist("lf_setlock", e->le_to);
1413 			}
1414 		}
1415 #endif /* LOCKF_DEBUG */
1416 
1417 		if ((lock->lf_flags & F_WAIT) == 0) {
1418 			/*
1419 			 * The caller requested async notification -
1420 			 * this callback happens when the blocking
1421 			 * lock is released, allowing the caller to
1422 			 * make another attempt to take the lock.
1423 			 */
1424 			*cookiep = (void *) lock;
1425 			error = EINPROGRESS;
1426 			goto out;
1427 		}
1428 
1429 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1430 		/*
1431 		 * We may have been awakened by a signal and/or by a
1432 		 * debugger continuing us (in which cases we must
1433 		 * remove our lock graph edges) and/or by another
1434 		 * process releasing a lock (in which case our edges
1435 		 * have already been removed and we have been moved to
1436 		 * the active list). We may also have been woken by
1437 		 * lf_purgelocks which we report to the caller as
1438 		 * EINTR. In that case, lf_purgelocks will have
1439 		 * removed our lock graph edges.
1440 		 *
1441 		 * Note that it is possible to receive a signal after
1442 		 * we were successfully woken (and moved to the active
1443 		 * list) but before we resumed execution. In this
1444 		 * case, our lf_outedges list will be clear. We
1445 		 * pretend there was no error.
1446 		 *
1447 		 * Note also, if we have been sleeping long enough, we
1448 		 * may now have incoming edges from some newer lock
1449 		 * which is waiting behind us in the queue.
1450 		 */
1451 		if (lock->lf_flags & F_INTR) {
1452 			error = EINTR;
1453 			lf_free_lock(lock);
1454 			goto out;
1455 		}
1456 		if (LIST_EMPTY(&lock->lf_outedges)) {
1457 			error = 0;
1458 		} else {
1459 			lf_cancel_lock(state, lock);
1460 			goto out;
1461 		}
1462 #ifdef LOCKF_DEBUG
1463 		if (lockf_debug & 1) {
1464 			lf_print("lf_setlock: granted", lock);
1465 		}
1466 #endif
1467 		goto out;
1468 	}
1469 	/*
1470 	 * It looks like we are going to grant the lock. First add
1471 	 * edges from any currently pending lock that the new lock
1472 	 * would block.
1473 	 */
1474 	sx_xlock(&lf_owner_graph_lock);
1475 	error = lf_add_incoming(state, lock);
1476 	sx_xunlock(&lf_owner_graph_lock);
1477 	if (error) {
1478 #ifdef LOCKF_DEBUG
1479 		if (lockf_debug & 1)
1480 			lf_print("lf_setlock: deadlock", lock);
1481 #endif
1482 		lf_free_lock(lock);
1483 		goto out;
1484 	}
1485 
1486 	/*
1487 	 * No blocks!!  Add the lock.  Note that we will
1488 	 * downgrade or upgrade any overlapping locks this
1489 	 * process already owns.
1490 	 */
1491 	lf_activate_lock(state, lock);
1492 	error = 0;
1493 out:
1494 	return (error);
1495 }
1496 
1497 /*
1498  * Remove a byte-range lock on an inode.
1499  *
1500  * Generally, find the lock (or an overlap to that lock)
1501  * and remove it (or shrink it), then wakeup anyone we can.
1502  */
1503 static int
1504 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1505 {
1506 	struct lockf_entry *overlap;
1507 
1508 	overlap = LIST_FIRST(&state->ls_active);
1509 
1510 	if (overlap == NOLOCKF)
1511 		return (0);
1512 #ifdef LOCKF_DEBUG
1513 	if (unlock->lf_type != F_UNLCK)
1514 		panic("lf_clearlock: bad type");
1515 	if (lockf_debug & 1)
1516 		lf_print("lf_clearlock", unlock);
1517 #endif /* LOCKF_DEBUG */
1518 
1519 	lf_activate_lock(state, unlock);
1520 
1521 	return (0);
1522 }
1523 
1524 /*
1525  * Check whether there is a blocking lock, and if so return its
1526  * details in '*fl'.
