xref: /freebsd/sys/kern/kern_lockf.c (revision 298f5fdc242b760e70cd3494e3a4f1f50b20664d)
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  *	The Regents of the University of California.  All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 4. Neither the name of the University nor the names of its contributors
43  *    may be used to endorse or promote products derived from this software
44  *    without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include "opt_debug_lockf.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82 
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85 
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88 
89 static int	lockf_debug = 0; /* control debug output */
90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91 #endif
92 
93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94 
95 struct owner_edge;
96 struct owner_vertex;
97 struct owner_vertex_list;
98 struct owner_graph;
99 
100 #define NOLOCKF (struct lockf_entry *)0
101 #define SELF	0x1
102 #define OTHERS	0x2
103 static void	 lf_init(void *);
104 static int	 lf_hash_owner(caddr_t, struct flock *, int);
105 static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106     int);
107 static struct lockf_entry *
108 		 lf_alloc_lock(struct lock_owner *);
109 static int	 lf_free_lock(struct lockf_entry *);
110 static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111 static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112 static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113 static void	 lf_free_edge(struct lockf_edge *);
114 static struct lockf_edge *
115 		 lf_alloc_edge(void);
116 static void	 lf_alloc_vertex(struct lockf_entry *);
117 static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118 static void	 lf_remove_edge(struct lockf_edge *);
119 static void	 lf_remove_outgoing(struct lockf_entry *);
120 static void	 lf_remove_incoming(struct lockf_entry *);
121 static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122 static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123 static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124     int);
125 static struct lockf_entry *
126 		 lf_getblock(struct lockf *, struct lockf_entry *);
127 static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128 static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129 static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130 static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131     int all, struct lockf_entry_list *);
132 static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133 	struct lockf_entry_list*);
134 static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135 	struct lockf_entry_list*);
136 static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137     struct vnode *, void **cookiep);
138 static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139 static void	 lf_split(struct lockf *, struct lockf_entry *,
140     struct lockf_entry *, struct lockf_entry_list *);
141 #ifdef LOCKF_DEBUG
142 static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143     struct owner_vertex_list *path);
144 static void	 graph_check(struct owner_graph *g, int checkorder);
145 static void	 graph_print_vertices(struct owner_vertex_list *set);
146 #endif
147 static int	 graph_delta_forward(struct owner_graph *g,
148     struct owner_vertex *x, struct owner_vertex *y,
149     struct owner_vertex_list *delta);
150 static int	 graph_delta_backward(struct owner_graph *g,
151     struct owner_vertex *x, struct owner_vertex *y,
152     struct owner_vertex_list *delta);
153 static int	 graph_add_indices(int *indices, int n,
154     struct owner_vertex_list *set);
155 static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156     int nextunused, struct owner_vertex_list *set);
157 static int	 graph_add_edge(struct owner_graph *g,
158     struct owner_vertex *x, struct owner_vertex *y);
159 static void	 graph_remove_edge(struct owner_graph *g,
160     struct owner_vertex *x, struct owner_vertex *y);
161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162     struct lock_owner *lo);
163 static void	 graph_free_vertex(struct owner_graph *g,
164     struct owner_vertex *v);
165 static struct owner_graph * graph_init(struct owner_graph *g);
166 #ifdef LOCKF_DEBUG
167 static void	 lf_print(char *, struct lockf_entry *);
168 static void	 lf_printlist(char *, struct lockf_entry *);
169 static void	 lf_print_owner(struct lock_owner *);
170 #endif
171 
172 /*
173  * This structure is used to keep track of both local and remote lock
174  * owners. The lf_owner field of the struct lockf_entry points back at
175  * the lock owner structure. Each possible lock owner (local proc for
176  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177  * pair for remote locks) is represented by a unique instance of
178  * struct lock_owner.
179  *
180  * If a lock owner has a lock that blocks some other lock or a lock
181  * that is waiting for some other lock, it also has a vertex in the
182  * owner_graph below.
183  *
184  * Locks:
185  * (s)		locked by state->ls_lock
186  * (S)		locked by lf_lock_states_lock
187  * (l)		locked by lf_lock_owners_lock
188  * (g)		locked by lf_owner_graph_lock
189  * (c)		const until freeing
190  */
191 #define	LOCK_OWNER_HASH_SIZE	256
192 
193 struct lock_owner {
194 	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195 	int	lo_refs;	    /* (l) Number of locks referring to this */
196 	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197 	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198 	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199 	int	lo_sysid;	    /* (c) System Id of the lock owner */
200 	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201 };
202 
203 LIST_HEAD(lock_owner_list, lock_owner);
204 
205 static struct sx		lf_lock_states_lock;
206 static struct lockf_list	lf_lock_states; /* (S) */
207 static struct sx		lf_lock_owners_lock;
208 static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209 
210 /*
211  * Structures for deadlock detection.
212  *
213  * We have two types of directed graph, the first is the set of locks,
214  * both active and pending on a vnode. Within this graph, active locks
215  * are terminal nodes in the graph (i.e. have no out-going
216  * edges). Pending locks have out-going edges to each blocking active
217  * lock that prevents the lock from being granted and also to each
218  * older pending lock that would block them if it was active. The
219  * graph for each vnode is naturally acyclic; new edges are only ever
220  * added to or from new nodes (either new pending locks which only add
221  * out-going edges or new active locks which only add in-coming edges)
222  * therefore they cannot create loops in the lock graph.
223  *
224  * The second graph is a global graph of lock owners. Each lock owner
225  * is a vertex in that graph and an edge is added to the graph
226  * whenever an edge is added to a vnode graph, with end points
227  * corresponding to owner of the new pending lock and the owner of the
228  * lock upon which it waits. In order to prevent deadlock, we only add
229  * an edge to this graph if the new edge would not create a cycle.
230  *
231  * The lock owner graph is topologically sorted, i.e. if a node has
232  * any outgoing edges, then it has an order strictly less than any
233  * node to which it has an outgoing edge. We preserve this ordering
234  * (and detect cycles) on edge insertion using Algorithm PK from the
235  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237  * No. 1.7)
238  */
239 struct owner_vertex;
240 
241 struct owner_edge {
242 	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243 	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244 	int		e_refs;		  /* (g) number of times added */
245 	struct owner_vertex *e_from;	  /* (c) out-going from here */
246 	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247 };
248 LIST_HEAD(owner_edge_list, owner_edge);
249 
250 struct owner_vertex {
251 	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252 	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253 	int		v_order;	  /* (g) order of vertex in graph */
254 	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255 	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256 	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257 };
258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
259 
260 struct owner_graph {
261 	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262 	int		g_size;		  /* (g) number of vertices */
263 	int		g_space;	  /* (g) space allocated for vertices */
264 	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265 	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266 };
267 
268 static struct sx		lf_owner_graph_lock;
269 static struct owner_graph	lf_owner_graph;
270 
271 /*
272  * Initialise various structures and locks.
273  */
274 static void
275 lf_init(void *dummy)
276 {
277 	int i;
278 
279 	sx_init(&lf_lock_states_lock, "lock states lock");
280 	LIST_INIT(&lf_lock_states);
281 
282 	sx_init(&lf_lock_owners_lock, "lock owners lock");
283 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284 		LIST_INIT(&lf_lock_owners[i]);
285 
286 	sx_init(&lf_owner_graph_lock, "owner graph lock");
287 	graph_init(&lf_owner_graph);
288 }
289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290 
291 /*
292  * Generate a hash value for a lock owner.
293  */
294 static int
295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296 {
297 	uint32_t h;
298 
299 	if (flags & F_REMOTE) {
300 		h = HASHSTEP(0, fl->l_pid);
301 		h = HASHSTEP(h, fl->l_sysid);
302 	} else if (flags & F_FLOCK) {
303 		h = ((uintptr_t) id) >> 7;
304 	} else {
305 		struct proc *p = (struct proc *) id;
306 		h = HASHSTEP(0, p->p_pid);
307 		h = HASHSTEP(h, 0);
308 	}
309 
310 	return (h % LOCK_OWNER_HASH_SIZE);
311 }
312 
313 /*
314  * Return true if a lock owner matches the details passed to
315  * lf_advlock.
