xref: /freebsd/sys/kern/kern_lockf.c (revision 29fc4075e69fd27de0cded313ac6000165d99f8b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5  * Authors: Doug Rabson <dfr@rabson.org>
6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (c) 1982, 1986, 1989, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * This code is derived from software contributed to Berkeley by
34  * Scooter Morris at Genentech Inc.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
61  */
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include "opt_debug_lockf.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/hash.h>
71 #include <sys/jail.h>
72 #include <sys/kernel.h>
73 #include <sys/limits.h>
74 #include <sys/lock.h>
75 #include <sys/mount.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/sbuf.h>
79 #include <sys/stat.h>
80 #include <sys/sx.h>
81 #include <sys/unistd.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/malloc.h>
85 #include <sys/fcntl.h>
86 #include <sys/lockf.h>
87 #include <sys/taskqueue.h>
88 
89 #ifdef LOCKF_DEBUG
90 #include <sys/sysctl.h>
91 
92 static int	lockf_debug = 0; /* control debug output */
93 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
94 #endif
95 
96 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
97 
98 struct owner_edge;
99 struct owner_vertex;
100 struct owner_vertex_list;
101 struct owner_graph;
102 
103 #define NOLOCKF (struct lockf_entry *)0
104 #define SELF	0x1
105 #define OTHERS	0x2
106 static void	 lf_init(void *);
107 static int	 lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
108 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
109     int);
110 static struct lockf_entry *
111 		 lf_alloc_lock(struct lock_owner *);
112 static int	 lf_free_lock(struct lockf_entry *);
113 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
114 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
115 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
116 static void	 lf_free_edge(struct lockf_edge *);
117 static struct lockf_edge *
118 		 lf_alloc_edge(void);
119 static void	 lf_alloc_vertex(struct lockf_entry *);
120 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
121 static void	 lf_remove_edge(struct lockf_edge *);
122 static void	 lf_remove_outgoing(struct lockf_entry *);
123 static void	 lf_remove_incoming(struct lockf_entry *);
124 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
125 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
126 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
127     int);
128 static struct lockf_entry *
129 		 lf_getblock(struct lockf *, struct lockf_entry *);
130 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
131 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
132 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
133 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
134     int all, struct lockf_entry_list *);
135 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
136 	struct lockf_entry_list*);
137 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
138 	struct lockf_entry_list*);
139 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
140     struct vnode *, void **cookiep);
141 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
142 static void	 lf_split(struct lockf *, struct lockf_entry *,
143     struct lockf_entry *, struct lockf_entry_list *);
144 #ifdef LOCKF_DEBUG
145 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
146     struct owner_vertex_list *path);
147 static void	 graph_check(struct owner_graph *g, int checkorder);
148 static void	 graph_print_vertices(struct owner_vertex_list *set);
149 #endif
150 static int	 graph_delta_forward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int	 graph_delta_backward(struct owner_graph *g,
154     struct owner_vertex *x, struct owner_vertex *y,
155     struct owner_vertex_list *delta);
156 static int	 graph_add_indices(int *indices, int n,
157     struct owner_vertex_list *set);
158 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
159     int nextunused, struct owner_vertex_list *set);
160 static int	 graph_add_edge(struct owner_graph *g,
161     struct owner_vertex *x, struct owner_vertex *y);
162 static void	 graph_remove_edge(struct owner_graph *g,
163     struct owner_vertex *x, struct owner_vertex *y);
164 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
165     struct lock_owner *lo);
166 static void	 graph_free_vertex(struct owner_graph *g,
167     struct owner_vertex *v);
168 static struct owner_graph * graph_init(struct owner_graph *g);
169 #ifdef LOCKF_DEBUG
170 static void	 lf_print(char *, struct lockf_entry *);
171 static void	 lf_printlist(char *, struct lockf_entry *);
172 static void	 lf_print_owner(struct lock_owner *);
173 #endif
174 
175 /*
176  * This structure is used to keep track of both local and remote lock
177  * owners. The lf_owner field of the struct lockf_entry points back at
178  * the lock owner structure. Each possible lock owner (local proc for
179  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
180  * pair for remote locks) is represented by a unique instance of
181  * struct lock_owner.
182  *
183  * If a lock owner has a lock that blocks some other lock or a lock
184  * that is waiting for some other lock, it also has a vertex in the
185  * owner_graph below.
186  *
187  * Locks:
188  * (s)		locked by state->ls_lock
189  * (S)		locked by lf_lock_states_lock
190  * (g)		locked by lf_owner_graph_lock
191  * (c)		const until freeing
192  */
193 #define	LOCK_OWNER_HASH_SIZE	256
194 
195 struct lock_owner {
196 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
197 	int	lo_refs;	    /* (l) Number of locks referring to this */
198 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
199 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
200 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
201 	int	lo_sysid;	    /* (c) System Id of the lock owner */
202 	int	lo_hash;	    /* (c) Used to lock the appropriate chain */
203 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
204 };
205 
206 LIST_HEAD(lock_owner_list, lock_owner);
207 
208 struct lock_owner_chain {
209 	struct sx		lock;
210 	struct lock_owner_list	list;
211 };
212 
213 static struct sx		lf_lock_states_lock;
214 static struct lockf_list	lf_lock_states; /* (S) */
215 static struct lock_owner_chain	lf_lock_owners[LOCK_OWNER_HASH_SIZE];
216 
217 /*
218  * Structures for deadlock detection.
219  *
220  * We have two types of directed graph, the first is the set of locks,
221  * both active and pending on a vnode. Within this graph, active locks
222  * are terminal nodes in the graph (i.e. have no out-going
223  * edges). Pending locks have out-going edges to each blocking active
224  * lock that prevents the lock from being granted and also to each
225  * older pending lock that would block them if it was active. The
226  * graph for each vnode is naturally acyclic; new edges are only ever
227  * added to or from new nodes (either new pending locks which only add
228  * out-going edges or new active locks which only add in-coming edges)
229  * therefore they cannot create loops in the lock graph.
230  *
231  * The second graph is a global graph of lock owners. Each lock owner
232  * is a vertex in that graph and an edge is added to the graph
233  * whenever an edge is added to a vnode graph, with end points
234  * corresponding to owner of the new pending lock and the owner of the
235  * lock upon which it waits. In order to prevent deadlock, we only add
236  * an edge to this graph if the new edge would not create a cycle.
237  *
238  * The lock owner graph is topologically sorted, i.e. if a node has
239  * any outgoing edges, then it has an order strictly less than any
240  * node to which it has an outgoing edge. We preserve this ordering
241  * (and detect cycles) on edge insertion using Algorithm PK from the
242  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
243  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
244  * No. 1.7)
245  */
246 struct owner_vertex;
247 
248 struct owner_edge {
249 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
250 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
251 	int		e_refs;		  /* (g) number of times added */
252 	struct owner_vertex *e_from;	  /* (c) out-going from here */
253 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
254 };
255 LIST_HEAD(owner_edge_list, owner_edge);
256 
257 struct owner_vertex {
258 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
259 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
260 	int		v_order;	  /* (g) order of vertex in graph */
261 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
262 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
263 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
264 };
265 TAILQ_HEAD(owner_vertex_list, owner_vertex);
266 
267 struct owner_graph {
268 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
269 	int		g_size;		  /* (g) number of vertices */
270 	int		g_space;	  /* (g) space allocated for vertices */
271 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
272 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
273 };
274 
275 static struct sx		lf_owner_graph_lock;
276 static struct owner_graph	lf_owner_graph;
277 
278 /*
279  * Initialise various structures and locks.
280  */
281 static void
282 lf_init(void *dummy)
283 {
284 	int i;
285 
286 	sx_init(&lf_lock_states_lock, "lock states lock");
287 	LIST_INIT(&lf_lock_states);
288 
289 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
290 		sx_init(&lf_lock_owners[i].lock, "lock owners lock");
291 		LIST_INIT(&lf_lock_owners[i].list);
292 	}
293 
294 	sx_init(&lf_owner_graph_lock, "owner graph lock");
295 	graph_init(&lf_owner_graph);
296 }
297 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
298 
299 /*
300  * Generate a hash value for a lock owner.
301  */
302 static int
303 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
304 {
305 	uint32_t h;
306 
307 	if (flags & F_REMOTE) {
308 		h = HASHSTEP(0, fl->l_pid);
309 		h = HASHSTEP(h, fl->l_sysid);
310 	} else if (flags & F_FLOCK) {
311 		h = ((uintptr_t) id) >> 7;
312 	} else {
313 		h = ((uintptr_t) vp) >> 7;
314 	}
315 
316 	return (h % LOCK_OWNER_HASH_SIZE);
317 }
318 
319 /*
320  * Return true if a lock owner matches the details passed to
321  * lf_advlock.
322  */
323 static int
324 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
325     int flags)
326 {
327 	if (flags & F_REMOTE) {
328 		return lo->lo_pid == fl->l_pid
329 			&& lo->lo_sysid == fl->l_sysid;
330 	} else {
331 		return lo->lo_id == id;
332 	}
333 }
334 
335 static struct lockf_entry *
336 lf_alloc_lock(struct lock_owner *lo)
337 {
338 	struct lockf_entry *lf;
339 
340 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
341 
342 #ifdef LOCKF_DEBUG
343 	if (lockf_debug & 4)
344 		printf("Allocated lock %p\n", lf);
345 #endif
346 	if (lo) {
347 		sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
348 		lo->lo_refs++;
349 		sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
350 		lf->lf_owner = lo;
351 	}
352 
353 	return (lf);
354 }
355 
356 static int
357 lf_free_lock(struct lockf_entry *lock)
358 {
359 	struct sx *chainlock;
360 
361 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
362 	if (--lock->lf_refs > 0)
363 		return (0);
364 	/*
365 	 * Adjust the lock_owner reference count and
366 	 * reclaim the entry if this is the last lock
367 	 * for that owner.