1527  */
1528 static int
1529 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1530 {
1531 	struct lockf_entry *block;
1532 
1533 #ifdef LOCKF_DEBUG
1534 	if (lockf_debug & 1)
1535 		lf_print("lf_getlock", lock);
1536 #endif /* LOCKF_DEBUG */
1537 
1538 	if ((block = lf_getblock(state, lock))) {
1539 		fl->l_type = block->lf_type;
1540 		fl->l_whence = SEEK_SET;
1541 		fl->l_start = block->lf_start;
1542 		if (block->lf_end == OFF_MAX)
1543 			fl->l_len = 0;
1544 		else
1545 			fl->l_len = block->lf_end - block->lf_start + 1;
1546 		fl->l_pid = block->lf_owner->lo_pid;
1547 		fl->l_sysid = block->lf_owner->lo_sysid;
1548 	} else {
1549 		fl->l_type = F_UNLCK;
1550 	}
1551 	return (0);
1552 }
1553 
1554 /*
1555  * Cancel an async lock request.
1556  */
1557 static int
1558 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1559 {
1560 	struct lockf_entry *reallock;
1561 
1562 	/*
1563 	 * We need to match this request with an existing lock
1564 	 * request.
1565 	 */
1566 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1567 		if ((void *) reallock == cookie) {
1568 			/*
1569 			 * Double-check that this lock looks right
1570 			 * (maybe use a rolling ID for the cancel
1571 			 * cookie instead?)
1572 			 */
1573 			if (!(reallock->lf_vnode == lock->lf_vnode
1574 				&& reallock->lf_start == lock->lf_start
1575 				&& reallock->lf_end == lock->lf_end)) {
1576 				return (ENOENT);
1577 			}
1578 
1579 			/*
1580 			 * Make sure this lock was async and then just
1581 			 * remove it from its wait lists.
1582 			 */
1583 			if (!reallock->lf_async_task) {
1584 				return (ENOENT);
1585 			}
1586 
1587 			/*
1588 			 * Note that since any other thread must take
1589 			 * state->ls_lock before it can possibly
1590 			 * trigger the async callback, we are safe
1591 			 * from a race with lf_wakeup_lock, i.e. we
1592 			 * can free the lock (actually our caller does
1593 			 * this).
1594 			 */
1595 			lf_cancel_lock(state, reallock);
1596 			return (0);
1597 		}
1598 	}
1599 
1600 	/*
1601 	 * We didn't find a matching lock - not much we can do here.
1602 	 */
1603 	return (ENOENT);
1604 }
1605 
1606 /*
1607  * Walk the list of locks for an inode and
1608  * return the first blocking lock.
1609  */
1610 static struct lockf_entry *
1611 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1612 {
1613 	struct lockf_entry *overlap;
1614 
1615 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1616 		/*
1617 		 * We may assume that the active list is sorted by
1618 		 * lf_start.
1619 		 */
1620 		if (overlap->lf_start > lock->lf_end)
1621 			break;
1622 		if (!lf_blocks(lock, overlap))
1623 			continue;
1624 		return (overlap);
1625 	}
1626 	return (NOLOCKF);
1627 }
1628 
1629 /*
1630  * Walk the list of locks for an inode to find an overlapping lock (if
1631  * any) and return a classification of that overlap.
1632  *
1633  * Arguments:
1634  *	*overlap	The place in the lock list to start looking
1635  *	lock		The lock which is being tested
1636  *	type		Pass 'SELF' to test only locks with the same
1637  *			owner as lock, or 'OTHER' to test only locks
1638  *			with a different owner
1639  *
1640  * Returns one of six values:
1641  *	0) no overlap
1642  *	1) overlap == lock
1643  *	2) overlap contains lock
1644  *	3) lock contains overlap
1645  *	4) overlap starts before lock
1646  *	5) overlap ends after lock
1647  *
1648  * If there is an overlapping lock, '*overlap' is set to point at the
1649  * overlapping lock.
1650  *
1651  * NOTE: this returns only the FIRST overlapping lock.  There
1652  *	 may be more than one.