316  */
317 static int
318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319     int flags)
320 {
321 	if (flags & F_REMOTE) {
322 		return lo->lo_pid == fl->l_pid
323 			&& lo->lo_sysid == fl->l_sysid;
324 	} else {
325 		return lo->lo_id == id;
326 	}
327 }
328 
329 static struct lockf_entry *
330 lf_alloc_lock(struct lock_owner *lo)
331 {
332 	struct lockf_entry *lf;
333 
334 	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335 
336 #ifdef LOCKF_DEBUG
337 	if (lockf_debug & 4)
338 		printf("Allocated lock %p\n", lf);
339 #endif
340 	if (lo) {
341 		sx_xlock(&lf_lock_owners_lock);
342 		lo->lo_refs++;
343 		sx_xunlock(&lf_lock_owners_lock);
344 		lf->lf_owner = lo;
345 	}
346 
347 	return (lf);
348 }
349 
350 static int
351 lf_free_lock(struct lockf_entry *lock)
352 {
353 
354 	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355 	if (--lock->lf_refs > 0)
356 		return (0);
357 	/*
358 	 * Adjust the lock_owner reference count and
359 	 * reclaim the entry if this is the last lock
360 	 * for that owner.
361 	 */
362 	struct lock_owner *lo = lock->lf_owner;
363 	if (lo) {
364 		KASSERT(LIST_EMPTY(&lock->lf_outedges),
365 		    ("freeing lock with dependancies"));
366 		KASSERT(LIST_EMPTY(&lock->lf_inedges),
367 		    ("freeing lock with dependants"));
368 		sx_xlock(&lf_lock_owners_lock);
369 		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370 		lo->lo_refs--;
371 		if (lo->lo_refs == 0) {
372 #ifdef LOCKF_DEBUG
373 			if (lockf_debug & 1)
374 				printf("lf_free_lock: freeing lock owner %p\n",
375 				    lo);
376 #endif
377 			if (lo->lo_vertex) {
378 				sx_xlock(&lf_owner_graph_lock);
379 				graph_free_vertex(&lf_owner_graph,
380 				    lo->lo_vertex);
381 				sx_xunlock(&lf_owner_graph_lock);
382 			}
383 			LIST_REMOVE(lo, lo_link);
384 			free(lo, M_LOCKF);
385 #ifdef LOCKF_DEBUG
386 			if (lockf_debug & 4)
387 				printf("Freed lock owner %p\n", lo);
388 #endif
389 		}
390 		sx_unlock(&lf_lock_owners_lock);
391 	}
392 	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393 		vrele(lock->lf_vnode);
394 		lock->lf_vnode = NULL;
395 	}
396 #ifdef LOCKF_DEBUG
397 	if (lockf_debug & 4)
398 		printf("Freed lock %p\n", lock);
399 #endif
400 	free(lock, M_LOCKF);
401 	return (1);
402 }
403 
404 /*
405  * Advisory record locking support
406  */
407 int
408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409     u_quad_t size)
410 {
411 	struct lockf *state, *freestate = NULL;
412 	struct flock *fl = ap->a_fl;
413 	struct lockf_entry *lock;
414 	struct vnode *vp = ap->a_vp;
415 	caddr_t id = ap->a_id;
416 	int flags = ap->a_flags;
417 	int hash;
418 	struct lock_owner *lo;
419 	off_t start, end, oadd;
420 	int error;
421 
422 	/*
423 	 * Handle the F_UNLKSYS case first - no need to mess about
424 	 * creating a lock owner for this one.
425 	 */
426 	if (ap->a_op == F_UNLCKSYS) {
427 		lf_clearremotesys(fl->l_sysid);
428 		return (0);
429 	}
430 
431 	/*
432 	 * Convert the flock structure into a start and end.
433 	 */
434 	switch (fl->l_whence) {
435 
436 	case SEEK_SET:
437 	case SEEK_CUR:
438 		/*
439 		 * Caller is responsible for adding any necessary offset
440 		 * when SEEK_CUR is used.
441 		 */
442 		start = fl->l_start;
443 		break;
444 
445 	case SEEK_END:
446 		if (size > OFF_MAX ||
447 		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448 			return (EOVERFLOW);
449 		start = size + fl->l_start;
450 		break;
451 
452 	default:
453 		return (EINVAL);
454 	}
455 	if (start < 0)
456 		return (EINVAL);
457 	if (fl->l_len < 0) {
458 		if (start == 0)
459 			return (EINVAL);
460 		end = start - 1;
461 		start += fl->l_len;
462 		if (start < 0)
463 			return (EINVAL);
464 	} else if (fl->l_len == 0) {
465 		end = OFF_MAX;
466 	} else {
467 		oadd = fl->l_len - 1;
468 		if (oadd > OFF_MAX - start)
469 			return (EOVERFLOW);
470 		end = start + oadd;
471 	}
472 
473 retry_setlock:
474 
475 	/*
476 	 * Avoid the common case of unlocking when inode has no locks.
477 	 */
478 	VI_LOCK(vp);
479 	if ((*statep) == NULL) {
480 		if (ap->a_op != F_SETLK) {
481 			fl->l_type = F_UNLCK;
482 			VI_UNLOCK(vp);
483 			return (0);
484 		}
485 	}
486 	VI_UNLOCK(vp);
487 
488 	/*
489 	 * Map our arguments to an existing lock owner or create one
490 	 * if this is the first time we have seen this owner.
491 	 */
492 	hash = lf_hash_owner(id, fl, flags);
493 	sx_xlock(&lf_lock_owners_lock);
494 	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
495 		if (lf_owner_matches(lo, id, fl, flags))
496 			break;
497 	if (!lo) {
498 		/*
499 		 * We initialise the lock with a reference
500 		 * count which matches the new lockf_entry
501 		 * structure created below.
502 		 */
503 		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
504 		    M_WAITOK|M_ZERO);
505 #ifdef LOCKF_DEBUG
506 		if (lockf_debug & 4)
507 			printf("Allocated lock owner %p\n", lo);
508 #endif
509 
510 		lo->lo_refs = 1;
511 		lo->lo_flags = flags;
512 		lo->lo_id = id;
513 		if (flags & F_REMOTE) {
514 			lo->lo_pid = fl->l_pid;
515 			lo->lo_sysid = fl->l_sysid;
516 		} else if (flags & F_FLOCK) {
517 			lo->lo_pid = -1;
518 			lo->lo_sysid = 0;
519 		} else {
520 			struct proc *p = (struct proc *) id;
521 			lo->lo_pid = p->p_pid;
522 			lo->lo_sysid = 0;
523 		}
524 		lo->lo_vertex = NULL;
525 
526 #ifdef LOCKF_DEBUG
527 		if (lockf_debug & 1) {
528 			printf("lf_advlockasync: new lock owner %p ", lo);
529 			lf_print_owner(lo);
530 			printf("\n");
531 		}
532 #endif
533 
534 		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
535 	} else {
536 		/*
537 		 * We have seen this lock owner before, increase its
538 		 * reference count to account for the new lockf_entry
539 		 * structure we create below.
540 		 */
541 		lo->lo_refs++;
542 	}
543 	sx_xunlock(&lf_lock_owners_lock);
544 
545 	/*
546 	 * Create the lockf structure. We initialise the lf_owner
547 	 * field here instead of in lf_alloc_lock() to avoid paying
548 	 * the lf_lock_owners_lock tax twice.
549 	 */
550 	lock = lf_alloc_lock(NULL);
551 	lock->lf_refs = 1;
552 	lock->lf_start = start;
553 	lock->lf_end = end;
554 	lock->lf_owner = lo;
555 	lock->lf_vnode = vp;
556 	if (flags & F_REMOTE) {
557 		/*
558 		 * For remote locks, the caller may release its ref to
559 		 * the vnode at any time - we have to ref it here to
560 		 * prevent it from being recycled unexpectedly.
561 		 */
562 		vref(vp);
563 	}
564 
565 	/*
566 	 * XXX The problem is that VTOI is ufs specific, so it will
567 	 * break LOCKF_DEBUG for all other FS's other than UFS because
568 	 * it casts the vnode->data ptr to struct inode *.