368 	 */
369 	struct lock_owner *lo = lock->lf_owner;
370 	if (lo) {
371 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
372 		    ("freeing lock with dependencies"));
373 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
374 		    ("freeing lock with dependants"));
375 		chainlock = &lf_lock_owners[lo->lo_hash].lock;
376 		sx_xlock(chainlock);
377 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
378 		lo->lo_refs--;
379 		if (lo->lo_refs == 0) {
380 #ifdef LOCKF_DEBUG
381 			if (lockf_debug & 1)
382 				printf("lf_free_lock: freeing lock owner %p\n",
383 				    lo);
384 #endif
385 			if (lo->lo_vertex) {
386 				sx_xlock(&lf_owner_graph_lock);
387 				graph_free_vertex(&lf_owner_graph,
388 				    lo->lo_vertex);
389 				sx_xunlock(&lf_owner_graph_lock);
390 			}
391 			LIST_REMOVE(lo, lo_link);
392 			free(lo, M_LOCKF);
393 #ifdef LOCKF_DEBUG
394 			if (lockf_debug & 4)
395 				printf("Freed lock owner %p\n", lo);
396 #endif
397 		}
398 		sx_unlock(chainlock);
399 	}
400 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
401 		vrele(lock->lf_vnode);
402 		lock->lf_vnode = NULL;
403 	}
404 #ifdef LOCKF_DEBUG
405 	if (lockf_debug & 4)
406 		printf("Freed lock %p\n", lock);
407 #endif
408 	free(lock, M_LOCKF);
409 	return (1);
410 }
411 
412 /*
413  * Advisory record locking support
414  */
415 int
416 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
417     u_quad_t size)
418 {
419 	struct lockf *state;
420 	struct flock *fl = ap->a_fl;
421 	struct lockf_entry *lock;
422 	struct vnode *vp = ap->a_vp;
423 	caddr_t id = ap->a_id;
424 	int flags = ap->a_flags;
425 	int hash;
426 	struct lock_owner *lo;
427 	off_t start, end, oadd;
428 	int error;
429 
430 	/*
431 	 * Handle the F_UNLKSYS case first - no need to mess about
432 	 * creating a lock owner for this one.
433 	 */
434 	if (ap->a_op == F_UNLCKSYS) {
435 		lf_clearremotesys(fl->l_sysid);
436 		return (0);
437 	}
438 
439 	/*
440 	 * Convert the flock structure into a start and end.
441 	 */
442 	switch (fl->l_whence) {
443 	case SEEK_SET:
444 	case SEEK_CUR:
445 		/*
446 		 * Caller is responsible for adding any necessary offset
447 		 * when SEEK_CUR is used.
448 		 */
449 		start = fl->l_start;
450 		break;
451 
452 	case SEEK_END:
453 		if (size > OFF_MAX ||
454 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
455 			return (EOVERFLOW);
456 		start = size + fl->l_start;
457 		break;
458 
459 	default:
460 		return (EINVAL);
461 	}
462 	if (start < 0)
463 		return (EINVAL);
464 	if (fl->l_len < 0) {
465 		if (start == 0)
466 			return (EINVAL);
467 		end = start - 1;
468 		start += fl->l_len;
469 		if (start < 0)
470 			return (EINVAL);
471 	} else if (fl->l_len == 0) {
472 		end = OFF_MAX;
473 	} else {
474 		oadd = fl->l_len - 1;
475 		if (oadd > OFF_MAX - start)
476 			return (EOVERFLOW);
477 		end = start + oadd;
478 	}
479 
480 retry_setlock:
481 
482 	/*
483 	 * Avoid the common case of unlocking when inode has no locks.
484 	 */
485 	if (ap->a_op != F_SETLK && (*statep) == NULL) {
486 		VI_LOCK(vp);
487 		if ((*statep) == NULL) {
488 			fl->l_type = F_UNLCK;
489 			VI_UNLOCK(vp);
490 			return (0);
491 		}
492 		VI_UNLOCK(vp);
493 	}
494 
495 	/*
496 	 * Map our arguments to an existing lock owner or create one
497 	 * if this is the first time we have seen this owner.
498 	 */
499 	hash = lf_hash_owner(id, vp, fl, flags);
500 	sx_xlock(&lf_lock_owners[hash].lock);
501 	LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
502 		if (lf_owner_matches(lo, id, fl, flags))
503 			break;
504 	if (!lo) {
505 		/*
506 		 * We initialise the lock with a reference
507 		 * count which matches the new lockf_entry
508 		 * structure created below.
509 		 */
510 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
511 		    M_WAITOK|M_ZERO);
512 #ifdef LOCKF_DEBUG
513 		if (lockf_debug & 4)
514 			printf("Allocated lock owner %p\n", lo);
515 #endif
516 
517 		lo->lo_refs = 1;
518 		lo->lo_flags = flags;
519 		lo->lo_id = id;
520 		lo->lo_hash = hash;
521 		if (flags & F_REMOTE) {
522 			lo->lo_pid = fl->l_pid;
523 			lo->lo_sysid = fl->l_sysid;
524 		} else if (flags & F_FLOCK) {
525 			lo->lo_pid = -1;
526 			lo->lo_sysid = 0;
527 		} else {
528 			struct proc *p = (struct proc *) id;
529 			lo->lo_pid = p->p_pid;
530 			lo->lo_sysid = 0;
531 		}
532 		lo->lo_vertex = NULL;
533 
534 #ifdef LOCKF_DEBUG
535 		if (lockf_debug & 1) {
536 			printf("lf_advlockasync: new lock owner %p ", lo);
537 			lf_print_owner(lo);
538 			printf("\n");
539 		}
540 #endif
541 
542 		LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
543 	} else {
544 		/*
545 		 * We have seen this lock owner before, increase its
546 		 * reference count to account for the new lockf_entry
547 		 * structure we create below.
548 		 */
549 		lo->lo_refs++;
550 	}
551 	sx_xunlock(&lf_lock_owners[hash].lock);
552 
553 	/*
554 	 * Create the lockf structure. We initialise the lf_owner
555 	 * field here instead of in lf_alloc_lock() to avoid paying
556 	 * the lf_lock_owners_lock tax twice.
557 	 */
558 	lock = lf_alloc_lock(NULL);
559 	lock->lf_refs = 1;
560 	lock->lf_start = start;
561 	lock->lf_end = end;
562 	lock->lf_owner = lo;
563 	lock->lf_vnode = vp;
564 	if (flags & F_REMOTE) {
565 		/*
566 		 * For remote locks, the caller may release its ref to
567 		 * the vnode at any time - we have to ref it here to
568 		 * prevent it from being recycled unexpectedly.
569 		 */
570 		vref(vp);
571 	}
572 
573 	lock->lf_type = fl->l_type;
574 	LIST_INIT(&lock->lf_outedges);
575 	LIST_INIT(&lock->lf_inedges);
576 	lock->lf_async_task = ap->a_task;
577 	lock->lf_flags = ap->a_flags;
578 
579 	/*
580 	 * Do the requested operation. First find our state structure
581 	 * and create a new one if necessary - the caller's *statep
582 	 * variable and the state's ls_threads count is protected by
583 	 * the vnode interlock.
584 	 */
585 	VI_LOCK(vp);
586 	if (VN_IS_DOOMED(vp)) {
587 		VI_UNLOCK(vp);
588 		lf_free_lock(lock);
589 		return (ENOENT);
590 	}
591 
592 	/*
593 	 * Allocate a state structure if necessary.
594 	 */
595 	state = *statep;
596 	if (state == NULL) {
597 		struct lockf *ls;
598 
599 		VI_UNLOCK(vp);
600 
601 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
602 		sx_init(&ls->ls_lock, "ls_lock");
603 		LIST_INIT(&ls->ls_active);
604 		LIST_INIT(&ls->ls_pending);
605 		ls->ls_threads = 1;
606 
607 		sx_xlock(&lf_lock_states_lock);
608 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
609 		sx_xunlock(&lf_lock_states_lock);
610 
611 		/*
612 		 * Cope if we lost a race with some other thread while
613 		 * trying to allocate memory.
614 		 */
615 		VI_LOCK(vp);
616 		if (VN_IS_DOOMED(vp)) {
617 			VI_UNLOCK(vp);
618 			sx_xlock(&lf_lock_states_lock);
619 			LIST_REMOVE(ls, ls_link);
620 			sx_xunlock(&lf_lock_states_lock);
621 			sx_destroy(&ls->ls_lock);
622 			free(ls, M_LOCKF);
623 			lf_free_lock(lock);
624 			return (ENOENT);
625 		}
626 		if ((*statep) == NULL) {
627 			state = *statep = ls;
628 			VI_UNLOCK(vp);
629 		} else {
630 			state = *statep;
631 			MPASS(state->ls_threads >= 0);
632 			state->ls_threads++;
633 			VI_UNLOCK(vp);
634 
635 			sx_xlock(&lf_lock_states_lock);
636 			LIST_REMOVE(ls, ls_link);
637 			sx_xunlock(&lf_lock_states_lock);
638 			sx_destroy(&ls->ls_lock);
639 			free(ls, M_LOCKF);
640 		}
641 	} else {
642 		MPASS(state->ls_threads >= 0);
643 		state->ls_threads++;
644 		VI_UNLOCK(vp);
645 	}
646 
647 	sx_xlock(&state->ls_lock);
648 	/*
649 	 * Recheck the doomed vnode after state->ls_lock is
650 	 * locked. lf_purgelocks() requires that no new threads add
651 	 * pending locks when vnode is marked by VIRF_DOOMED flag.
652 	 */
653 	if (VN_IS_DOOMED(vp)) {
654 		VI_LOCK(vp);
655 		MPASS(state->ls_threads > 0);
656 		state->ls_threads--;
657 		wakeup(state);
658 		VI_UNLOCK(vp);
659 		sx_xunlock(&state->ls_lock);
660 		lf_free_lock(lock);
661 		return (ENOENT);
662 	}
663 
664 	switch (ap->a_op) {
665 	case F_SETLK:
666 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
667 		break;
668 
669 	case F_UNLCK:
670 		error = lf_clearlock(state, lock);
671 		lf_free_lock(lock);
672 		break;
673 
674 	case F_GETLK:
675 		error = lf_getlock(state, lock, fl);
676 		lf_free_lock(lock);
677 		break;
678 
679 	case F_CANCEL:
680 		if (ap->a_cookiep)
681 			error = lf_cancel(state, lock, *ap->a_cookiep);
682 		else
683 			error = EINVAL;
684 		lf_free_lock(lock);
685 		break;
686 
687 	default:
688 		lf_free_lock(lock);
689 		error = EINVAL;
690 		break;
691 	}
692 
693 #ifdef DIAGNOSTIC
694 	/*
695 	 * Check for some can't happen stuff. In this case, the active
696 	 * lock list becoming disordered or containing mutually
697 	 * blocking locks. We also check the pending list for locks
698 	 * which should be active (i.e. have no out-going edges).