1653  */
1654 static int
1655 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1656 {
1657 	struct lockf_entry *lf;
1658 	off_t start, end;
1659 	int res;
1660 
1661 	if ((*overlap) == NOLOCKF) {
1662 		return (0);
1663 	}
1664 #ifdef LOCKF_DEBUG
1665 	if (lockf_debug & 2)
1666 		lf_print("lf_findoverlap: looking for overlap in", lock);
1667 #endif /* LOCKF_DEBUG */
1668 	start = lock->lf_start;
1669 	end = lock->lf_end;
1670 	res = 0;
1671 	while (*overlap) {
1672 		lf = *overlap;
1673 		if (lf->lf_start > end)
1674 			break;
1675 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1676 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1677 			*overlap = LIST_NEXT(lf, lf_link);
1678 			continue;
1679 		}
1680 #ifdef LOCKF_DEBUG
1681 		if (lockf_debug & 2)
1682 			lf_print("\tchecking", lf);
1683 #endif /* LOCKF_DEBUG */
1684 		/*
1685 		 * OK, check for overlap
1686 		 *
1687 		 * Six cases:
1688 		 *	0) no overlap
1689 		 *	1) overlap == lock
1690 		 *	2) overlap contains lock
1691 		 *	3) lock contains overlap
1692 		 *	4) overlap starts before lock
1693 		 *	5) overlap ends after lock
1694 		 */
1695 		if (start > lf->lf_end) {
1696 			/* Case 0 */
1697 #ifdef LOCKF_DEBUG
1698 			if (lockf_debug & 2)
1699 				printf("no overlap\n");
1700 #endif /* LOCKF_DEBUG */
1701 			*overlap = LIST_NEXT(lf, lf_link);
1702 			continue;
1703 		}
1704 		if (lf->lf_start == start && lf->lf_end == end) {
1705 			/* Case 1 */
1706 #ifdef LOCKF_DEBUG
1707 			if (lockf_debug & 2)
1708 				printf("overlap == lock\n");
1709 #endif /* LOCKF_DEBUG */
1710 			res = 1;
1711 			break;
1712 		}
1713 		if (lf->lf_start <= start && lf->lf_end >= end) {
1714 			/* Case 2 */
1715 #ifdef LOCKF_DEBUG
1716 			if (lockf_debug & 2)
1717 				printf("overlap contains lock\n");
1718 #endif /* LOCKF_DEBUG */
1719 			res = 2;
1720 			break;
1721 		}
1722 		if (start <= lf->lf_start && end >= lf->lf_end) {
1723 			/* Case 3 */
1724 #ifdef LOCKF_DEBUG
1725 			if (lockf_debug & 2)
1726 				printf("lock contains overlap\n");
1727 #endif /* LOCKF_DEBUG */
1728 			res = 3;
1729 			break;
1730 		}
1731 		if (lf->lf_start < start && lf->lf_end >= start) {
1732 			/* Case 4 */
1733 #ifdef LOCKF_DEBUG
1734 			if (lockf_debug & 2)
1735 				printf("overlap starts before lock\n");
1736 #endif /* LOCKF_DEBUG */
1737 			res = 4;
1738 			break;
1739 		}
1740 		if (lf->lf_start > start && lf->lf_end > end) {
1741 			/* Case 5 */
1742 #ifdef LOCKF_DEBUG
1743 			if (lockf_debug & 2)
1744 				printf("overlap ends after lock\n");
1745 #endif /* LOCKF_DEBUG */
1746 			res = 5;
1747 			break;
1748 		}
1749 		panic("lf_findoverlap: default");
1750 	}
1751 	return (res);
1752 }
1753 
1754 /*
1755  * Split an the existing 'lock1', based on the extent of the lock
1756  * described by 'lock2'. The existing lock should cover 'lock2'
1757  * entirely.
1758  *
1759  * Any pending locks which have been been unblocked are added to
1760  * 'granted'
1761  */
1762 static void
1763 lf_split(struct lockf *state, struct lockf_entry *lock1,
1764     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1765 {
1766 	struct lockf_entry *splitlock;
1767 
1768 #ifdef LOCKF_DEBUG
1769 	if (lockf_debug & 2) {
1770 		lf_print("lf_split", lock1);
1771 		lf_print("splitting from", lock2);
1772 	}
1773 #endif /* LOCKF_DEBUG */
1774 	/*
1775 	 * Check to see if we don't need to split at all.
1776 	 */
1777 	if (lock1->lf_start == lock2->lf_start) {
1778 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1779 		return;
1780 	}
1781 	if (lock1->lf_end == lock2->lf_end) {
1782 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1783 		return;
1784 	}
1785 	/*
1786 	 * Make a new lock consisting of the last part of
1787 	 * the encompassing lock.