569 	 */
570 /*	lock->lf_inode = VTOI(ap->a_vp); */
571 	lock->lf_inode = (struct inode *)0;
572 	lock->lf_type = fl->l_type;
573 	LIST_INIT(&lock->lf_outedges);
574 	LIST_INIT(&lock->lf_inedges);
575 	lock->lf_async_task = ap->a_task;
576 	lock->lf_flags = ap->a_flags;
577 
578 	/*
579 	 * Do the requested operation. First find our state structure
580 	 * and create a new one if necessary - the caller's *statep
581 	 * variable and the state's ls_threads count is protected by
582 	 * the vnode interlock.
583 	 */
584 	VI_LOCK(vp);
585 	if (vp->v_iflag & VI_DOOMED) {
586 		VI_UNLOCK(vp);
587 		lf_free_lock(lock);
588 		return (ENOENT);
589 	}
590 
591 	/*
592 	 * Allocate a state structure if necessary.
593 	 */
594 	state = *statep;
595 	if (state == NULL) {
596 		struct lockf *ls;
597 
598 		VI_UNLOCK(vp);
599 
600 		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
601 		sx_init(&ls->ls_lock, "ls_lock");
602 		LIST_INIT(&ls->ls_active);
603 		LIST_INIT(&ls->ls_pending);
604 		ls->ls_threads = 1;
605 
606 		sx_xlock(&lf_lock_states_lock);
607 		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
608 		sx_xunlock(&lf_lock_states_lock);
609 
610 		/*
611 		 * Cope if we lost a race with some other thread while
612 		 * trying to allocate memory.
613 		 */
614 		VI_LOCK(vp);
615 		if (vp->v_iflag & VI_DOOMED) {
616 			VI_UNLOCK(vp);
617 			sx_xlock(&lf_lock_states_lock);
618 			LIST_REMOVE(ls, ls_link);
619 			sx_xunlock(&lf_lock_states_lock);
620 			sx_destroy(&ls->ls_lock);
621 			free(ls, M_LOCKF);
622 			lf_free_lock(lock);
623 			return (ENOENT);
624 		}
625 		if ((*statep) == NULL) {
626 			state = *statep = ls;
627 			VI_UNLOCK(vp);
628 		} else {
629 			state = *statep;
630 			state->ls_threads++;
631 			VI_UNLOCK(vp);
632 
633 			sx_xlock(&lf_lock_states_lock);
634 			LIST_REMOVE(ls, ls_link);
635 			sx_xunlock(&lf_lock_states_lock);
636 			sx_destroy(&ls->ls_lock);
637 			free(ls, M_LOCKF);
638 		}
639 	} else {
640 		state->ls_threads++;
641 		VI_UNLOCK(vp);
642 	}
643 
644 	sx_xlock(&state->ls_lock);
645 	/*
646 	 * Recheck the doomed vnode after state->ls_lock is
647 	 * locked. lf_purgelocks() requires that no new threads add
648 	 * pending locks when vnode is marked by VI_DOOMED flag.
649 	 */
650 	VI_LOCK(vp);
651 	if (vp->v_iflag & VI_DOOMED) {
652 		state->ls_threads--;
653 		wakeup(state);
654 		VI_UNLOCK(vp);
655 		sx_xunlock(&state->ls_lock);
656 		lf_free_lock(lock);
657 		return (ENOENT);
658 	}
659 	VI_UNLOCK(vp);
660 
661 	switch (ap->a_op) {
662 	case F_SETLK:
663 		error = lf_setlock(state, lock, vp, ap->a_cookiep);
664 		break;
665 
666 	case F_UNLCK:
667 		error = lf_clearlock(state, lock);
668 		lf_free_lock(lock);
669 		break;
670 
671 	case F_GETLK:
672 		error = lf_getlock(state, lock, fl);
673 		lf_free_lock(lock);
674 		break;
675 
676 	case F_CANCEL:
677 		if (ap->a_cookiep)
678 			error = lf_cancel(state, lock, *ap->a_cookiep);
679 		else
680 			error = EINVAL;
681 		lf_free_lock(lock);
682 		break;
683 
684 	default:
685 		lf_free_lock(lock);
686 		error = EINVAL;
687 		break;
688 	}
689 
690 #ifdef INVARIANTS
691 	/*
692 	 * Check for some can't happen stuff. In this case, the active
693 	 * lock list becoming disordered or containing mutually
694 	 * blocking locks. We also check the pending list for locks
695 	 * which should be active (i.e. have no out-going edges).
696 	 */
697 	LIST_FOREACH(lock, &state->ls_active, lf_link) {
698 		struct lockf_entry *lf;
699 		if (LIST_NEXT(lock, lf_link))
700 			KASSERT((lock->lf_start
701 				<= LIST_NEXT(lock, lf_link)->lf_start),
702 			    ("locks disordered"));
703 		LIST_FOREACH(lf, &state->ls_active, lf_link) {
704 			if (lock == lf)
705 				break;
706 			KASSERT(!lf_blocks(lock, lf),
707 			    ("two conflicting active locks"));
708 			if (lock->lf_owner == lf->lf_owner)
709 				KASSERT(!lf_overlaps(lock, lf),
710 				    ("two overlapping locks from same owner"));
711 		}
712 	}
713 	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
714 		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
715 		    ("pending lock which should be active"));
716 	}
717 #endif
718 	sx_xunlock(&state->ls_lock);
719 
720 	/*
721 	 * If we have removed the last active lock on the vnode and
722 	 * this is the last thread that was in-progress, we can free
723 	 * the state structure. We update the caller's pointer inside
724 	 * the vnode interlock but call free outside.
725 	 *
726 	 * XXX alternatively, keep the state structure around until
727 	 * the filesystem recycles - requires a callback from the
728 	 * filesystem.
729 	 */
730 	VI_LOCK(vp);
731 
732 	state->ls_threads--;
733 	wakeup(state);
734 	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
735 		KASSERT(LIST_EMPTY(&state->ls_pending),
736 		    ("freeing state with pending locks"));
737 		freestate = state;
738 		*statep = NULL;
739 	}
740 
741 	VI_UNLOCK(vp);
742 
743 	if (freestate) {
744 		sx_xlock(&lf_lock_states_lock);
745 		LIST_REMOVE(freestate, ls_link);
746 		sx_xunlock(&lf_lock_states_lock);
747 		sx_destroy(&freestate->ls_lock);
748 		free(freestate, M_LOCKF);
749 	}
750 
751 	if (error == EDOOFUS) {
752 		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
753 		goto retry_setlock;
754 	}
755 	return (error);
756 }
757 
758 int
759 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
760 {
761 	struct vop_advlockasync_args a;
762 
763 	a.a_vp = ap->a_vp;
764 	a.a_id = ap->a_id;
765 	a.a_op = ap->a_op;
766 	a.a_fl = ap->a_fl;
767 	a.a_flags = ap->a_flags;
768 	a.a_task = NULL;
769 	a.a_cookiep = NULL;
770 
771 	return (lf_advlockasync(&a, statep, size));
772 }
773 
774 void
775 lf_purgelocks(struct vnode *vp, struct lockf **statep)
776 {
777 	struct lockf *state;
778 	struct lockf_entry *lock, *nlock;
779 
780 	/*
781 	 * For this to work correctly, the caller must ensure that no
782 	 * other threads enter the locking system for this vnode,
783 	 * e.g. by checking VI_DOOMED. We wake up any threads that are
784 	 * sleeping waiting for locks on this vnode and then free all
785 	 * the remaining locks.
786 	 */
787 	VI_LOCK(vp);
788 	KASSERT(vp->v_iflag & VI_DOOMED,
789 	    ("lf_purgelocks: vp %p has not vgone yet", vp));
790 	state = *statep;
791 	if (state) {
792 		*statep = NULL;
793 		state->ls_threads++;
794 		VI_UNLOCK(vp);
795 
796 		sx_xlock(&state->ls_lock);
797 		sx_xlock(&lf_owner_graph_lock);
798 		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799 			LIST_REMOVE(lock, lf_link);
800 			lf_remove_outgoing(lock);
801 			lf_remove_incoming(lock);
802 
803 			/*
804 			 * If its an async lock, we can just free it
805 			 * here, otherwise we let the sleeping thread
806 			 * free it.