699 	 */
700 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
701 		struct lockf_entry *lf;
702 		if (LIST_NEXT(lock, lf_link))
703 			KASSERT((lock->lf_start
704 				<= LIST_NEXT(lock, lf_link)->lf_start),
705 			    ("locks disordered"));
706 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
707 			if (lock == lf)
708 				break;
709 			KASSERT(!lf_blocks(lock, lf),
710 			    ("two conflicting active locks"));
711 			if (lock->lf_owner == lf->lf_owner)
712 				KASSERT(!lf_overlaps(lock, lf),
713 				    ("two overlapping locks from same owner"));
714 		}
715 	}
716 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
717 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
718 		    ("pending lock which should be active"));
719 	}
720 #endif
721 	sx_xunlock(&state->ls_lock);
722 
723 	VI_LOCK(vp);
724 	MPASS(state->ls_threads > 0);
725 	state->ls_threads--;
726 	if (state->ls_threads != 0) {
727 		wakeup(state);
728 	}
729 	VI_UNLOCK(vp);
730 
731 	if (error == EDOOFUS) {
732 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
733 		goto retry_setlock;
734 	}
735 	return (error);
736 }
737 
738 int
739 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
740 {
741 	struct vop_advlockasync_args a;
742 
743 	a.a_vp = ap->a_vp;
744 	a.a_id = ap->a_id;
745 	a.a_op = ap->a_op;
746 	a.a_fl = ap->a_fl;
747 	a.a_flags = ap->a_flags;
748 	a.a_task = NULL;
749 	a.a_cookiep = NULL;
750 
751 	return (lf_advlockasync(&a, statep, size));
752 }
753 
754 void
755 lf_purgelocks(struct vnode *vp, struct lockf **statep)
756 {
757 	struct lockf *state;
758 	struct lockf_entry *lock, *nlock;
759 
760 	/*
761 	 * For this to work correctly, the caller must ensure that no
762 	 * other threads enter the locking system for this vnode,
763 	 * e.g. by checking VIRF_DOOMED. We wake up any threads that are
764 	 * sleeping waiting for locks on this vnode and then free all
765 	 * the remaining locks.
766 	 */
767 	VI_LOCK(vp);
768 	KASSERT(VN_IS_DOOMED(vp),
769 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
770 	state = *statep;
771 	if (state == NULL) {
772 		VI_UNLOCK(vp);
773 		return;
774 	}
775 	*statep = NULL;
776 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
777 		KASSERT(LIST_EMPTY(&state->ls_pending),
778 		    ("freeing state with pending locks"));
779 		VI_UNLOCK(vp);
780 		goto out_free;
781 	}
782 	MPASS(state->ls_threads >= 0);
783 	state->ls_threads++;
784 	VI_UNLOCK(vp);
785 
786 	sx_xlock(&state->ls_lock);
787 	sx_xlock(&lf_owner_graph_lock);
788 	LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
789 		LIST_REMOVE(lock, lf_link);
790 		lf_remove_outgoing(lock);
791 		lf_remove_incoming(lock);
792 
793 		/*
794 		 * If its an async lock, we can just free it
795 		 * here, otherwise we let the sleeping thread
796 		 * free it.
797 		 */
798 		if (lock->lf_async_task) {
799 			lf_free_lock(lock);
800 		} else {
801 			lock->lf_flags |= F_INTR;
802 			wakeup(lock);
803 		}
804 	}
805 	sx_xunlock(&lf_owner_graph_lock);
806 	sx_xunlock(&state->ls_lock);
807 
808 	/*
809 	 * Wait for all other threads, sleeping and otherwise
810 	 * to leave.
811 	 */
812 	VI_LOCK(vp);
813 	while (state->ls_threads > 1)
814 		msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
815 	VI_UNLOCK(vp);
816 
817 	/*
818 	 * We can just free all the active locks since they
819 	 * will have no dependencies (we removed them all
820 	 * above). We don't need to bother locking since we
821 	 * are the last thread using this state structure.
822 	 */
823 	KASSERT(LIST_EMPTY(&state->ls_pending),
824 	    ("lock pending for %p", state));
825 	LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
826 		LIST_REMOVE(lock, lf_link);
827 		lf_free_lock(lock);
828 	}
829 out_free:
830 	sx_xlock(&lf_lock_states_lock);
831 	LIST_REMOVE(state, ls_link);
832 	sx_xunlock(&lf_lock_states_lock);
833 	sx_destroy(&state->ls_lock);
834 	free(state, M_LOCKF);
835 }
836 
837 /*
838  * Return non-zero if locks 'x' and 'y' overlap.
839  */
840 static int
841 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
842 {
843 
844 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
845 }
846 
847 /*
848  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
849  */
850 static int
851 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
852 {
853 
854 	return x->lf_owner != y->lf_owner
855 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
856 		&& lf_overlaps(x, y);
857 }
858 
859 /*
860  * Allocate a lock edge from the free list
861  */
862 static struct lockf_edge *
863 lf_alloc_edge(void)
864 {
865 
866 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
867 }
868 
869 /*
870  * Free a lock edge.
871  */
872 static void
873 lf_free_edge(struct lockf_edge *e)
874 {
875 
876 	free(e, M_LOCKF);
877 }
878 
879 /*
880  * Ensure that the lock's owner has a corresponding vertex in the
881  * owner graph.
882  */
883 static void
884 lf_alloc_vertex(struct lockf_entry *lock)
885 {
886 	struct owner_graph *g = &lf_owner_graph;
887 
888 	if (!lock->lf_owner->lo_vertex)
889 		lock->lf_owner->lo_vertex =
890 			graph_alloc_vertex(g, lock->lf_owner);
891 }
892 
893 /*
894  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
895  * the new edge would cause a cycle in the owner graph.
896  */
897 static int
898 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
899 {
900 	struct owner_graph *g = &lf_owner_graph;
901 	struct lockf_edge *e;
902 	int error;
903 
904 #ifdef DIAGNOSTIC
905 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
906 		KASSERT(e->le_to != y, ("adding lock edge twice"));
907 #endif
908 
909 	/*
910 	 * Make sure the two owners have entries in the owner graph.
911 	 */
912 	lf_alloc_vertex(x);
913 	lf_alloc_vertex(y);
914 
915 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
916 	    y->lf_owner->lo_vertex);
917 	if (error)
918 		return (error);
919 
920 	e = lf_alloc_edge();
921 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
922 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
923 	e->le_from = x;
924 	e->le_to = y;
925 
926 	return (0);
927 }
928 
929 /*
930  * Remove an edge from the lock graph.
931  */
932 static void
933 lf_remove_edge(struct lockf_edge *e)
934 {
935 	struct owner_graph *g = &lf_owner_graph;
936 	struct lockf_entry *x = e->le_from;
937 	struct lockf_entry *y = e->le_to;
938 
939 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
940 	LIST_REMOVE(e, le_outlink);
941 	LIST_REMOVE(e, le_inlink);
942 	e->le_from = NULL;
943 	e->le_to = NULL;
944 	lf_free_edge(e);
945 }
946 
947 /*
948  * Remove all out-going edges from lock x.
949  */
950 static void
951 lf_remove_outgoing(struct lockf_entry *x)
952 {
953 	struct lockf_edge *e;
954 
955 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
956 		lf_remove_edge(e);
957 	}
958 }
959 
960 /*
961  * Remove all in-coming edges from lock x.
962  */
963 static void
964 lf_remove_incoming(struct lockf_entry *x)
965 {
966 	struct lockf_edge *e;
967 
968 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
969 		lf_remove_edge(e);
970 	}
971 }
972 
973 /*
974  * Walk the list of locks for the file and create an out-going edge
975  * from lock to each blocking lock.
976  */
977 static int
978 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
979 {
980 	struct lockf_entry *overlap;
981 	int error;
982 
983 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
984 		/*
985 		 * We may assume that the active list is sorted by
986 		 * lf_start.
987 		 */
988 		if (overlap->lf_start > lock->lf_end)
989 			break;
990 		if (!lf_blocks(lock, overlap))
991 			continue;
992 
993 		/*
994 		 * We've found a blocking lock. Add the corresponding
995 		 * edge to the graphs and see if it would cause a
996 		 * deadlock.
997 		 */
998 		error = lf_add_edge(lock, overlap);
999 
1000 		/*
1001 		 * The only error that lf_add_edge returns is EDEADLK.
1002 		 * Remove any edges we added and return the error.
1003 		 */
1004 		if (error) {
1005 			lf_remove_outgoing(lock);
1006 			return (error);
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * We also need to add edges to sleeping locks that block
1012 	 * us. This ensures that lf_wakeup_lock cannot grant two
1013 	 * mutually blocking locks simultaneously and also enforces a
1014 	 * 'first come, first served' fairness model. Note that this
1015 	 * only happens if we are blocked by at least one active lock
1016 	 * due to the call to lf_getblock in lf_setlock below.
1017 	 */
1018 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1019 		if (!lf_blocks(lock, overlap))
1020 			continue;
1021 		/*
1022 		 * We've found a blocking lock. Add the corresponding
1023 		 * edge to the graphs and see if it would cause a
1024 		 * deadlock.
1025 		 */
1026 		error = lf_add_edge(lock, overlap);
1027 
1028 		/*
1029 		 * The only error that lf_add_edge returns is EDEADLK.
1030 		 * Remove any edges we added and return the error.
1031 		 */
1032 		if (error) {
1033 			lf_remove_outgoing(lock);
1034 			return (error);
1035 		}
1036 	}
1037 
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Walk the list of pending locks for the file and create an in-coming
1043  * edge from lock to each blocking lock.
1044  */
1045 static int
1046 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1047 {
1048 	struct lockf_entry *overlap;
1049 	int error;
1050 
1051 	sx_assert(&state->ls_lock, SX_XLOCKED);
1052 	if (LIST_EMPTY(&state->ls_pending))
1053 		return (0);
1054 
1055 	error = 0;
1056 	sx_xlock(&lf_owner_graph_lock);
1057 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1058 		if (!lf_blocks(lock, overlap))
1059 			continue;
1060 
1061 		/*
1062 		 * We've found a blocking lock. Add the corresponding
1063 		 * edge to the graphs and see if it would cause a
1064 		 * deadlock.
1065 		 */
1066 		error = lf_add_edge(overlap, lock);
1067 
1068 		/*
1069 		 * The only error that lf_add_edge returns is EDEADLK.
1070 		 * Remove any edges we added and return the error.
1071 		 */
1072 		if (error) {
1073 			lf_remove_incoming(lock);
1074 			break;
1075 		}
1076 	}
1077 	sx_xunlock(&lf_owner_graph_lock);
1078 	return (error);
1079 }
1080 
1081 /*
1082  * Insert lock into the active list, keeping list entries ordered by
1083  * increasing values of lf_start.