1788 	 */
1789 	splitlock = lf_alloc_lock(lock1->lf_owner);
1790 	memcpy(splitlock, lock1, sizeof *splitlock);
1791 	if (splitlock->lf_flags & F_REMOTE)
1792 		vref(splitlock->lf_vnode);
1793 
1794 	/*
1795 	 * This cannot cause a deadlock since any edges we would add
1796 	 * to splitlock already exist in lock1. We must be sure to add
1797 	 * necessary dependancies to splitlock before we reduce lock1
1798 	 * otherwise we may accidentally grant a pending lock that
1799 	 * was blocked by the tail end of lock1.
1800 	 */
1801 	splitlock->lf_start = lock2->lf_end + 1;
1802 	LIST_INIT(&splitlock->lf_outedges);
1803 	LIST_INIT(&splitlock->lf_inedges);
1804 	sx_xlock(&lf_owner_graph_lock);
1805 	lf_add_incoming(state, splitlock);
1806 	sx_xunlock(&lf_owner_graph_lock);
1807 
1808 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1809 
1810 	/*
1811 	 * OK, now link it in
1812 	 */
1813 	lf_insert_lock(state, splitlock);
1814 }
1815 
1816 struct clearlock {
1817 	STAILQ_ENTRY(clearlock) link;
1818 	struct vnode *vp;
1819 	struct flock fl;
1820 };
1821 STAILQ_HEAD(clearlocklist, clearlock);
1822 
1823 void
1824 lf_clearremotesys(int sysid)
1825 {
1826 	struct lockf *ls;
1827 	struct lockf_entry *lf;
1828 	struct clearlock *cl;
1829 	struct clearlocklist locks;
1830 
1831 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
1832 
1833 	/*
1834 	 * In order to keep the locking simple, we iterate over the
1835 	 * active lock lists to build a list of locks that need
1836 	 * releasing. We then call VOP_ADVLOCK for each one in turn.
1837 	 *
1838 	 * We take an extra reference to the vnode for the duration to
1839 	 * make sure it doesn't go away before we are finished.
1840 	 */
1841 	STAILQ_INIT(&locks);
1842 	sx_xlock(&lf_lock_states_lock);
1843 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1844 		sx_xlock(&ls->ls_lock);
1845 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1846 			if (lf->lf_owner->lo_sysid != sysid)
1847 				continue;
1848 
1849 			cl = malloc(sizeof(struct clearlock), M_LOCKF,
1850 			    M_WAITOK);
1851 			cl->vp = lf->lf_vnode;
1852 			vref(cl->vp);
1853 			cl->fl.l_start = lf->lf_start;
1854 			if (lf->lf_end == OFF_MAX)
1855 				cl->fl.l_len = 0;
1856 			else
1857 				cl->fl.l_len =
1858 					lf->lf_end - lf->lf_start + 1;
1859 			cl->fl.l_whence = SEEK_SET;
1860 			cl->fl.l_type = F_UNLCK;
1861 			cl->fl.l_pid = lf->lf_owner->lo_pid;
1862 			cl->fl.l_sysid = sysid;
1863 			STAILQ_INSERT_TAIL(&locks, cl, link);
1864 		}
1865 		sx_xunlock(&ls->ls_lock);
1866 	}
1867 	sx_xunlock(&lf_lock_states_lock);
1868 
1869 	while ((cl = STAILQ_FIRST(&locks)) != NULL) {
1870 		STAILQ_REMOVE_HEAD(&locks, link);
1871 		VOP_ADVLOCK(cl->vp, 0, F_UNLCK, &cl->fl, F_REMOTE);
1872 		vrele(cl->vp);
1873 		free(cl, M_LOCKF);
1874 	}
1875 }
1876 
1877 int
1878 lf_countlocks(int sysid)
1879 {
1880 	int i;
1881 	struct lock_owner *lo;
1882 	int count;
1883 
1884 	count = 0;
1885 	sx_xlock(&lf_lock_owners_lock);
1886 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
1887 		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
1888 			if (lo->lo_sysid == sysid)
1889 				count += lo->lo_refs;
1890 	sx_xunlock(&lf_lock_owners_lock);
1891 
1892 	return (count);
1893 }
1894 
1895 #ifdef LOCKF_DEBUG
1896 
1897 /*
1898  * Return non-zero if y is reachable from x using a brute force
1899  * search. If reachable and path is non-null, return the route taken
1900  * in path.