807 			 */
808 			if (lock->lf_async_task) {
809 				lf_free_lock(lock);
810 			} else {
811 				lock->lf_flags |= F_INTR;
812 				wakeup(lock);
813 			}
814 		}
815 		sx_xunlock(&lf_owner_graph_lock);
816 		sx_xunlock(&state->ls_lock);
817 
818 		/*
819 		 * Wait for all other threads, sleeping and otherwise
820 		 * to leave.
821 		 */
822 		VI_LOCK(vp);
823 		while (state->ls_threads > 1)
824 			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
825 		VI_UNLOCK(vp);
826 
827 		/*
828 		 * We can just free all the active locks since they
829 		 * will have no dependancies (we removed them all
830 		 * above). We don't need to bother locking since we
831 		 * are the last thread using this state structure.
832 		 */
833 		KASSERT(LIST_EMPTY(&state->ls_pending),
834 		    ("lock pending for %p", state));
835 		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
836 			LIST_REMOVE(lock, lf_link);
837 			lf_free_lock(lock);
838 		}
839 		sx_xlock(&lf_lock_states_lock);
840 		LIST_REMOVE(state, ls_link);
841 		sx_xunlock(&lf_lock_states_lock);
842 		sx_destroy(&state->ls_lock);
843 		free(state, M_LOCKF);
844 	} else {
845 		VI_UNLOCK(vp);
846 	}
847 }
848 
849 /*
850  * Return non-zero if locks 'x' and 'y' overlap.
851  */
852 static int
853 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
854 {
855 
856 	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
857 }
858 
859 /*
860  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
861  */
862 static int
863 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
864 {
865 
866 	return x->lf_owner != y->lf_owner
867 		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
868 		&& lf_overlaps(x, y);
869 }
870 
871 /*
872  * Allocate a lock edge from the free list
873  */
874 static struct lockf_edge *
875 lf_alloc_edge(void)
876 {
877 
878 	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
879 }
880 
881 /*
882  * Free a lock edge.
883  */
884 static void
885 lf_free_edge(struct lockf_edge *e)
886 {
887 
888 	free(e, M_LOCKF);
889 }
890 
891 
892 /*
893  * Ensure that the lock's owner has a corresponding vertex in the
894  * owner graph.
895  */
896 static void
897 lf_alloc_vertex(struct lockf_entry *lock)
898 {
899 	struct owner_graph *g = &lf_owner_graph;
900 
901 	if (!lock->lf_owner->lo_vertex)
902 		lock->lf_owner->lo_vertex =
903 			graph_alloc_vertex(g, lock->lf_owner);
904 }
905 
906 /*
907  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
908  * the new edge would cause a cycle in the owner graph.
909  */
910 static int
911 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
912 {
913 	struct owner_graph *g = &lf_owner_graph;
914 	struct lockf_edge *e;
915 	int error;
916 
917 #ifdef INVARIANTS
918 	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
919 		KASSERT(e->le_to != y, ("adding lock edge twice"));
920 #endif
921 
922 	/*
923 	 * Make sure the two owners have entries in the owner graph.
924 	 */
925 	lf_alloc_vertex(x);
926 	lf_alloc_vertex(y);
927 
928 	error = graph_add_edge(g, x->lf_owner->lo_vertex,
929 	    y->lf_owner->lo_vertex);
930 	if (error)
931 		return (error);
932 
933 	e = lf_alloc_edge();
934 	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
935 	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
936 	e->le_from = x;
937 	e->le_to = y;
938 
939 	return (0);
940 }
941 
942 /*
943  * Remove an edge from the lock graph.
944  */
945 static void
946 lf_remove_edge(struct lockf_edge *e)
947 {
948 	struct owner_graph *g = &lf_owner_graph;
949 	struct lockf_entry *x = e->le_from;
950 	struct lockf_entry *y = e->le_to;
951 
952 	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
953 	LIST_REMOVE(e, le_outlink);
954 	LIST_REMOVE(e, le_inlink);
955 	e->le_from = NULL;
956 	e->le_to = NULL;
957 	lf_free_edge(e);
958 }
959 
960 /*
961  * Remove all out-going edges from lock x.
962  */
963 static void
964 lf_remove_outgoing(struct lockf_entry *x)
965 {
966 	struct lockf_edge *e;
967 
968 	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
969 		lf_remove_edge(e);
970 	}
971 }
972 
973 /*
974  * Remove all in-coming edges from lock x.
975  */
976 static void
977 lf_remove_incoming(struct lockf_entry *x)
978 {
979 	struct lockf_edge *e;
980 
981 	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
982 		lf_remove_edge(e);
983 	}
984 }
985 
986 /*
987  * Walk the list of locks for the file and create an out-going edge
988  * from lock to each blocking lock.
989  */
990 static int
991 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
992 {
993 	struct lockf_entry *overlap;
994 	int error;
995 
996 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
997 		/*
998 		 * We may assume that the active list is sorted by
999 		 * lf_start.
1000 		 */
1001 		if (overlap->lf_start > lock->lf_end)
1002 			break;
1003 		if (!lf_blocks(lock, overlap))
1004 			continue;
1005 
1006 		/*
1007 		 * We've found a blocking lock. Add the corresponding
1008 		 * edge to the graphs and see if it would cause a
1009 		 * deadlock.
1010 		 */
1011 		error = lf_add_edge(lock, overlap);
1012 
1013 		/*
1014 		 * The only error that lf_add_edge returns is EDEADLK.
1015 		 * Remove any edges we added and return the error.
1016 		 */
1017 		if (error) {
1018 			lf_remove_outgoing(lock);
1019 			return (error);
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * We also need to add edges to sleeping locks that block
1025 	 * us. This ensures that lf_wakeup_lock cannot grant two
1026 	 * mutually blocking locks simultaneously and also enforces a
1027 	 * 'first come, first served' fairness model. Note that this
1028 	 * only happens if we are blocked by at least one active lock
1029 	 * due to the call to lf_getblock in lf_setlock below.
1030 	 */
1031 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1032 		if (!lf_blocks(lock, overlap))
1033 			continue;
1034 		/*
1035 		 * We've found a blocking lock. Add the corresponding
1036 		 * edge to the graphs and see if it would cause a
1037 		 * deadlock.
1038 		 */
1039 		error = lf_add_edge(lock, overlap);
1040 
1041 		/*
1042 		 * The only error that lf_add_edge returns is EDEADLK.
1043 		 * Remove any edges we added and return the error.
1044 		 */
1045 		if (error) {
1046 			lf_remove_outgoing(lock);
1047 			return (error);
1048 		}
1049 	}
1050 
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Walk the list of pending locks for the file and create an in-coming
1056  * edge from lock to each blocking lock.
1057  */
1058 static int
1059 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1060 {
1061 	struct lockf_entry *overlap;
1062 	int error;
1063 
1064 	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1065 		if (!lf_blocks(lock, overlap))
1066 			continue;
1067 
1068 		/*
1069 		 * We've found a blocking lock. Add the corresponding
1070 		 * edge to the graphs and see if it would cause a
1071 		 * deadlock.
1072 		 */
1073 		error = lf_add_edge(overlap, lock);
1074 
1075 		/*
1076 		 * The only error that lf_add_edge returns is EDEADLK.
1077 		 * Remove any edges we added and return the error.
1078 		 */
1079 		if (error) {
1080 			lf_remove_incoming(lock);
1081 			return (error);
1082 		}
1083 	}
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Insert lock into the active list, keeping list entries ordered by
1089  * increasing values of lf_start.
1090  */
1091 static void
1092 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1093 {
1094 	struct lockf_entry *lf, *lfprev;
1095 
1096 	if (LIST_EMPTY(&state->ls_active)) {
1097 		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1098 		return;
1099 	}
1100 
1101 	lfprev = NULL;
1102 	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1103 		if (lf->lf_start > lock->lf_start) {
1104 			LIST_INSERT_BEFORE(lf, lock, lf_link);
1105 			return;
1106 		}
1107 		lfprev = lf;
1108 	}
1109 	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1110 }
1111 
1112 /*
1113  * Wake up a sleeping lock and remove it from the pending list now
1114  * that all its dependancies have been resolved. The caller should
1115  * arrange for the lock to be added to the active list, adjusting any
1116  * existing locks for the same owner as needed.