1084  */
1085 static void
1086 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1087 {
1088 	struct lockf_entry *lf, *lfprev;
1089 
1090 	if (LIST_EMPTY(&state->ls_active)) {
1091 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1092 		return;
1093 	}
1094 
1095 	lfprev = NULL;
1096 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1097 		if (lf->lf_start > lock->lf_start) {
1098 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1099 			return;
1100 		}
1101 		lfprev = lf;
1102 	}
1103 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1104 }
1105 
1106 /*
1107  * Wake up a sleeping lock and remove it from the pending list now
1108  * that all its dependencies have been resolved. The caller should
1109  * arrange for the lock to be added to the active list, adjusting any
1110  * existing locks for the same owner as needed.
1111  */
1112 static void
1113 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1114 {
1115 
1116 	/*
1117 	 * Remove from ls_pending list and wake up the caller
1118 	 * or start the async notification, as appropriate.
1119 	 */
1120 	LIST_REMOVE(wakelock, lf_link);
1121 #ifdef LOCKF_DEBUG
1122 	if (lockf_debug & 1)
1123 		lf_print("lf_wakeup_lock: awakening", wakelock);
1124 #endif /* LOCKF_DEBUG */
1125 	if (wakelock->lf_async_task) {
1126 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1127 	} else {
1128 		wakeup(wakelock);
1129 	}
1130 }
1131 
1132 /*
1133  * Re-check all dependent locks and remove edges to locks that we no
1134  * longer block. If 'all' is non-zero, the lock has been removed and
1135  * we must remove all the dependencies, otherwise it has simply been
1136  * reduced but remains active. Any pending locks which have been been
1137  * unblocked are added to 'granted'
1138  */
1139 static void
1140 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1141 	struct lockf_entry_list *granted)
1142 {
1143 	struct lockf_edge *e, *ne;
1144 	struct lockf_entry *deplock;
1145 
1146 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1147 		deplock = e->le_from;
1148 		if (all || !lf_blocks(lock, deplock)) {
1149 			sx_xlock(&lf_owner_graph_lock);
1150 			lf_remove_edge(e);
1151 			sx_xunlock(&lf_owner_graph_lock);
1152 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1153 				lf_wakeup_lock(state, deplock);
1154 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1155 			}
1156 		}
1157 	}
1158 }
1159 
1160 /*
1161  * Set the start of an existing active lock, updating dependencies and
1162  * adding any newly woken locks to 'granted'.
1163  */
1164 static void
1165 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1166 	struct lockf_entry_list *granted)
1167 {
1168 
1169 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1170 	lock->lf_start = new_start;
1171 	LIST_REMOVE(lock, lf_link);
1172 	lf_insert_lock(state, lock);
1173 	lf_update_dependancies(state, lock, FALSE, granted);
1174 }
1175 
1176 /*
1177  * Set the end of an existing active lock, updating dependencies and
1178  * adding any newly woken locks to 'granted'.
1179  */
1180 static void
1181 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1182 	struct lockf_entry_list *granted)
1183 {
1184 
1185 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1186 	lock->lf_end = new_end;
1187 	lf_update_dependancies(state, lock, FALSE, granted);
1188 }
1189 
1190 /*
1191  * Add a lock to the active list, updating or removing any current
1192  * locks owned by the same owner and processing any pending locks that
1193  * become unblocked as a result. This code is also used for unlock
1194  * since the logic for updating existing locks is identical.
1195  *
1196  * As a result of processing the new lock, we may unblock existing
1197  * pending locks as a result of downgrading/unlocking. We simply
1198  * activate the newly granted locks by looping.
1199  *
1200  * Since the new lock already has its dependencies set up, we always
1201  * add it to the list (unless its an unlock request). This may
1202  * fragment the lock list in some pathological cases but its probably
1203  * not a real problem.
1204  */
1205 static void
1206 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1207 {
1208 	struct lockf_entry *overlap, *lf;
1209 	struct lockf_entry_list granted;
1210 	int ovcase;
1211 
1212 	LIST_INIT(&granted);
1213 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1214 
1215 	while (!LIST_EMPTY(&granted)) {
1216 		lock = LIST_FIRST(&granted);
1217 		LIST_REMOVE(lock, lf_link);
1218 
1219 		/*
1220 		 * Skip over locks owned by other processes.  Handle
1221 		 * any locks that overlap and are owned by ourselves.
1222 		 */
1223 		overlap = LIST_FIRST(&state->ls_active);
1224 		for (;;) {
1225 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1226 
1227 #ifdef LOCKF_DEBUG
1228 			if (ovcase && (lockf_debug & 2)) {
1229 				printf("lf_setlock: overlap %d", ovcase);
1230 				lf_print("", overlap);
1231 			}
1232 #endif
1233 			/*
1234 			 * Six cases:
1235 			 *	0) no overlap
1236 			 *	1) overlap == lock
1237 			 *	2) overlap contains lock
1238 			 *	3) lock contains overlap
1239 			 *	4) overlap starts before lock
1240 			 *	5) overlap ends after lock
1241 			 */
1242 			switch (ovcase) {
1243 			case 0: /* no overlap */
1244 				break;
1245 
1246 			case 1: /* overlap == lock */
1247 				/*
1248 				 * We have already setup the
1249 				 * dependants for the new lock, taking
1250 				 * into account a possible downgrade
1251 				 * or unlock. Remove the old lock.
1252 				 */
1253 				LIST_REMOVE(overlap, lf_link);
1254 				lf_update_dependancies(state, overlap, TRUE,
1255 					&granted);
1256 				lf_free_lock(overlap);
1257 				break;
1258 
1259 			case 2: /* overlap contains lock */
1260 				/*
1261 				 * Just split the existing lock.
1262 				 */
1263 				lf_split(state, overlap, lock, &granted);
1264 				break;
1265 
1266 			case 3: /* lock contains overlap */
1267 				/*
1268 				 * Delete the overlap and advance to
1269 				 * the next entry in the list.
1270 				 */
1271 				lf = LIST_NEXT(overlap, lf_link);
1272 				LIST_REMOVE(overlap, lf_link);
1273 				lf_update_dependancies(state, overlap, TRUE,
1274 					&granted);
1275 				lf_free_lock(overlap);
1276 				overlap = lf;
1277 				continue;
1278 
1279 			case 4: /* overlap starts before lock */
1280 				/*
1281 				 * Just update the overlap end and
1282 				 * move on.
1283 				 */
1284 				lf_set_end(state, overlap, lock->lf_start - 1,
1285 				    &granted);
1286 				overlap = LIST_NEXT(overlap, lf_link);
1287 				continue;
1288 
1289 			case 5: /* overlap ends after lock */
1290 				/*
1291 				 * Change the start of overlap and
1292 				 * re-insert.
1293 				 */
1294 				lf_set_start(state, overlap, lock->lf_end + 1,
1295 				    &granted);
1296 				break;
1297 			}
1298 			break;
1299 		}
1300 #ifdef LOCKF_DEBUG
1301 		if (lockf_debug & 1) {
1302 			if (lock->lf_type != F_UNLCK)
1303 				lf_print("lf_activate_lock: activated", lock);
1304 			else
1305 				lf_print("lf_activate_lock: unlocked", lock);
1306 			lf_printlist("lf_activate_lock", lock);
1307 		}
1308 #endif /* LOCKF_DEBUG */
1309 		if (lock->lf_type != F_UNLCK)
1310 			lf_insert_lock(state, lock);
1311 	}
1312 }
1313 
1314 /*
1315  * Cancel a pending lock request, either as a result of a signal or a
1316  * cancel request for an async lock.
1317  */
1318 static void
1319 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1320 {
1321 	struct lockf_entry_list granted;
1322 
1323 	/*
1324 	 * Note it is theoretically possible that cancelling this lock
1325 	 * may allow some other pending lock to become
1326 	 * active. Consider this case:
1327 	 *
1328 	 * Owner	Action		Result		Dependencies
1329 	 *
1330 	 * A:		lock [0..0]	succeeds
1331 	 * B:		lock [2..2]	succeeds
1332 	 * C:		lock [1..2]	blocked		C->B
1333 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1334 	 * A:		unlock [0..0]			C->B,D->C
1335 	 * C:		cancel [1..2]
1336 	 */
1337 
1338 	LIST_REMOVE(lock, lf_link);
1339 
1340 	/*
1341 	 * Removing out-going edges is simple.
1342 	 */
1343 	sx_xlock(&lf_owner_graph_lock);
1344 	lf_remove_outgoing(lock);
1345 	sx_xunlock(&lf_owner_graph_lock);
1346 
1347 	/*
1348 	 * Removing in-coming edges may allow some other lock to
1349 	 * become active - we use lf_update_dependancies to figure
1350 	 * this out.
1351 	 */
1352 	LIST_INIT(&granted);
1353 	lf_update_dependancies(state, lock, TRUE, &granted);
1354 	lf_free_lock(lock);
1355 
1356 	/*
1357 	 * Feed any newly active locks to lf_activate_lock.
1358 	 */
1359 	while (!LIST_EMPTY(&granted)) {
1360 		lock = LIST_FIRST(&granted);
1361 		LIST_REMOVE(lock, lf_link);
1362 		lf_activate_lock(state, lock);
1363 	}
1364 }
1365 
1366 /*
1367  * Set a byte-range lock.
1368  */
1369 static int
1370 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1371     void **cookiep)
1372 {
1373 	static char lockstr[] = "lockf";
1374 	int error, priority, stops_deferred;
1375 
1376 #ifdef LOCKF_DEBUG
1377 	if (lockf_debug & 1)
1378 		lf_print("lf_setlock", lock);
1379 #endif /* LOCKF_DEBUG */
1380 
1381 	/*
1382 	 * Set the priority
1383 	 */
1384 	priority = PLOCK;
1385 	if (lock->lf_type == F_WRLCK)
1386 		priority += 4;
1387 	if (!(lock->lf_flags & F_NOINTR))
1388 		priority |= PCATCH;
1389 	/*
1390 	 * Scan lock list for this file looking for locks that would block us.
1391 	 */
1392 	if (lf_getblock(state, lock)) {
1393 		/*
1394 		 * Free the structure and return if nonblocking.
1395 		 */
1396 		if ((lock->lf_flags & F_WAIT) == 0
1397 		    && lock->lf_async_task == NULL) {
1398 			lf_free_lock(lock);
1399 			error = EAGAIN;
1400 			goto out;
1401 		}
1402 
1403 		/*
1404 		 * For flock type locks, we must first remove
1405 		 * any shared locks that we hold before we sleep
1406 		 * waiting for an exclusive lock.