1901  */
1902 static int
1903 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
1904     struct owner_vertex_list *path)
1905 {
1906 	struct owner_edge *e;
1907 
1908 	if (x == y) {
1909 		if (path)
1910 			TAILQ_INSERT_HEAD(path, x, v_link);
1911 		return 1;
1912 	}
1913 
1914 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
1915 		if (graph_reaches(e->e_to, y, path)) {
1916 			if (path)
1917 				TAILQ_INSERT_HEAD(path, x, v_link);
1918 			return 1;
1919 		}
1920 	}
1921 	return 0;
1922 }
1923 
1924 /*
1925  * Perform consistency checks on the graph. Make sure the values of
1926  * v_order are correct. If checkorder is non-zero, check no vertex can
1927  * reach any other vertex with a smaller order.
1928  */
1929 static void
1930 graph_check(struct owner_graph *g, int checkorder)
1931 {
1932 	int i, j;
1933 
1934 	for (i = 0; i < g->g_size; i++) {
1935 		if (!g->g_vertices[i]->v_owner)
1936 			continue;
1937 		KASSERT(g->g_vertices[i]->v_order == i,
1938 		    ("lock graph vertices disordered"));
1939 		if (checkorder) {
1940 			for (j = 0; j < i; j++) {
1941 				if (!g->g_vertices[j]->v_owner)
1942 					continue;
1943 				KASSERT(!graph_reaches(g->g_vertices[i],
1944 					g->g_vertices[j], NULL),
1945 				    ("lock graph vertices disordered"));
1946 			}
1947 		}
1948 	}
1949 }
1950 
1951 static void
1952 graph_print_vertices(struct owner_vertex_list *set)
1953 {
1954 	struct owner_vertex *v;
1955 
1956 	printf("{ ");
1957 	TAILQ_FOREACH(v, set, v_link) {
1958 		printf("%d:", v->v_order);
1959 		lf_print_owner(v->v_owner);
1960 		if (TAILQ_NEXT(v, v_link))
1961 			printf(", ");
1962 	}
1963 	printf(" }\n");
1964 }
1965 
1966 #endif
1967 
1968 /*
1969  * Calculate the sub-set of vertices v from the affected region [y..x]
1970  * where v is reachable from y. Return -1 if a loop was detected
1971  * (i.e. x is reachable from y, otherwise the number of vertices in
1972  * this subset.
1973  */
1974 static int
1975 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
1976     struct owner_vertex *y, struct owner_vertex_list *delta)
1977 {
1978 	uint32_t gen;
1979 	struct owner_vertex *v;
1980 	struct owner_edge *e;
1981 	int n;
1982 
1983 	/*
1984 	 * We start with a set containing just y. Then for each vertex
1985 	 * v in the set so far unprocessed, we add each vertex that v
1986 	 * has an out-edge to and that is within the affected region
1987 	 * [y..x]. If we see the vertex x on our travels, stop
1988 	 * immediately.
1989 	 */
1990 	TAILQ_INIT(delta);
1991 	TAILQ_INSERT_TAIL(delta, y, v_link);
1992 	v = y;
1993 	n = 1;
1994 	gen = g->g_gen;
1995 	while (v) {
1996 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
1997 			if (e->e_to == x)
1998 				return -1;
1999 			if (e->e_to->v_order < x->v_order
2000 			    && e->e_to->v_gen != gen) {
2001 				e->e_to->v_gen = gen;
2002 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2003 				n++;
2004 			}
2005 		}
2006 		v = TAILQ_NEXT(v, v_link);
2007 	}
2008 
2009 	return (n);
2010 }
2011 
2012 /*
2013  * Calculate the sub-set of vertices v from the affected region [y..x]
2014  * where v reaches x. Return the number of vertices in this subset.
2015  */
2016 static int
2017 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2018     struct owner_vertex *y, struct owner_vertex_list *delta)
2019 {
2020 	uint32_t gen;
2021 	struct owner_vertex *v;
2022 	struct owner_edge *e;
2023 	int n;
2024 
2025 	/*
2026 	 * We start with a set containing just x. Then for each vertex
2027 	 * v in the set so far unprocessed, we add each vertex that v
2028 	 * has an in-edge from and that is within the affected region
2029 	 * [y..x].