1117  */
1118 static void
1119 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1120 {
1121 
1122 	/*
1123 	 * Remove from ls_pending list and wake up the caller
1124 	 * or start the async notification, as appropriate.
1125 	 */
1126 	LIST_REMOVE(wakelock, lf_link);
1127 #ifdef LOCKF_DEBUG
1128 	if (lockf_debug & 1)
1129 		lf_print("lf_wakeup_lock: awakening", wakelock);
1130 #endif /* LOCKF_DEBUG */
1131 	if (wakelock->lf_async_task) {
1132 		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1133 	} else {
1134 		wakeup(wakelock);
1135 	}
1136 }
1137 
1138 /*
1139  * Re-check all dependant locks and remove edges to locks that we no
1140  * longer block. If 'all' is non-zero, the lock has been removed and
1141  * we must remove all the dependancies, otherwise it has simply been
1142  * reduced but remains active. Any pending locks which have been been
1143  * unblocked are added to 'granted'
1144  */
1145 static void
1146 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1147 	struct lockf_entry_list *granted)
1148 {
1149 	struct lockf_edge *e, *ne;
1150 	struct lockf_entry *deplock;
1151 
1152 	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1153 		deplock = e->le_from;
1154 		if (all || !lf_blocks(lock, deplock)) {
1155 			sx_xlock(&lf_owner_graph_lock);
1156 			lf_remove_edge(e);
1157 			sx_xunlock(&lf_owner_graph_lock);
1158 			if (LIST_EMPTY(&deplock->lf_outedges)) {
1159 				lf_wakeup_lock(state, deplock);
1160 				LIST_INSERT_HEAD(granted, deplock, lf_link);
1161 			}
1162 		}
1163 	}
1164 }
1165 
1166 /*
1167  * Set the start of an existing active lock, updating dependancies and
1168  * adding any newly woken locks to 'granted'.
1169  */
1170 static void
1171 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1172 	struct lockf_entry_list *granted)
1173 {
1174 
1175 	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1176 	lock->lf_start = new_start;
1177 	LIST_REMOVE(lock, lf_link);
1178 	lf_insert_lock(state, lock);
1179 	lf_update_dependancies(state, lock, FALSE, granted);
1180 }
1181 
1182 /*
1183  * Set the end of an existing active lock, updating dependancies and
1184  * adding any newly woken locks to 'granted'.
1185  */
1186 static void
1187 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1188 	struct lockf_entry_list *granted)
1189 {
1190 
1191 	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1192 	lock->lf_end = new_end;
1193 	lf_update_dependancies(state, lock, FALSE, granted);
1194 }
1195 
1196 /*
1197  * Add a lock to the active list, updating or removing any current
1198  * locks owned by the same owner and processing any pending locks that
1199  * become unblocked as a result. This code is also used for unlock
1200  * since the logic for updating existing locks is identical.
1201  *
1202  * As a result of processing the new lock, we may unblock existing
1203  * pending locks as a result of downgrading/unlocking. We simply
1204  * activate the newly granted locks by looping.
1205  *
1206  * Since the new lock already has its dependancies set up, we always
1207  * add it to the list (unless its an unlock request). This may
1208  * fragment the lock list in some pathological cases but its probably
1209  * not a real problem.
1210  */
1211 static void
1212 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1213 {
1214 	struct lockf_entry *overlap, *lf;
1215 	struct lockf_entry_list granted;
1216 	int ovcase;
1217 
1218 	LIST_INIT(&granted);
1219 	LIST_INSERT_HEAD(&granted, lock, lf_link);
1220 
1221 	while (!LIST_EMPTY(&granted)) {
1222 		lock = LIST_FIRST(&granted);
1223 		LIST_REMOVE(lock, lf_link);
1224 
1225 		/*
1226 		 * Skip over locks owned by other processes.  Handle
1227 		 * any locks that overlap and are owned by ourselves.
1228 		 */
1229 		overlap = LIST_FIRST(&state->ls_active);
1230 		for (;;) {
1231 			ovcase = lf_findoverlap(&overlap, lock, SELF);
1232 
1233 #ifdef LOCKF_DEBUG
1234 			if (ovcase && (lockf_debug & 2)) {
1235 				printf("lf_setlock: overlap %d", ovcase);
1236 				lf_print("", overlap);
1237 			}
1238 #endif
1239 			/*
1240 			 * Six cases:
1241 			 *	0) no overlap
1242 			 *	1) overlap == lock
1243 			 *	2) overlap contains lock
1244 			 *	3) lock contains overlap
1245 			 *	4) overlap starts before lock
1246 			 *	5) overlap ends after lock
1247 			 */
1248 			switch (ovcase) {
1249 			case 0: /* no overlap */
1250 				break;
1251 
1252 			case 1: /* overlap == lock */
1253 				/*
1254 				 * We have already setup the
1255 				 * dependants for the new lock, taking
1256 				 * into account a possible downgrade
1257 				 * or unlock. Remove the old lock.
1258 				 */
1259 				LIST_REMOVE(overlap, lf_link);
1260 				lf_update_dependancies(state, overlap, TRUE,
1261 					&granted);
1262 				lf_free_lock(overlap);
1263 				break;
1264 
1265 			case 2: /* overlap contains lock */
1266 				/*
1267 				 * Just split the existing lock.
1268 				 */
1269 				lf_split(state, overlap, lock, &granted);
1270 				break;
1271 
1272 			case 3: /* lock contains overlap */
1273 				/*
1274 				 * Delete the overlap and advance to
1275 				 * the next entry in the list.
1276 				 */
1277 				lf = LIST_NEXT(overlap, lf_link);
1278 				LIST_REMOVE(overlap, lf_link);
1279 				lf_update_dependancies(state, overlap, TRUE,
1280 					&granted);
1281 				lf_free_lock(overlap);
1282 				overlap = lf;
1283 				continue;
1284 
1285 			case 4: /* overlap starts before lock */
1286 				/*
1287 				 * Just update the overlap end and
1288 				 * move on.
1289 				 */
1290 				lf_set_end(state, overlap, lock->lf_start - 1,
1291 				    &granted);
1292 				overlap = LIST_NEXT(overlap, lf_link);
1293 				continue;
1294 
1295 			case 5: /* overlap ends after lock */
1296 				/*
1297 				 * Change the start of overlap and
1298 				 * re-insert.
1299 				 */
1300 				lf_set_start(state, overlap, lock->lf_end + 1,
1301 				    &granted);
1302 				break;
1303 			}
1304 			break;
1305 		}
1306 #ifdef LOCKF_DEBUG
1307 		if (lockf_debug & 1) {
1308 			if (lock->lf_type != F_UNLCK)
1309 				lf_print("lf_activate_lock: activated", lock);
1310 			else
1311 				lf_print("lf_activate_lock: unlocked", lock);
1312 			lf_printlist("lf_activate_lock", lock);
1313 		}
1314 #endif /* LOCKF_DEBUG */
1315 		if (lock->lf_type != F_UNLCK)
1316 			lf_insert_lock(state, lock);
1317 	}
1318 }
1319 
1320 /*
1321  * Cancel a pending lock request, either as a result of a signal or a
1322  * cancel request for an async lock.
1323  */
1324 static void
1325 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1326 {
1327 	struct lockf_entry_list granted;
1328 
1329 	/*
1330 	 * Note it is theoretically possible that cancelling this lock
1331 	 * may allow some other pending lock to become
1332 	 * active. Consider this case:
1333 	 *
1334 	 * Owner	Action		Result		Dependancies
1335 	 *
1336 	 * A:		lock [0..0]	succeeds
1337 	 * B:		lock [2..2]	succeeds
1338 	 * C:		lock [1..2]	blocked		C->B
1339 	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1340 	 * A:		unlock [0..0]			C->B,D->C
1341 	 * C:		cancel [1..2]
1342 	 */
1343 
1344 	LIST_REMOVE(lock, lf_link);
1345 
1346 	/*
1347 	 * Removing out-going edges is simple.