1407 		 */
1408 		if ((lock->lf_flags & F_FLOCK) &&
1409 		    lock->lf_type == F_WRLCK) {
1410 			lock->lf_type = F_UNLCK;
1411 			lf_activate_lock(state, lock);
1412 			lock->lf_type = F_WRLCK;
1413 		}
1414 
1415 		/*
1416 		 * We are blocked. Create edges to each blocking lock,
1417 		 * checking for deadlock using the owner graph. For
1418 		 * simplicity, we run deadlock detection for all
1419 		 * locks, posix and otherwise.
1420 		 */
1421 		sx_xlock(&lf_owner_graph_lock);
1422 		error = lf_add_outgoing(state, lock);
1423 		sx_xunlock(&lf_owner_graph_lock);
1424 
1425 		if (error) {
1426 #ifdef LOCKF_DEBUG
1427 			if (lockf_debug & 1)
1428 				lf_print("lf_setlock: deadlock", lock);
1429 #endif
1430 			lf_free_lock(lock);
1431 			goto out;
1432 		}
1433 
1434 		/*
1435 		 * We have added edges to everything that blocks
1436 		 * us. Sleep until they all go away.
1437 		 */
1438 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1439 #ifdef LOCKF_DEBUG
1440 		if (lockf_debug & 1) {
1441 			struct lockf_edge *e;
1442 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1443 				lf_print("lf_setlock: blocking on", e->le_to);
1444 				lf_printlist("lf_setlock", e->le_to);
1445 			}
1446 		}
1447 #endif /* LOCKF_DEBUG */
1448 
1449 		if ((lock->lf_flags & F_WAIT) == 0) {
1450 			/*
1451 			 * The caller requested async notification -
1452 			 * this callback happens when the blocking
1453 			 * lock is released, allowing the caller to
1454 			 * make another attempt to take the lock.
1455 			 */
1456 			*cookiep = (void *) lock;
1457 			error = EINPROGRESS;
1458 			goto out;
1459 		}
1460 
1461 		lock->lf_refs++;
1462 		stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
1463 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1464 		sigallowstop(stops_deferred);
1465 		if (lf_free_lock(lock)) {
1466 			error = EDOOFUS;
1467 			goto out;
1468 		}
1469 
1470 		/*
1471 		 * We may have been awakened by a signal and/or by a
1472 		 * debugger continuing us (in which cases we must
1473 		 * remove our lock graph edges) and/or by another
1474 		 * process releasing a lock (in which case our edges
1475 		 * have already been removed and we have been moved to
1476 		 * the active list). We may also have been woken by
1477 		 * lf_purgelocks which we report to the caller as
1478 		 * EINTR. In that case, lf_purgelocks will have
1479 		 * removed our lock graph edges.
1480 		 *
1481 		 * Note that it is possible to receive a signal after
1482 		 * we were successfully woken (and moved to the active
1483 		 * list) but before we resumed execution. In this
1484 		 * case, our lf_outedges list will be clear. We
1485 		 * pretend there was no error.
1486 		 *
1487 		 * Note also, if we have been sleeping long enough, we
1488 		 * may now have incoming edges from some newer lock
1489 		 * which is waiting behind us in the queue.
1490 		 */
1491 		if (lock->lf_flags & F_INTR) {
1492 			error = EINTR;
1493 			lf_free_lock(lock);
1494 			goto out;
1495 		}
1496 		if (LIST_EMPTY(&lock->lf_outedges)) {
1497 			error = 0;
1498 		} else {
1499 			lf_cancel_lock(state, lock);
1500 			goto out;
1501 		}
1502 #ifdef LOCKF_DEBUG
1503 		if (lockf_debug & 1) {
1504 			lf_print("lf_setlock: granted", lock);
1505 		}
1506 #endif
1507 		goto out;
1508 	}
1509 	/*
1510 	 * It looks like we are going to grant the lock. First add
1511 	 * edges from any currently pending lock that the new lock
1512 	 * would block.
1513 	 */
1514 	error = lf_add_incoming(state, lock);
1515 	if (error) {
1516 #ifdef LOCKF_DEBUG
1517 		if (lockf_debug & 1)
1518 			lf_print("lf_setlock: deadlock", lock);
1519 #endif
1520 		lf_free_lock(lock);
1521 		goto out;
1522 	}
1523 
1524 	/*
1525 	 * No blocks!!  Add the lock.  Note that we will
1526 	 * downgrade or upgrade any overlapping locks this
1527 	 * process already owns.
1528 	 */
1529 	lf_activate_lock(state, lock);
1530 	error = 0;
1531 out:
1532 	return (error);
1533 }
1534 
1535 /*
1536  * Remove a byte-range lock on an inode.
1537  *
1538  * Generally, find the lock (or an overlap to that lock)
1539  * and remove it (or shrink it), then wakeup anyone we can.
1540  */
1541 static int
1542 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1543 {
1544 	struct lockf_entry *overlap;
1545 
1546 	overlap = LIST_FIRST(&state->ls_active);
1547 
1548 	if (overlap == NOLOCKF)
1549 		return (0);
1550 #ifdef LOCKF_DEBUG
1551 	if (unlock->lf_type != F_UNLCK)
1552 		panic("lf_clearlock: bad type");
1553 	if (lockf_debug & 1)
1554 		lf_print("lf_clearlock", unlock);
1555 #endif /* LOCKF_DEBUG */
1556 
1557 	lf_activate_lock(state, unlock);
1558 
1559 	return (0);
1560 }
1561 
1562 /*
1563  * Check whether there is a blocking lock, and if so return its
1564  * details in '*fl'.
1565  */
1566 static int
1567 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1568 {
1569 	struct lockf_entry *block;
1570 
1571 #ifdef LOCKF_DEBUG
1572 	if (lockf_debug & 1)
1573 		lf_print("lf_getlock", lock);
1574 #endif /* LOCKF_DEBUG */
1575 
1576 	if ((block = lf_getblock(state, lock))) {
1577 		fl->l_type = block->lf_type;
1578 		fl->l_whence = SEEK_SET;
1579 		fl->l_start = block->lf_start;
1580 		if (block->lf_end == OFF_MAX)
1581 			fl->l_len = 0;
1582 		else
1583 			fl->l_len = block->lf_end - block->lf_start + 1;
1584 		fl->l_pid = block->lf_owner->lo_pid;
1585 		fl->l_sysid = block->lf_owner->lo_sysid;
1586 	} else {
1587 		fl->l_type = F_UNLCK;
1588 	}
1589 	return (0);
1590 }
1591 
1592 /*
1593  * Cancel an async lock request.
1594  */
1595 static int
1596 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1597 {
1598 	struct lockf_entry *reallock;
1599 
1600 	/*
1601 	 * We need to match this request with an existing lock
1602 	 * request.
1603 	 */
1604 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1605 		if ((void *) reallock == cookie) {
1606 			/*
1607 			 * Double-check that this lock looks right
1608 			 * (maybe use a rolling ID for the cancel
1609 			 * cookie instead?)
1610 			 */
1611 			if (!(reallock->lf_vnode == lock->lf_vnode
1612 				&& reallock->lf_start == lock->lf_start
1613 				&& reallock->lf_end == lock->lf_end)) {
1614 				return (ENOENT);
1615 			}
1616 
1617 			/*
1618 			 * Make sure this lock was async and then just
1619 			 * remove it from its wait lists.
1620 			 */
1621 			if (!reallock->lf_async_task) {
1622 				return (ENOENT);
1623 			}
1624 
1625 			/*
1626 			 * Note that since any other thread must take
1627 			 * state->ls_lock before it can possibly
1628 			 * trigger the async callback, we are safe
1629 			 * from a race with lf_wakeup_lock, i.e. we
1630 			 * can free the lock (actually our caller does
1631 			 * this).
1632 			 */
1633 			lf_cancel_lock(state, reallock);
1634 			return (0);
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * We didn't find a matching lock - not much we can do here.
1640 	 */
1641 	return (ENOENT);
1642 }
1643 
1644 /*
1645  * Walk the list of locks for an inode and
1646  * return the first blocking lock.
1647  */
1648 static struct lockf_entry *
1649 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1650 {
1651 	struct lockf_entry *overlap;
1652 
1653 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1654 		/*
1655 		 * We may assume that the active list is sorted by
1656 		 * lf_start.
1657 		 */
1658 		if (overlap->lf_start > lock->lf_end)
1659 			break;
1660 		if (!lf_blocks(lock, overlap))
1661 			continue;
1662 		return (overlap);
1663 	}
1664 	return (NOLOCKF);
1665 }
1666 
1667 /*
1668  * Walk the list of locks for an inode to find an overlapping lock (if
1669  * any) and return a classification of that overlap.
1670  *
1671  * Arguments:
1672  *	*overlap	The place in the lock list to start looking
1673  *	lock		The lock which is being tested
1674  *	type		Pass 'SELF' to test only locks with the same
1675  *			owner as lock, or 'OTHER' to test only locks
1676  *			with a different owner
1677  *
1678  * Returns one of six values:
1679  *	0) no overlap
1680  *	1) overlap == lock
1681  *	2) overlap contains lock
1682  *	3) lock contains overlap
1683  *	4) overlap starts before lock
1684  *	5) overlap ends after lock
1685  *
1686  * If there is an overlapping lock, '*overlap' is set to point at the
1687  * overlapping lock.
1688  *
1689  * NOTE: this returns only the FIRST overlapping lock.  There
1690  *	 may be more than one.