2030 	 */
2031 	TAILQ_INIT(delta);
2032 	TAILQ_INSERT_TAIL(delta, x, v_link);
2033 	v = x;
2034 	n = 1;
2035 	gen = g->g_gen;
2036 	while (v) {
2037 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2038 			if (e->e_from->v_order > y->v_order
2039 			    && e->e_from->v_gen != gen) {
2040 				e->e_from->v_gen = gen;
2041 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2042 				n++;
2043 			}
2044 		}
2045 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2046 	}
2047 
2048 	return (n);
2049 }
2050 
2051 static int
2052 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2053 {
2054 	struct owner_vertex *v;
2055 	int i, j;
2056 
2057 	TAILQ_FOREACH(v, set, v_link) {
2058 		for (i = n;
2059 		     i > 0 && indices[i - 1] > v->v_order; i--)
2060 			;
2061 		for (j = n - 1; j >= i; j--)
2062 			indices[j + 1] = indices[j];
2063 		indices[i] = v->v_order;
2064 		n++;
2065 	}
2066 
2067 	return (n);
2068 }
2069 
2070 static int
2071 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2072     struct owner_vertex_list *set)
2073 {
2074 	struct owner_vertex *v, *vlowest;
2075 
2076 	while (!TAILQ_EMPTY(set)) {
2077 		vlowest = NULL;
2078 		TAILQ_FOREACH(v, set, v_link) {
2079 			if (!vlowest || v->v_order < vlowest->v_order)
2080 				vlowest = v;
2081 		}
2082 		TAILQ_REMOVE(set, vlowest, v_link);
2083 		vlowest->v_order = indices[nextunused];
2084 		g->g_vertices[vlowest->v_order] = vlowest;
2085 		nextunused++;
2086 	}
2087 
2088 	return (nextunused);
2089 }
2090 
2091 static int
2092 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2093     struct owner_vertex *y)
2094 {
2095 	struct owner_edge *e;
2096 	struct owner_vertex_list deltaF, deltaB;
2097 	int nF, nB, n, vi, i;
2098 	int *indices;
2099 
2100 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2101 
2102 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2103 		if (e->e_to == y) {
2104 			e->e_refs++;
2105 			return (0);
2106 		}
2107 	}
2108 
2109 #ifdef LOCKF_DEBUG
2110 	if (lockf_debug & 8) {
2111 		printf("adding edge %d:", x->v_order);
2112 		lf_print_owner(x->v_owner);
2113 		printf(" -> %d:", y->v_order);
2114 		lf_print_owner(y->v_owner);
2115 		printf("\n");
2116 	}
2117 #endif
2118 	if (y->v_order < x->v_order) {
2119 		/*
2120 		 * The new edge violates the order. First find the set
2121 		 * of affected vertices reachable from y (deltaF) and
2122 		 * the set of affect vertices affected that reach x
2123 		 * (deltaB), using the graph generation number to
2124 		 * detect whether we have visited a given vertex
2125 		 * already. We re-order the graph so that each vertex
2126 		 * in deltaB appears before each vertex in deltaF.
2127 		 *
2128 		 * If x is a member of deltaF, then the new edge would
2129 		 * create a cycle. Otherwise, we may assume that
2130 		 * deltaF and deltaB are disjoint.
2131 		 */
2132 		g->g_gen++;
2133 		if (g->g_gen == 0) {
2134 			/*
2135 			 * Generation wrap.
2136 			 */
2137 			for (vi = 0; vi < g->g_size; vi++) {
2138 				g->g_vertices[vi]->v_gen = 0;
2139 			}
2140 			g->g_gen++;
2141 		}
2142 		nF = graph_delta_forward(g, x, y, &deltaF);
2143 		if (nF < 0) {
2144 #ifdef LOCKF_DEBUG
2145 			if (lockf_debug & 8) {
2146 				struct owner_vertex_list path;
2147 				printf("deadlock: ");
2148 				TAILQ_INIT(&path);
2149 				graph_reaches(y, x, &path);
2150 				graph_print_vertices(&path);
2151 			}
2152 #endif
2153 			return (EDEADLK);
2154 		}
2155 
2156 #ifdef LOCKF_DEBUG
2157 		if (lockf_debug & 8) {
2158 			printf("re-ordering graph vertices\n");
2159 			printf("deltaF = ");
2160 			graph_print_vertices(&deltaF);
2161 		}
2162 #endif
2163 
2164 		nB = graph_delta_backward(g, x, y, &deltaB);
2165 
2166 #ifdef LOCKF_DEBUG
2167 		if (lockf_debug & 8) {
2168 			printf("deltaB = ");
2169 			graph_print_vertices(&deltaB);
2170 		}
2171 #endif
2172 
2173 		/*
2174 		 * We first build a set of vertex indices (vertex
2175 		 * order values) that we may use, then we re-assign
2176 		 * orders first to those vertices in deltaB, then to
2177 		 * deltaF. Note that the contents of deltaF and deltaB
2178 		 * may be partially disordered - we perform an
2179 		 * insertion sort while building our index set.