1348 	 */
1349 	sx_xlock(&lf_owner_graph_lock);
1350 	lf_remove_outgoing(lock);
1351 	sx_xunlock(&lf_owner_graph_lock);
1352 
1353 	/*
1354 	 * Removing in-coming edges may allow some other lock to
1355 	 * become active - we use lf_update_dependancies to figure
1356 	 * this out.
1357 	 */
1358 	LIST_INIT(&granted);
1359 	lf_update_dependancies(state, lock, TRUE, &granted);
1360 	lf_free_lock(lock);
1361 
1362 	/*
1363 	 * Feed any newly active locks to lf_activate_lock.
1364 	 */
1365 	while (!LIST_EMPTY(&granted)) {
1366 		lock = LIST_FIRST(&granted);
1367 		LIST_REMOVE(lock, lf_link);
1368 		lf_activate_lock(state, lock);
1369 	}
1370 }
1371 
1372 /*
1373  * Set a byte-range lock.
1374  */
1375 static int
1376 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1377     void **cookiep)
1378 {
1379 	static char lockstr[] = "lockf";
1380 	int priority, error;
1381 
1382 #ifdef LOCKF_DEBUG
1383 	if (lockf_debug & 1)
1384 		lf_print("lf_setlock", lock);
1385 #endif /* LOCKF_DEBUG */
1386 
1387 	/*
1388 	 * Set the priority
1389 	 */
1390 	priority = PLOCK;
1391 	if (lock->lf_type == F_WRLCK)
1392 		priority += 4;
1393 	if (!(lock->lf_flags & F_NOINTR))
1394 		priority |= PCATCH;
1395 	/*
1396 	 * Scan lock list for this file looking for locks that would block us.
1397 	 */
1398 	if (lf_getblock(state, lock)) {
1399 		/*
1400 		 * Free the structure and return if nonblocking.
1401 		 */
1402 		if ((lock->lf_flags & F_WAIT) == 0
1403 		    && lock->lf_async_task == NULL) {
1404 			lf_free_lock(lock);
1405 			error = EAGAIN;
1406 			goto out;
1407 		}
1408 
1409 		/*
1410 		 * For flock type locks, we must first remove
1411 		 * any shared locks that we hold before we sleep
1412 		 * waiting for an exclusive lock.
1413 		 */
1414 		if ((lock->lf_flags & F_FLOCK) &&
1415 		    lock->lf_type == F_WRLCK) {
1416 			lock->lf_type = F_UNLCK;
1417 			lf_activate_lock(state, lock);
1418 			lock->lf_type = F_WRLCK;
1419 		}
1420 
1421 		/*
1422 		 * We are blocked. Create edges to each blocking lock,
1423 		 * checking for deadlock using the owner graph. For
1424 		 * simplicity, we run deadlock detection for all
1425 		 * locks, posix and otherwise.
1426 		 */
1427 		sx_xlock(&lf_owner_graph_lock);
1428 		error = lf_add_outgoing(state, lock);
1429 		sx_xunlock(&lf_owner_graph_lock);
1430 
1431 		if (error) {
1432 #ifdef LOCKF_DEBUG
1433 			if (lockf_debug & 1)
1434 				lf_print("lf_setlock: deadlock", lock);
1435 #endif
1436 			lf_free_lock(lock);
1437 			goto out;
1438 		}
1439 
1440 		/*
1441 		 * We have added edges to everything that blocks
1442 		 * us. Sleep until they all go away.
1443 		 */
1444 		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1445 #ifdef LOCKF_DEBUG
1446 		if (lockf_debug & 1) {
1447 			struct lockf_edge *e;
1448 			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1449 				lf_print("lf_setlock: blocking on", e->le_to);
1450 				lf_printlist("lf_setlock", e->le_to);
1451 			}
1452 		}
1453 #endif /* LOCKF_DEBUG */
1454 
1455 		if ((lock->lf_flags & F_WAIT) == 0) {
1456 			/*
1457 			 * The caller requested async notification -
1458 			 * this callback happens when the blocking
1459 			 * lock is released, allowing the caller to
1460 			 * make another attempt to take the lock.
1461 			 */
1462 			*cookiep = (void *) lock;
1463 			error = EINPROGRESS;
1464 			goto out;
1465 		}
1466 
1467 		lock->lf_refs++;
1468 		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1469 		if (lf_free_lock(lock)) {
1470 			error = EDOOFUS;
1471 			goto out;
1472 		}
1473 
1474 		/*
1475 		 * We may have been awakened by a signal and/or by a
1476 		 * debugger continuing us (in which cases we must
1477 		 * remove our lock graph edges) and/or by another
1478 		 * process releasing a lock (in which case our edges
1479 		 * have already been removed and we have been moved to
1480 		 * the active list). We may also have been woken by
1481 		 * lf_purgelocks which we report to the caller as
1482 		 * EINTR. In that case, lf_purgelocks will have
1483 		 * removed our lock graph edges.
1484 		 *
1485 		 * Note that it is possible to receive a signal after
1486 		 * we were successfully woken (and moved to the active
1487 		 * list) but before we resumed execution. In this
1488 		 * case, our lf_outedges list will be clear. We
1489 		 * pretend there was no error.
1490 		 *
1491 		 * Note also, if we have been sleeping long enough, we
1492 		 * may now have incoming edges from some newer lock
1493 		 * which is waiting behind us in the queue.
1494 		 */
1495 		if (lock->lf_flags & F_INTR) {
1496 			error = EINTR;
1497 			lf_free_lock(lock);
1498 			goto out;
1499 		}
1500 		if (LIST_EMPTY(&lock->lf_outedges)) {
1501 			error = 0;
1502 		} else {
1503 			lf_cancel_lock(state, lock);
1504 			goto out;
1505 		}
1506 #ifdef LOCKF_DEBUG
1507 		if (lockf_debug & 1) {
1508 			lf_print("lf_setlock: granted", lock);
1509 		}
1510 #endif
1511 		goto out;
1512 	}
1513 	/*
1514 	 * It looks like we are going to grant the lock. First add
1515 	 * edges from any currently pending lock that the new lock
1516 	 * would block.
1517 	 */
1518 	sx_xlock(&lf_owner_graph_lock);
1519 	error = lf_add_incoming(state, lock);
1520 	sx_xunlock(&lf_owner_graph_lock);
1521 	if (error) {
1522 #ifdef LOCKF_DEBUG
1523 		if (lockf_debug & 1)
1524 			lf_print("lf_setlock: deadlock", lock);
1525 #endif
1526 		lf_free_lock(lock);
1527 		goto out;
1528 	}
1529 
1530 	/*
1531 	 * No blocks!!  Add the lock.  Note that we will
1532 	 * downgrade or upgrade any overlapping locks this
1533 	 * process already owns.
1534 	 */
1535 	lf_activate_lock(state, lock);
1536 	error = 0;
1537 out:
1538 	return (error);
1539 }
1540 
1541 /*
1542  * Remove a byte-range lock on an inode.
1543  *
1544  * Generally, find the lock (or an overlap to that lock)
1545  * and remove it (or shrink it), then wakeup anyone we can.
1546  */
1547 static int
1548 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1549 {
1550 	struct lockf_entry *overlap;
1551 
1552 	overlap = LIST_FIRST(&state->ls_active);
1553 
1554 	if (overlap == NOLOCKF)
1555 		return (0);
1556 #ifdef LOCKF_DEBUG
1557 	if (unlock->lf_type != F_UNLCK)
1558 		panic("lf_clearlock: bad type");
1559 	if (lockf_debug & 1)
1560 		lf_print("lf_clearlock", unlock);
1561 #endif /* LOCKF_DEBUG */
1562 
1563 	lf_activate_lock(state, unlock);
1564 
1565 	return (0);
1566 }
1567 
1568 /*
1569  * Check whether there is a blocking lock, and if so return its
1570  * details in '*fl'.