1691  */
1692 static int
1693 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1694 {
1695 	struct lockf_entry *lf;
1696 	off_t start, end;
1697 	int res;
1698 
1699 	if ((*overlap) == NOLOCKF) {
1700 		return (0);
1701 	}
1702 #ifdef LOCKF_DEBUG
1703 	if (lockf_debug & 2)
1704 		lf_print("lf_findoverlap: looking for overlap in", lock);
1705 #endif /* LOCKF_DEBUG */
1706 	start = lock->lf_start;
1707 	end = lock->lf_end;
1708 	res = 0;
1709 	while (*overlap) {
1710 		lf = *overlap;
1711 		if (lf->lf_start > end)
1712 			break;
1713 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1714 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1715 			*overlap = LIST_NEXT(lf, lf_link);
1716 			continue;
1717 		}
1718 #ifdef LOCKF_DEBUG
1719 		if (lockf_debug & 2)
1720 			lf_print("\tchecking", lf);
1721 #endif /* LOCKF_DEBUG */
1722 		/*
1723 		 * OK, check for overlap
1724 		 *
1725 		 * Six cases:
1726 		 *	0) no overlap
1727 		 *	1) overlap == lock
1728 		 *	2) overlap contains lock
1729 		 *	3) lock contains overlap
1730 		 *	4) overlap starts before lock
1731 		 *	5) overlap ends after lock
1732 		 */
1733 		if (start > lf->lf_end) {
1734 			/* Case 0 */
1735 #ifdef LOCKF_DEBUG
1736 			if (lockf_debug & 2)
1737 				printf("no overlap\n");
1738 #endif /* LOCKF_DEBUG */
1739 			*overlap = LIST_NEXT(lf, lf_link);
1740 			continue;
1741 		}
1742 		if (lf->lf_start == start && lf->lf_end == end) {
1743 			/* Case 1 */
1744 #ifdef LOCKF_DEBUG
1745 			if (lockf_debug & 2)
1746 				printf("overlap == lock\n");
1747 #endif /* LOCKF_DEBUG */
1748 			res = 1;
1749 			break;
1750 		}
1751 		if (lf->lf_start <= start && lf->lf_end >= end) {
1752 			/* Case 2 */
1753 #ifdef LOCKF_DEBUG
1754 			if (lockf_debug & 2)
1755 				printf("overlap contains lock\n");
1756 #endif /* LOCKF_DEBUG */
1757 			res = 2;
1758 			break;
1759 		}
1760 		if (start <= lf->lf_start && end >= lf->lf_end) {
1761 			/* Case 3 */
1762 #ifdef LOCKF_DEBUG
1763 			if (lockf_debug & 2)
1764 				printf("lock contains overlap\n");
1765 #endif /* LOCKF_DEBUG */
1766 			res = 3;
1767 			break;
1768 		}
1769 		if (lf->lf_start < start && lf->lf_end >= start) {
1770 			/* Case 4 */
1771 #ifdef LOCKF_DEBUG
1772 			if (lockf_debug & 2)
1773 				printf("overlap starts before lock\n");
1774 #endif /* LOCKF_DEBUG */
1775 			res = 4;
1776 			break;
1777 		}
1778 		if (lf->lf_start > start && lf->lf_end > end) {
1779 			/* Case 5 */
1780 #ifdef LOCKF_DEBUG
1781 			if (lockf_debug & 2)
1782 				printf("overlap ends after lock\n");
1783 #endif /* LOCKF_DEBUG */
1784 			res = 5;
1785 			break;
1786 		}
1787 		panic("lf_findoverlap: default");
1788 	}
1789 	return (res);
1790 }
1791 
1792 /*
1793  * Split an the existing 'lock1', based on the extent of the lock
1794  * described by 'lock2'. The existing lock should cover 'lock2'
1795  * entirely.
1796  *
1797  * Any pending locks which have been been unblocked are added to
1798  * 'granted'
1799  */
1800 static void
1801 lf_split(struct lockf *state, struct lockf_entry *lock1,
1802     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1803 {
1804 	struct lockf_entry *splitlock;
1805 
1806 #ifdef LOCKF_DEBUG
1807 	if (lockf_debug & 2) {
1808 		lf_print("lf_split", lock1);
1809 		lf_print("splitting from", lock2);
1810 	}
1811 #endif /* LOCKF_DEBUG */
1812 	/*
1813 	 * Check to see if we don't need to split at all.
1814 	 */
1815 	if (lock1->lf_start == lock2->lf_start) {
1816 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1817 		return;
1818 	}
1819 	if (lock1->lf_end == lock2->lf_end) {
1820 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1821 		return;
1822 	}
1823 	/*
1824 	 * Make a new lock consisting of the last part of
1825 	 * the encompassing lock.
1826 	 */
1827 	splitlock = lf_alloc_lock(lock1->lf_owner);
1828 	memcpy(splitlock, lock1, sizeof *splitlock);
1829 	splitlock->lf_refs = 1;
1830 	if (splitlock->lf_flags & F_REMOTE)
1831 		vref(splitlock->lf_vnode);
1832 
1833 	/*
1834 	 * This cannot cause a deadlock since any edges we would add
1835 	 * to splitlock already exist in lock1. We must be sure to add
1836 	 * necessary dependencies to splitlock before we reduce lock1
1837 	 * otherwise we may accidentally grant a pending lock that
1838 	 * was blocked by the tail end of lock1.
1839 	 */
1840 	splitlock->lf_start = lock2->lf_end + 1;
1841 	LIST_INIT(&splitlock->lf_outedges);
1842 	LIST_INIT(&splitlock->lf_inedges);
1843 	lf_add_incoming(state, splitlock);
1844 
1845 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1846 
1847 	/*
1848 	 * OK, now link it in
1849 	 */
1850 	lf_insert_lock(state, splitlock);
1851 }
1852 
1853 struct lockdesc {
1854 	STAILQ_ENTRY(lockdesc) link;
1855 	struct vnode *vp;
1856 	struct flock fl;
1857 };
1858 STAILQ_HEAD(lockdesclist, lockdesc);
1859 
1860 int
1861 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1862 {
1863 	struct lockf *ls;
1864 	struct lockf_entry *lf;
1865 	struct lockdesc *ldesc;
1866 	struct lockdesclist locks;
1867 	int error;
1868 
1869 	/*
1870 	 * In order to keep the locking simple, we iterate over the
1871 	 * active lock lists to build a list of locks that need
1872 	 * releasing. We then call the iterator for each one in turn.
1873 	 *
1874 	 * We take an extra reference to the vnode for the duration to
1875 	 * make sure it doesn't go away before we are finished.
1876 	 */
1877 	STAILQ_INIT(&locks);
1878 	sx_xlock(&lf_lock_states_lock);
1879 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1880 		sx_xlock(&ls->ls_lock);
1881 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1882 			if (lf->lf_owner->lo_sysid != sysid)
1883 				continue;
1884 
1885 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1886 			    M_WAITOK);
1887 			ldesc->vp = lf->lf_vnode;
1888 			vref(ldesc->vp);
1889 			ldesc->fl.l_start = lf->lf_start;
1890 			if (lf->lf_end == OFF_MAX)
1891 				ldesc->fl.l_len = 0;
1892 			else
1893 				ldesc->fl.l_len =
1894 					lf->lf_end - lf->lf_start + 1;
1895 			ldesc->fl.l_whence = SEEK_SET;
1896 			ldesc->fl.l_type = F_UNLCK;
1897 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1898 			ldesc->fl.l_sysid = sysid;
1899 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1900 		}
1901 		sx_xunlock(&ls->ls_lock);
1902 	}
1903 	sx_xunlock(&lf_lock_states_lock);
1904 
1905 	/*
1906 	 * Call the iterator function for each lock in turn. If the
1907 	 * iterator returns an error code, just free the rest of the
1908 	 * lockdesc structures.
1909 	 */
1910 	error = 0;
1911 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1912 		STAILQ_REMOVE_HEAD(&locks, link);
1913 		if (!error)
1914 			error = fn(ldesc->vp, &ldesc->fl, arg);
1915 		vrele(ldesc->vp);
1916 		free(ldesc, M_LOCKF);
1917 	}
1918 
1919 	return (error);
1920 }
1921 
1922 int
1923 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1924 {
1925 	struct lockf *ls;
1926 	struct lockf_entry *lf;
1927 	struct lockdesc *ldesc;
1928 	struct lockdesclist locks;
1929 	int error;
1930 
1931 	/*
1932 	 * In order to keep the locking simple, we iterate over the
1933 	 * active lock lists to build a list of locks that need
1934 	 * releasing. We then call the iterator for each one in turn.
1935 	 *
1936 	 * We take an extra reference to the vnode for the duration to
1937 	 * make sure it doesn't go away before we are finished.
1938 	 */
1939 	STAILQ_INIT(&locks);
1940 	VI_LOCK(vp);
1941 	ls = vp->v_lockf;
1942 	if (!ls) {
1943 		VI_UNLOCK(vp);
1944 		return (0);
1945 	}
1946 	MPASS(ls->ls_threads >= 0);
1947 	ls->ls_threads++;
1948 	VI_UNLOCK(vp);
1949 
1950 	sx_xlock(&ls->ls_lock);
1951 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1952 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1953 		    M_WAITOK);
1954 		ldesc->vp = lf->lf_vnode;
1955 		vref(ldesc->vp);
1956 		ldesc->fl.l_start = lf->lf_start;
1957 		if (lf->lf_end == OFF_MAX)
1958 			ldesc->fl.l_len = 0;
1959 		else
1960 			ldesc->fl.l_len =
1961 				lf->lf_end - lf->lf_start + 1;
1962 		ldesc->fl.l_whence = SEEK_SET;
1963 		ldesc->fl.l_type = F_UNLCK;
1964 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1965 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1966 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1967 	}
1968 	sx_xunlock(&ls->ls_lock);
1969 	VI_LOCK(vp);
1970 	MPASS(ls->ls_threads > 0);
1971 	ls->ls_threads--;
1972 	wakeup(ls);
1973 	VI_UNLOCK(vp);
1974 
1975 	/*
1976 	 * Call the iterator function for each lock in turn. If the
1977 	 * iterator returns an error code, just free the rest of the
1978 	 * lockdesc structures.
1979 	 */
1980 	error = 0;
1981 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1982 		STAILQ_REMOVE_HEAD(&locks, link);
1983 		if (!error)
1984 			error = fn(ldesc->vp, &ldesc->fl, arg);
1985 		vrele(ldesc->vp);
1986 		free(ldesc, M_LOCKF);
1987 	}
1988 
1989 	return (error);
1990 }
1991 
1992 static int
1993 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
1994 {
1995 
1996 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
1997 	return (0);
1998 }
1999 
2000 void
2001 lf_clearremotesys(int sysid)
2002 {
2003 
2004 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2005 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2006 }
2007 
2008 int
2009 lf_countlocks(int sysid)
2010 {
2011 	int i;
2012 	struct lock_owner *lo;
2013 	int count;
2014 
2015 	count = 0;
2016 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
2017 		sx_xlock(&lf_lock_owners[i].lock);
2018 		LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
2019 			if (lo->lo_sysid == sysid)
2020 				count += lo->lo_refs;
2021 		sx_xunlock(&lf_lock_owners[i].lock);
2022 	}
2023 
2024 	return (count);
2025 }
2026 
2027 #ifdef LOCKF_DEBUG
2028 
2029 /*
2030  * Return non-zero if y is reachable from x using a brute force
2031  * search. If reachable and path is non-null, return the route taken
2032  * in path.