2180 		 */
2181 		indices = g->g_indexbuf;
2182 		n = graph_add_indices(indices, 0, &deltaF);
2183 		graph_add_indices(indices, n, &deltaB);
2184 
2185 		/*
2186 		 * We must also be sure to maintain the relative
2187 		 * ordering of deltaF and deltaB when re-assigning
2188 		 * vertices. We do this by iteratively removing the
2189 		 * lowest ordered element from the set and assigning
2190 		 * it the next value from our new ordering.
2191 		 */
2192 		i = graph_assign_indices(g, indices, 0, &deltaB);
2193 		graph_assign_indices(g, indices, i, &deltaF);
2194 
2195 #ifdef LOCKF_DEBUG
2196 		if (lockf_debug & 8) {
2197 			struct owner_vertex_list set;
2198 			TAILQ_INIT(&set);
2199 			for (i = 0; i < nB + nF; i++)
2200 				TAILQ_INSERT_TAIL(&set,
2201 				    g->g_vertices[indices[i]], v_link);
2202 			printf("new ordering = ");
2203 			graph_print_vertices(&set);
2204 		}
2205 #endif
2206 	}
2207 
2208 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2209 
2210 #ifdef LOCKF_DEBUG
2211 	if (lockf_debug & 8) {
2212 		graph_check(g, TRUE);
2213 	}
2214 #endif
2215 
2216 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2217 
2218 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2219 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2220 	e->e_refs = 1;
2221 	e->e_from = x;
2222 	e->e_to = y;
2223 
2224 	return (0);
2225 }
2226 
2227 /*
2228  * Remove an edge x->y from the graph.
2229  */
2230 static void
2231 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2232     struct owner_vertex *y)
2233 {
2234 	struct owner_edge *e;
2235 
2236 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2237 
2238 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2239 		if (e->e_to == y)
2240 			break;
2241 	}
2242 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2243 
2244 	e->e_refs--;
2245 	if (e->e_refs == 0) {
2246 #ifdef LOCKF_DEBUG
2247 		if (lockf_debug & 8) {
2248 			printf("removing edge %d:", x->v_order);
2249 			lf_print_owner(x->v_owner);
2250 			printf(" -> %d:", y->v_order);
2251 			lf_print_owner(y->v_owner);
2252 			printf("\n");
2253 		}
2254 #endif
2255 		LIST_REMOVE(e, e_outlink);
2256 		LIST_REMOVE(e, e_inlink);
2257 		free(e, M_LOCKF);
2258 	}
2259 }
2260 
2261 /*
2262  * Allocate a vertex from the free list. Return ENOMEM if there are
2263  * none.
2264  */
2265 static struct owner_vertex *
2266 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2267 {
2268 	struct owner_vertex *v;
2269 
2270 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2271 
2272 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2273 	if (g->g_size == g->g_space) {
2274 		g->g_vertices = realloc(g->g_vertices,
2275 		    2 * g->g_space * sizeof(struct owner_vertex *),
2276 		    M_LOCKF, M_WAITOK);
2277 		free(g->g_indexbuf, M_LOCKF);
2278 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2279 		    M_LOCKF, M_WAITOK);
2280 		g->g_space = 2 * g->g_space;
2281 	}
2282 	v->v_order = g->g_size;
2283 	v->v_gen = g->g_gen;
2284 	g->g_vertices[g->g_size] = v;
2285 	g->g_size++;
2286 
2287 	LIST_INIT(&v->v_outedges);
2288 	LIST_INIT(&v->v_inedges);
2289 	v->v_owner = lo;
2290 
2291 	return (v);
2292 }
2293 
2294 static void
2295 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2296 {
2297 	struct owner_vertex *w;
2298 	int i;
2299 
2300 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2301 
2302 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2303 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2304 
2305 	/*
2306 	 * Remove from the graph's array and close up the gap,
2307 	 * renumbering the other vertices.