1571  */
1572 static int
1573 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1574 {
1575 	struct lockf_entry *block;
1576 
1577 #ifdef LOCKF_DEBUG
1578 	if (lockf_debug & 1)
1579 		lf_print("lf_getlock", lock);
1580 #endif /* LOCKF_DEBUG */
1581 
1582 	if ((block = lf_getblock(state, lock))) {
1583 		fl->l_type = block->lf_type;
1584 		fl->l_whence = SEEK_SET;
1585 		fl->l_start = block->lf_start;
1586 		if (block->lf_end == OFF_MAX)
1587 			fl->l_len = 0;
1588 		else
1589 			fl->l_len = block->lf_end - block->lf_start + 1;
1590 		fl->l_pid = block->lf_owner->lo_pid;
1591 		fl->l_sysid = block->lf_owner->lo_sysid;
1592 	} else {
1593 		fl->l_type = F_UNLCK;
1594 	}
1595 	return (0);
1596 }
1597 
1598 /*
1599  * Cancel an async lock request.
1600  */
1601 static int
1602 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1603 {
1604 	struct lockf_entry *reallock;
1605 
1606 	/*
1607 	 * We need to match this request with an existing lock
1608 	 * request.
1609 	 */
1610 	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1611 		if ((void *) reallock == cookie) {
1612 			/*
1613 			 * Double-check that this lock looks right
1614 			 * (maybe use a rolling ID for the cancel
1615 			 * cookie instead?)
1616 			 */
1617 			if (!(reallock->lf_vnode == lock->lf_vnode
1618 				&& reallock->lf_start == lock->lf_start
1619 				&& reallock->lf_end == lock->lf_end)) {
1620 				return (ENOENT);
1621 			}
1622 
1623 			/*
1624 			 * Make sure this lock was async and then just
1625 			 * remove it from its wait lists.
1626 			 */
1627 			if (!reallock->lf_async_task) {
1628 				return (ENOENT);
1629 			}
1630 
1631 			/*
1632 			 * Note that since any other thread must take
1633 			 * state->ls_lock before it can possibly
1634 			 * trigger the async callback, we are safe
1635 			 * from a race with lf_wakeup_lock, i.e. we
1636 			 * can free the lock (actually our caller does
1637 			 * this).
1638 			 */
1639 			lf_cancel_lock(state, reallock);
1640 			return (0);
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * We didn't find a matching lock - not much we can do here.
1646 	 */
1647 	return (ENOENT);
1648 }
1649 
1650 /*
1651  * Walk the list of locks for an inode and
1652  * return the first blocking lock.
1653  */
1654 static struct lockf_entry *
1655 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1656 {
1657 	struct lockf_entry *overlap;
1658 
1659 	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1660 		/*
1661 		 * We may assume that the active list is sorted by
1662 		 * lf_start.
1663 		 */
1664 		if (overlap->lf_start > lock->lf_end)
1665 			break;
1666 		if (!lf_blocks(lock, overlap))
1667 			continue;
1668 		return (overlap);
1669 	}
1670 	return (NOLOCKF);
1671 }
1672 
1673 /*
1674  * Walk the list of locks for an inode to find an overlapping lock (if
1675  * any) and return a classification of that overlap.
1676  *
1677  * Arguments:
1678  *	*overlap	The place in the lock list to start looking
1679  *	lock		The lock which is being tested
1680  *	type		Pass 'SELF' to test only locks with the same
1681  *			owner as lock, or 'OTHER' to test only locks
1682  *			with a different owner
1683  *
1684  * Returns one of six values:
1685  *	0) no overlap
1686  *	1) overlap == lock
1687  *	2) overlap contains lock
1688  *	3) lock contains overlap
1689  *	4) overlap starts before lock
1690  *	5) overlap ends after lock
1691  *
1692  * If there is an overlapping lock, '*overlap' is set to point at the
1693  * overlapping lock.
1694  *
1695  * NOTE: this returns only the FIRST overlapping lock.  There
1696  *	 may be more than one.
1697  */
1698 static int
1699 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1700 {
1701 	struct lockf_entry *lf;
1702 	off_t start, end;
1703 	int res;
1704 
1705 	if ((*overlap) == NOLOCKF) {
1706 		return (0);
1707 	}
1708 #ifdef LOCKF_DEBUG
1709 	if (lockf_debug & 2)
1710 		lf_print("lf_findoverlap: looking for overlap in", lock);
1711 #endif /* LOCKF_DEBUG */
1712 	start = lock->lf_start;
1713 	end = lock->lf_end;
1714 	res = 0;
1715 	while (*overlap) {
1716 		lf = *overlap;
1717 		if (lf->lf_start > end)
1718 			break;
1719 		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1720 		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1721 			*overlap = LIST_NEXT(lf, lf_link);
1722 			continue;
1723 		}
1724 #ifdef LOCKF_DEBUG
1725 		if (lockf_debug & 2)
1726 			lf_print("\tchecking", lf);
1727 #endif /* LOCKF_DEBUG */
1728 		/*
1729 		 * OK, check for overlap
1730 		 *
1731 		 * Six cases:
1732 		 *	0) no overlap
1733 		 *	1) overlap == lock
1734 		 *	2) overlap contains lock
1735 		 *	3) lock contains overlap
1736 		 *	4) overlap starts before lock
1737 		 *	5) overlap ends after lock
1738 		 */
1739 		if (start > lf->lf_end) {
1740 			/* Case 0 */
1741 #ifdef LOCKF_DEBUG
1742 			if (lockf_debug & 2)
1743 				printf("no overlap\n");
1744 #endif /* LOCKF_DEBUG */
1745 			*overlap = LIST_NEXT(lf, lf_link);
1746 			continue;
1747 		}
1748 		if (lf->lf_start == start && lf->lf_end == end) {
1749 			/* Case 1 */
1750 #ifdef LOCKF_DEBUG
1751 			if (lockf_debug & 2)
1752 				printf("overlap == lock\n");
1753 #endif /* LOCKF_DEBUG */
1754 			res = 1;
1755 			break;
1756 		}
1757 		if (lf->lf_start <= start && lf->lf_end >= end) {
1758 			/* Case 2 */
1759 #ifdef LOCKF_DEBUG
1760 			if (lockf_debug & 2)
1761 				printf("overlap contains lock\n");
1762 #endif /* LOCKF_DEBUG */
1763 			res = 2;
1764 			break;
1765 		}
1766 		if (start <= lf->lf_start && end >= lf->lf_end) {
1767 			/* Case 3 */
1768 #ifdef LOCKF_DEBUG
1769 			if (lockf_debug & 2)
1770 				printf("lock contains overlap\n");
1771 #endif /* LOCKF_DEBUG */
1772 			res = 3;
1773 			break;
1774 		}
1775 		if (lf->lf_start < start && lf->lf_end >= start) {
1776 			/* Case 4 */
1777 #ifdef LOCKF_DEBUG
1778 			if (lockf_debug & 2)
1779 				printf("overlap starts before lock\n");
1780 #endif /* LOCKF_DEBUG */
1781 			res = 4;
1782 			break;
1783 		}
1784 		if (lf->lf_start > start && lf->lf_end > end) {
1785 			/* Case 5 */
1786 #ifdef LOCKF_DEBUG
1787 			if (lockf_debug & 2)
1788 				printf("overlap ends after lock\n");
1789 #endif /* LOCKF_DEBUG */
1790 			res = 5;
1791 			break;
1792 		}
1793 		panic("lf_findoverlap: default");
1794 	}
1795 	return (res);
1796 }
1797 
1798 /*
1799  * Split an the existing 'lock1', based on the extent of the lock
1800  * described by 'lock2'. The existing lock should cover 'lock2'
1801  * entirely.
1802  *
1803  * Any pending locks which have been been unblocked are added to
1804  * 'granted'
1805  */
1806 static void
1807 lf_split(struct lockf *state, struct lockf_entry *lock1,
1808     struct lockf_entry *lock2, struct lockf_entry_list *granted)
1809 {
1810 	struct lockf_entry *splitlock;
1811 
1812 #ifdef LOCKF_DEBUG
1813 	if (lockf_debug & 2) {
1814 		lf_print("lf_split", lock1);
1815 		lf_print("splitting from", lock2);
1816 	}
1817 #endif /* LOCKF_DEBUG */
1818 	/*
1819 	 * Check to see if we don't need to split at all.