2033  */
2034 static int
2035 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2036     struct owner_vertex_list *path)
2037 {
2038 	struct owner_edge *e;
2039 
2040 	if (x == y) {
2041 		if (path)
2042 			TAILQ_INSERT_HEAD(path, x, v_link);
2043 		return 1;
2044 	}
2045 
2046 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2047 		if (graph_reaches(e->e_to, y, path)) {
2048 			if (path)
2049 				TAILQ_INSERT_HEAD(path, x, v_link);
2050 			return 1;
2051 		}
2052 	}
2053 	return 0;
2054 }
2055 
2056 /*
2057  * Perform consistency checks on the graph. Make sure the values of
2058  * v_order are correct. If checkorder is non-zero, check no vertex can
2059  * reach any other vertex with a smaller order.
2060  */
2061 static void
2062 graph_check(struct owner_graph *g, int checkorder)
2063 {
2064 	int i, j;
2065 
2066 	for (i = 0; i < g->g_size; i++) {
2067 		if (!g->g_vertices[i]->v_owner)
2068 			continue;
2069 		KASSERT(g->g_vertices[i]->v_order == i,
2070 		    ("lock graph vertices disordered"));
2071 		if (checkorder) {
2072 			for (j = 0; j < i; j++) {
2073 				if (!g->g_vertices[j]->v_owner)
2074 					continue;
2075 				KASSERT(!graph_reaches(g->g_vertices[i],
2076 					g->g_vertices[j], NULL),
2077 				    ("lock graph vertices disordered"));
2078 			}
2079 		}
2080 	}
2081 }
2082 
2083 static void
2084 graph_print_vertices(struct owner_vertex_list *set)
2085 {
2086 	struct owner_vertex *v;
2087 
2088 	printf("{ ");
2089 	TAILQ_FOREACH(v, set, v_link) {
2090 		printf("%d:", v->v_order);
2091 		lf_print_owner(v->v_owner);
2092 		if (TAILQ_NEXT(v, v_link))
2093 			printf(", ");
2094 	}
2095 	printf(" }\n");
2096 }
2097 
2098 #endif
2099 
2100 /*
2101  * Calculate the sub-set of vertices v from the affected region [y..x]
2102  * where v is reachable from y. Return -1 if a loop was detected
2103  * (i.e. x is reachable from y, otherwise the number of vertices in
2104  * this subset.
2105  */
2106 static int
2107 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2108     struct owner_vertex *y, struct owner_vertex_list *delta)
2109 {
2110 	uint32_t gen;
2111 	struct owner_vertex *v;
2112 	struct owner_edge *e;
2113 	int n;
2114 
2115 	/*
2116 	 * We start with a set containing just y. Then for each vertex
2117 	 * v in the set so far unprocessed, we add each vertex that v
2118 	 * has an out-edge to and that is within the affected region
2119 	 * [y..x]. If we see the vertex x on our travels, stop
2120 	 * immediately.
2121 	 */
2122 	TAILQ_INIT(delta);
2123 	TAILQ_INSERT_TAIL(delta, y, v_link);
2124 	v = y;
2125 	n = 1;
2126 	gen = g->g_gen;
2127 	while (v) {
2128 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2129 			if (e->e_to == x)
2130 				return -1;
2131 			if (e->e_to->v_order < x->v_order
2132 			    && e->e_to->v_gen != gen) {
2133 				e->e_to->v_gen = gen;
2134 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2135 				n++;
2136 			}
2137 		}
2138 		v = TAILQ_NEXT(v, v_link);
2139 	}
2140 
2141 	return (n);
2142 }
2143 
2144 /*
2145  * Calculate the sub-set of vertices v from the affected region [y..x]
2146  * where v reaches x. Return the number of vertices in this subset.
2147  */
2148 static int
2149 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2150     struct owner_vertex *y, struct owner_vertex_list *delta)
2151 {
2152 	uint32_t gen;
2153 	struct owner_vertex *v;
2154 	struct owner_edge *e;
2155 	int n;
2156 
2157 	/*
2158 	 * We start with a set containing just x. Then for each vertex
2159 	 * v in the set so far unprocessed, we add each vertex that v
2160 	 * has an in-edge from and that is within the affected region
2161 	 * [y..x].
2162 	 */
2163 	TAILQ_INIT(delta);
2164 	TAILQ_INSERT_TAIL(delta, x, v_link);
2165 	v = x;
2166 	n = 1;
2167 	gen = g->g_gen;
2168 	while (v) {
2169 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2170 			if (e->e_from->v_order > y->v_order
2171 			    && e->e_from->v_gen != gen) {
2172 				e->e_from->v_gen = gen;
2173 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2174 				n++;
2175 			}
2176 		}
2177 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2178 	}
2179 
2180 	return (n);
2181 }
2182 
2183 static int
2184 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2185 {
2186 	struct owner_vertex *v;
2187 	int i, j;
2188 
2189 	TAILQ_FOREACH(v, set, v_link) {
2190 		for (i = n;
2191 		     i > 0 && indices[i - 1] > v->v_order; i--)
2192 			;
2193 		for (j = n - 1; j >= i; j--)
2194 			indices[j + 1] = indices[j];
2195 		indices[i] = v->v_order;
2196 		n++;
2197 	}
2198 
2199 	return (n);
2200 }
2201 
2202 static int
2203 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2204     struct owner_vertex_list *set)
2205 {
2206 	struct owner_vertex *v, *vlowest;
2207 
2208 	while (!TAILQ_EMPTY(set)) {
2209 		vlowest = NULL;
2210 		TAILQ_FOREACH(v, set, v_link) {
2211 			if (!vlowest || v->v_order < vlowest->v_order)
2212 				vlowest = v;
2213 		}
2214 		TAILQ_REMOVE(set, vlowest, v_link);
2215 		vlowest->v_order = indices[nextunused];
2216 		g->g_vertices[vlowest->v_order] = vlowest;
2217 		nextunused++;
2218 	}
2219 
2220 	return (nextunused);
2221 }
2222 
2223 static int
2224 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2225     struct owner_vertex *y)
2226 {
2227 	struct owner_edge *e;
2228 	struct owner_vertex_list deltaF, deltaB;
2229 	int nF, n, vi, i;
2230 	int *indices;
2231 	int nB __unused;
2232 
2233 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2234 
2235 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2236 		if (e->e_to == y) {
2237 			e->e_refs++;
2238 			return (0);
2239 		}
2240 	}
2241 
2242 #ifdef LOCKF_DEBUG
2243 	if (lockf_debug & 8) {
2244 		printf("adding edge %d:", x->v_order);
2245 		lf_print_owner(x->v_owner);
2246 		printf(" -> %d:", y->v_order);
2247 		lf_print_owner(y->v_owner);
2248 		printf("\n");
2249 	}
2250 #endif
2251 	if (y->v_order < x->v_order) {
2252 		/*
2253 		 * The new edge violates the order. First find the set
2254 		 * of affected vertices reachable from y (deltaF) and
2255 		 * the set of affect vertices affected that reach x
2256 		 * (deltaB), using the graph generation number to
2257 		 * detect whether we have visited a given vertex
2258 		 * already. We re-order the graph so that each vertex
2259 		 * in deltaB appears before each vertex in deltaF.
2260 		 *
2261 		 * If x is a member of deltaF, then the new edge would
2262 		 * create a cycle. Otherwise, we may assume that
2263 		 * deltaF and deltaB are disjoint.
2264 		 */
2265 		g->g_gen++;
2266 		if (g->g_gen == 0) {
2267 			/*
2268 			 * Generation wrap.
2269 			 */
2270 			for (vi = 0; vi < g->g_size; vi++) {
2271 				g->g_vertices[vi]->v_gen = 0;
2272 			}
2273 			g->g_gen++;
2274 		}
2275 		nF = graph_delta_forward(g, x, y, &deltaF);
2276 		if (nF < 0) {
2277 #ifdef LOCKF_DEBUG
2278 			if (lockf_debug & 8) {
2279 				struct owner_vertex_list path;
2280 				printf("deadlock: ");
2281 				TAILQ_INIT(&path);
2282 				graph_reaches(y, x, &path);
2283 				graph_print_vertices(&path);
2284 			}
2285 #endif
2286 			return (EDEADLK);
2287 		}
2288 
2289 #ifdef LOCKF_DEBUG
2290 		if (lockf_debug & 8) {
2291 			printf("re-ordering graph vertices\n");
2292 			printf("deltaF = ");
2293 			graph_print_vertices(&deltaF);
2294 		}
2295 #endif
2296 
2297 		nB = graph_delta_backward(g, x, y, &deltaB);
2298 
2299 #ifdef LOCKF_DEBUG
2300 		if (lockf_debug & 8) {
2301 			printf("deltaB = ");
2302 			graph_print_vertices(&deltaB);
2303 		}
2304 #endif
2305 
2306 		/*
2307 		 * We first build a set of vertex indices (vertex
2308 		 * order values) that we may use, then we re-assign
2309 		 * orders first to those vertices in deltaB, then to
2310 		 * deltaF. Note that the contents of deltaF and deltaB
2311 		 * may be partially disordered - we perform an
2312 		 * insertion sort while building our index set.
2313 		 */
2314 		indices = g->g_indexbuf;
2315 		n = graph_add_indices(indices, 0, &deltaF);
2316 		graph_add_indices(indices, n, &deltaB);
2317 
2318 		/*
2319 		 * We must also be sure to maintain the relative
2320 		 * ordering of deltaF and deltaB when re-assigning
2321 		 * vertices. We do this by iteratively removing the
2322 		 * lowest ordered element from the set and assigning
2323 		 * it the next value from our new ordering.
2324 		 */
2325 		i = graph_assign_indices(g, indices, 0, &deltaB);
2326 		graph_assign_indices(g, indices, i, &deltaF);
2327 
2328 #ifdef LOCKF_DEBUG
2329 		if (lockf_debug & 8) {
2330 			struct owner_vertex_list set;
2331 			TAILQ_INIT(&set);
2332 			for (i = 0; i < nB + nF; i++)
2333 				TAILQ_INSERT_TAIL(&set,
2334 				    g->g_vertices[indices[i]], v_link);
2335 			printf("new ordering = ");
2336 			graph_print_vertices(&set);
2337 		}
2338 #endif
2339 	}
2340 
2341 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2342 
2343 #ifdef LOCKF_DEBUG
2344 	if (lockf_debug & 8) {
2345 		graph_check(g, TRUE);
2346 	}
2347 #endif
2348 
2349 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2350 
2351 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2352 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2353 	e->e_refs = 1;
2354 	e->e_from = x;
2355 	e->e_to = y;
2356 
2357 	return (0);
2358 }
2359 
2360 /*
2361  * Remove an edge x->y from the graph.