2308 	 */
2309 	for (i = v->v_order + 1; i < g->g_size; i++) {
2310 		w = g->g_vertices[i];
2311 		w->v_order--;
2312 		g->g_vertices[i - 1] = w;
2313 	}
2314 	g->g_size--;
2315 
2316 	free(v, M_LOCKF);
2317 }
2318 
2319 static struct owner_graph *
2320 graph_init(struct owner_graph *g)
2321 {
2322 
2323 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2324 	    M_LOCKF, M_WAITOK);
2325 	g->g_size = 0;
2326 	g->g_space = 10;
2327 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2328 	g->g_gen = 0;
2329 
2330 	return (g);
2331 }
2332 
2333 #ifdef LOCKF_DEBUG
2334 /*
2335  * Print description of a lock owner
2336  */
2337 static void
2338 lf_print_owner(struct lock_owner *lo)
2339 {
2340 
2341 	if (lo->lo_flags & F_REMOTE) {
2342 		printf("remote pid %d, system %d",
2343 		    lo->lo_pid, lo->lo_sysid);
2344 	} else if (lo->lo_flags & F_FLOCK) {
2345 		printf("file %p", lo->lo_id);
2346 	} else {
2347 		printf("local pid %d", lo->lo_pid);
2348 	}
2349 }
2350 
2351 /*
2352  * Print out a lock.
2353  */
2354 static void
2355 lf_print(char *tag, struct lockf_entry *lock)
2356 {
2357 
2358 	printf("%s: lock %p for ", tag, (void *)lock);
2359 	lf_print_owner(lock->lf_owner);
2360 	if (lock->lf_inode != (struct inode *)0)
2361 		printf(" in ino %ju on dev <%s>,",
2362 		    (uintmax_t)lock->lf_inode->i_number,
2363 		    devtoname(lock->lf_inode->i_dev));
2364 	printf(" %s, start %jd, end ",
2365 	    lock->lf_type == F_RDLCK ? "shared" :
2366 	    lock->lf_type == F_WRLCK ? "exclusive" :
2367 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2368 	    (intmax_t)lock->lf_start);
2369 	if (lock->lf_end == OFF_MAX)
2370 		printf("EOF");
2371 	else
2372 		printf("%jd", (intmax_t)lock->lf_end);
2373 	if (!LIST_EMPTY(&lock->lf_outedges))
2374 		printf(" block %p\n",
2375 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2376 	else
2377 		printf("\n");
2378 }
2379 
2380 static void
2381 lf_printlist(char *tag, struct lockf_entry *lock)
2382 {
2383 	struct lockf_entry *lf, *blk;
2384 	struct lockf_edge *e;
2385 
2386 	if (lock->lf_inode == (struct inode *)0)
2387 		return;
2388 
2389 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2390 	    tag, (uintmax_t)lock->lf_inode->i_number,
2391 	    devtoname(lock->lf_inode->i_dev));
2392 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2393 		printf("\tlock %p for ",(void *)lf);
2394 		lf_print_owner(lock->lf_owner);
2395 		printf(", %s, start %jd, end %jd",
2396 		    lf->lf_type == F_RDLCK ? "shared" :
2397 		    lf->lf_type == F_WRLCK ? "exclusive" :
2398 		    lf->lf_type == F_UNLCK ? "unlock" :
2399 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2400 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2401 			blk = e->le_to;
2402 			printf("\n\t\tlock request %p for ", (void *)blk);
2403 			lf_print_owner(blk->lf_owner);
2404 			printf(", %s, start %jd, end %jd",
2405 			    blk->lf_type == F_RDLCK ? "shared" :
2406 			    blk->lf_type == F_WRLCK ? "exclusive" :
2407 			    blk->lf_type == F_UNLCK ? "unlock" :
2408 			    "unknown", (intmax_t)blk->lf_start,
2409 			    (intmax_t)blk->lf_end);
2410 			if (!LIST_EMPTY(&blk->lf_inedges))
2411 				panic("lf_printlist: bad list");
2412 		}
2413 		printf("\n");
2414 	}
2415 }
2416 #endif /* LOCKF_DEBUG */
2417