2362  */
2363 static void
2364 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2365     struct owner_vertex *y)
2366 {
2367 	struct owner_edge *e;
2368 
2369 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2370 
2371 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2372 		if (e->e_to == y)
2373 			break;
2374 	}
2375 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2376 
2377 	e->e_refs--;
2378 	if (e->e_refs == 0) {
2379 #ifdef LOCKF_DEBUG
2380 		if (lockf_debug & 8) {
2381 			printf("removing edge %d:", x->v_order);
2382 			lf_print_owner(x->v_owner);
2383 			printf(" -> %d:", y->v_order);
2384 			lf_print_owner(y->v_owner);
2385 			printf("\n");
2386 		}
2387 #endif
2388 		LIST_REMOVE(e, e_outlink);
2389 		LIST_REMOVE(e, e_inlink);
2390 		free(e, M_LOCKF);
2391 	}
2392 }
2393 
2394 /*
2395  * Allocate a vertex from the free list. Return ENOMEM if there are
2396  * none.
2397  */
2398 static struct owner_vertex *
2399 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2400 {
2401 	struct owner_vertex *v;
2402 
2403 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2404 
2405 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2406 	if (g->g_size == g->g_space) {
2407 		g->g_vertices = realloc(g->g_vertices,
2408 		    2 * g->g_space * sizeof(struct owner_vertex *),
2409 		    M_LOCKF, M_WAITOK);
2410 		free(g->g_indexbuf, M_LOCKF);
2411 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2412 		    M_LOCKF, M_WAITOK);
2413 		g->g_space = 2 * g->g_space;
2414 	}
2415 	v->v_order = g->g_size;
2416 	v->v_gen = g->g_gen;
2417 	g->g_vertices[g->g_size] = v;
2418 	g->g_size++;
2419 
2420 	LIST_INIT(&v->v_outedges);
2421 	LIST_INIT(&v->v_inedges);
2422 	v->v_owner = lo;
2423 
2424 	return (v);
2425 }
2426 
2427 static void
2428 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2429 {
2430 	struct owner_vertex *w;
2431 	int i;
2432 
2433 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2434 
2435 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2436 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2437 
2438 	/*
2439 	 * Remove from the graph's array and close up the gap,
2440 	 * renumbering the other vertices.
2441 	 */
2442 	for (i = v->v_order + 1; i < g->g_size; i++) {
2443 		w = g->g_vertices[i];
2444 		w->v_order--;
2445 		g->g_vertices[i - 1] = w;
2446 	}
2447 	g->g_size--;
2448 
2449 	free(v, M_LOCKF);
2450 }
2451 
2452 static struct owner_graph *
2453 graph_init(struct owner_graph *g)
2454 {
2455 
2456 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2457 	    M_LOCKF, M_WAITOK);
2458 	g->g_size = 0;
2459 	g->g_space = 10;
2460 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2461 	g->g_gen = 0;
2462 
2463 	return (g);
2464 }
2465 
2466 struct kinfo_lockf_linked {
2467 	struct kinfo_lockf kl;
2468 	struct vnode *vp;
2469 	STAILQ_ENTRY(kinfo_lockf_linked) link;
2470 };
2471 
2472 int
2473 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
2474 {
2475 	struct lockf *ls;
2476 	struct lockf_entry *lf;
2477 	struct kinfo_lockf_linked *klf;
2478 	struct vnode *vp;
2479 	struct ucred *ucred;
2480 	char *fullpath, *freepath;
2481 	struct stat stt;
2482 	STAILQ_HEAD(, kinfo_lockf_linked) locks;
2483 	int error, gerror;
2484 
2485 	STAILQ_INIT(&locks);
2486 	sx_slock(&lf_lock_states_lock);
2487 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
2488 		sx_slock(&ls->ls_lock);
2489 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
2490 			vp = lf->lf_vnode;
2491 			if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
2492 				continue;
2493 			vhold(vp);
2494 			klf = malloc(sizeof(struct kinfo_lockf_linked),
2495 			    M_LOCKF, M_WAITOK | M_ZERO);
2496 			klf->vp = vp;
2497 			klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
2498 			klf->kl.kl_start = lf->lf_start;
2499 			klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
2500 			    lf->lf_end - lf->lf_start + 1;
2501 			klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
2502 			    KLOCKF_RW_READ : KLOCKF_RW_WRITE;
2503 			if (lf->lf_owner->lo_sysid != 0) {
2504 				klf->kl.kl_pid = lf->lf_owner->lo_pid;
2505 				klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
2506 				klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
2507 			} else if (lf->lf_owner->lo_pid == -1) {
2508 				klf->kl.kl_pid = -1;
2509 				klf->kl.kl_sysid = 0;
2510 				klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
2511 			} else {
2512 				klf->kl.kl_pid = lf->lf_owner->lo_pid;
2513 				klf->kl.kl_sysid = 0;
2514 				klf->kl.kl_type = KLOCKF_TYPE_PID;
2515 			}
2516 			STAILQ_INSERT_TAIL(&locks, klf, link);
2517 		}
2518 		sx_sunlock(&ls->ls_lock);
2519 	}
2520 	sx_sunlock(&lf_lock_states_lock);
2521 
2522 	gerror = 0;
2523 	ucred = curthread->td_ucred;
2524 	while ((klf = STAILQ_FIRST(&locks)) != NULL) {
2525 		STAILQ_REMOVE_HEAD(&locks, link);
2526 		vp = klf->vp;
2527 		if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
2528 			error = prison_canseemount(ucred, vp->v_mount);
2529 			if (error == 0)
2530 				error = VOP_STAT(vp, &stt, ucred, NOCRED);
2531 			VOP_UNLOCK(vp);
2532 			if (error == 0) {
2533 				klf->kl.kl_file_fsid = stt.st_dev;
2534 				klf->kl.kl_file_rdev = stt.st_rdev;
2535 				klf->kl.kl_file_fileid = stt.st_ino;
2536 				freepath = NULL;
2537 				fullpath = "-";
2538 				error = vn_fullpath(vp, &fullpath, &freepath);
2539 				if (error == 0)
2540 					strlcpy(klf->kl.kl_path, fullpath,
2541 					    sizeof(klf->kl.kl_path));
2542 				free(freepath, M_TEMP);
2543 				if (sbuf_bcat(sb, &klf->kl,
2544 				    klf->kl.kl_structsize) != 0) {
2545 					gerror = sbuf_error(sb);
2546 				}
2547 			}
2548 		}
2549 		vdrop(vp);
2550 		free(klf, M_LOCKF);
2551 	}
2552 
2553 	return (gerror);
2554 }
2555 
2556 static int
2557 sysctl_kern_lockf_run(struct sbuf *sb)
2558 {
2559 	struct mount *mp;
2560 	int error;
2561 
2562 	error = 0;
2563 	mtx_lock(&mountlist_mtx);
2564 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2565 		error = vfs_busy(mp, MBF_MNTLSTLOCK);
2566 		if (error != 0)
2567 			continue;
2568 		error = mp->mnt_op->vfs_report_lockf(mp, sb);
2569 		mtx_lock(&mountlist_mtx);
2570 		vfs_unbusy(mp);
2571 		if (error != 0)
2572 			break;
2573 	}
2574 	mtx_unlock(&mountlist_mtx);
2575 	return (error);
2576 }
2577 
2578 static int
2579 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
2580 {
2581 	struct sbuf sb;
2582 	int error, error2;
2583 
2584 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
2585 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2586 	error = sysctl_kern_lockf_run(&sb);
2587 	error2 = sbuf_finish(&sb);
2588 	sbuf_delete(&sb);
2589 	return (error != 0 ? error : error2);
2590 }
2591 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
2592     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2593     0, 0, sysctl_kern_lockf, "S,lockf",
2594     "Advisory locks table");
2595 
2596 #ifdef LOCKF_DEBUG
2597 /*
2598  * Print description of a lock owner
2599  */
2600 static void
2601 lf_print_owner(struct lock_owner *lo)
2602 {
2603 
2604 	if (lo->lo_flags & F_REMOTE) {
2605 		printf("remote pid %d, system %d",
2606 		    lo->lo_pid, lo->lo_sysid);
2607 	} else if (lo->lo_flags & F_FLOCK) {
2608 		printf("file %p", lo->lo_id);
2609 	} else {
2610 		printf("local pid %d", lo->lo_pid);
2611 	}
2612 }
2613 
2614 /*
2615  * Print out a lock.
2616  */
2617 static void
2618 lf_print(char *tag, struct lockf_entry *lock)
2619 {
2620 
2621 	printf("%s: lock %p for ", tag, (void *)lock);
2622 	lf_print_owner(lock->lf_owner);
2623 	printf("\nvnode %p", lock->lf_vnode);
2624 	VOP_PRINT(lock->lf_vnode);
2625 	printf(" %s, start %jd, end ",
2626 	    lock->lf_type == F_RDLCK ? "shared" :
2627 	    lock->lf_type == F_WRLCK ? "exclusive" :
2628 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2629 	    (intmax_t)lock->lf_start);
2630 	if (lock->lf_end == OFF_MAX)
2631 		printf("EOF");
2632 	else
2633 		printf("%jd", (intmax_t)lock->lf_end);
2634 	if (!LIST_EMPTY(&lock->lf_outedges))
2635 		printf(" block %p\n",
2636 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2637 	else
2638 		printf("\n");
2639 }
2640 
2641 static void
2642 lf_printlist(char *tag, struct lockf_entry *lock)
2643 {
2644 	struct lockf_entry *lf, *blk;
2645 	struct lockf_edge *e;
2646 
2647 	printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
2648 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2649 		printf("\tlock %p for ",(void *)lf);
2650 		lf_print_owner(lock->lf_owner);
2651 		printf(", %s, start %jd, end %jd",
2652 		    lf->lf_type == F_RDLCK ? "shared" :
2653 		    lf->lf_type == F_WRLCK ? "exclusive" :
2654 		    lf->lf_type == F_UNLCK ? "unlock" :
2655 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2656 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2657 			blk = e->le_to;
2658 			printf("\n\t\tlock request %p for ", (void *)blk);
2659 			lf_print_owner(blk->lf_owner);
2660 			printf(", %s, start %jd, end %jd",
2661 			    blk->lf_type == F_RDLCK ? "shared" :
2662 			    blk->lf_type == F_WRLCK ? "exclusive" :
2663 			    blk->lf_type == F_UNLCK ? "unlock" :
2664 			    "unknown", (intmax_t)blk->lf_start,
2665 			    (intmax_t)blk->lf_end);
2666 			if (!LIST_EMPTY(&blk->lf_inedges))
2667 				panic("lf_printlist: bad list");
2668 		}
2669 		printf("\n");
2670 	}
2671 }
2672 #endif /* LOCKF_DEBUG */
2673