1820 	 */
1821 	if (lock1->lf_start == lock2->lf_start) {
1822 		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1823 		return;
1824 	}
1825 	if (lock1->lf_end == lock2->lf_end) {
1826 		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1827 		return;
1828 	}
1829 	/*
1830 	 * Make a new lock consisting of the last part of
1831 	 * the encompassing lock.
1832 	 */
1833 	splitlock = lf_alloc_lock(lock1->lf_owner);
1834 	memcpy(splitlock, lock1, sizeof *splitlock);
1835 	splitlock->lf_refs = 1;
1836 	if (splitlock->lf_flags & F_REMOTE)
1837 		vref(splitlock->lf_vnode);
1838 
1839 	/*
1840 	 * This cannot cause a deadlock since any edges we would add
1841 	 * to splitlock already exist in lock1. We must be sure to add
1842 	 * necessary dependancies to splitlock before we reduce lock1
1843 	 * otherwise we may accidentally grant a pending lock that
1844 	 * was blocked by the tail end of lock1.
1845 	 */
1846 	splitlock->lf_start = lock2->lf_end + 1;
1847 	LIST_INIT(&splitlock->lf_outedges);
1848 	LIST_INIT(&splitlock->lf_inedges);
1849 	sx_xlock(&lf_owner_graph_lock);
1850 	lf_add_incoming(state, splitlock);
1851 	sx_xunlock(&lf_owner_graph_lock);
1852 
1853 	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1854 
1855 	/*
1856 	 * OK, now link it in
1857 	 */
1858 	lf_insert_lock(state, splitlock);
1859 }
1860 
1861 struct lockdesc {
1862 	STAILQ_ENTRY(lockdesc) link;
1863 	struct vnode *vp;
1864 	struct flock fl;
1865 };
1866 STAILQ_HEAD(lockdesclist, lockdesc);
1867 
1868 int
1869 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1870 {
1871 	struct lockf *ls;
1872 	struct lockf_entry *lf;
1873 	struct lockdesc *ldesc;
1874 	struct lockdesclist locks;
1875 	int error;
1876 
1877 	/*
1878 	 * In order to keep the locking simple, we iterate over the
1879 	 * active lock lists to build a list of locks that need
1880 	 * releasing. We then call the iterator for each one in turn.
1881 	 *
1882 	 * We take an extra reference to the vnode for the duration to
1883 	 * make sure it doesn't go away before we are finished.
1884 	 */
1885 	STAILQ_INIT(&locks);
1886 	sx_xlock(&lf_lock_states_lock);
1887 	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1888 		sx_xlock(&ls->ls_lock);
1889 		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1890 			if (lf->lf_owner->lo_sysid != sysid)
1891 				continue;
1892 
1893 			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1894 			    M_WAITOK);
1895 			ldesc->vp = lf->lf_vnode;
1896 			vref(ldesc->vp);
1897 			ldesc->fl.l_start = lf->lf_start;
1898 			if (lf->lf_end == OFF_MAX)
1899 				ldesc->fl.l_len = 0;
1900 			else
1901 				ldesc->fl.l_len =
1902 					lf->lf_end - lf->lf_start + 1;
1903 			ldesc->fl.l_whence = SEEK_SET;
1904 			ldesc->fl.l_type = F_UNLCK;
1905 			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1906 			ldesc->fl.l_sysid = sysid;
1907 			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1908 		}
1909 		sx_xunlock(&ls->ls_lock);
1910 	}
1911 	sx_xunlock(&lf_lock_states_lock);
1912 
1913 	/*
1914 	 * Call the iterator function for each lock in turn. If the
1915 	 * iterator returns an error code, just free the rest of the
1916 	 * lockdesc structures.
1917 	 */
1918 	error = 0;
1919 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1920 		STAILQ_REMOVE_HEAD(&locks, link);
1921 		if (!error)
1922 			error = fn(ldesc->vp, &ldesc->fl, arg);
1923 		vrele(ldesc->vp);
1924 		free(ldesc, M_LOCKF);
1925 	}
1926 
1927 	return (error);
1928 }
1929 
1930 int
1931 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1932 {
1933 	struct lockf *ls;
1934 	struct lockf_entry *lf;
1935 	struct lockdesc *ldesc;
1936 	struct lockdesclist locks;
1937 	int error;
1938 
1939 	/*
1940 	 * In order to keep the locking simple, we iterate over the
1941 	 * active lock lists to build a list of locks that need
1942 	 * releasing. We then call the iterator for each one in turn.
1943 	 *
1944 	 * We take an extra reference to the vnode for the duration to
1945 	 * make sure it doesn't go away before we are finished.
1946 	 */
1947 	STAILQ_INIT(&locks);
1948 	VI_LOCK(vp);
1949 	ls = vp->v_lockf;
1950 	if (!ls) {
1951 		VI_UNLOCK(vp);
1952 		return (0);
1953 	}
1954 	ls->ls_threads++;
1955 	VI_UNLOCK(vp);
1956 
1957 	sx_xlock(&ls->ls_lock);
1958 	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1959 		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1960 		    M_WAITOK);
1961 		ldesc->vp = lf->lf_vnode;
1962 		vref(ldesc->vp);
1963 		ldesc->fl.l_start = lf->lf_start;
1964 		if (lf->lf_end == OFF_MAX)
1965 			ldesc->fl.l_len = 0;
1966 		else
1967 			ldesc->fl.l_len =
1968 				lf->lf_end - lf->lf_start + 1;
1969 		ldesc->fl.l_whence = SEEK_SET;
1970 		ldesc->fl.l_type = F_UNLCK;
1971 		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1972 		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1973 		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1974 	}
1975 	sx_xunlock(&ls->ls_lock);
1976 	VI_LOCK(vp);
1977 	ls->ls_threads--;
1978 	wakeup(ls);
1979 	VI_UNLOCK(vp);
1980 
1981 	/*
1982 	 * Call the iterator function for each lock in turn. If the
1983 	 * iterator returns an error code, just free the rest of the
1984 	 * lockdesc structures.
1985 	 */
1986 	error = 0;
1987 	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1988 		STAILQ_REMOVE_HEAD(&locks, link);
1989 		if (!error)
1990 			error = fn(ldesc->vp, &ldesc->fl, arg);
1991 		vrele(ldesc->vp);
1992 		free(ldesc, M_LOCKF);
1993 	}
1994 
1995 	return (error);
1996 }
1997 
1998 static int
1999 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2000 {
2001 
2002 	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2003 	return (0);
2004 }
2005 
2006 void
2007 lf_clearremotesys(int sysid)
2008 {
2009 
2010 	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2011 	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2012 }
2013 
2014 int
2015 lf_countlocks(int sysid)
2016 {
2017 	int i;
2018 	struct lock_owner *lo;
2019 	int count;
2020 
2021 	count = 0;
2022 	sx_xlock(&lf_lock_owners_lock);
2023 	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2024 		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2025 			if (lo->lo_sysid == sysid)
2026 				count += lo->lo_refs;
2027 	sx_xunlock(&lf_lock_owners_lock);
2028 
2029 	return (count);
2030 }
2031 
2032 #ifdef LOCKF_DEBUG
2033 
2034 /*
2035  * Return non-zero if y is reachable from x using a brute force
2036  * search. If reachable and path is non-null, return the route taken
2037  * in path.
2038  */
2039 static int
2040 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2041     struct owner_vertex_list *path)
2042 {
2043 	struct owner_edge *e;
2044 
2045 	if (x == y) {
2046 		if (path)
2047 			TAILQ_INSERT_HEAD(path, x, v_link);
2048 		return 1;
2049 	}
2050 
2051 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2052 		if (graph_reaches(e->e_to, y, path)) {
2053 			if (path)
2054 				TAILQ_INSERT_HEAD(path, x, v_link);
2055 			return 1;
2056 		}
2057 	}
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Perform consistency checks on the graph. Make sure the values of
2063  * v_order are correct. If checkorder is non-zero, check no vertex can
2064  * reach any other vertex with a smaller order.
2065  */
2066 static void
2067 graph_check(struct owner_graph *g, int checkorder)
2068 {
2069 	int i, j;
2070 
2071 	for (i = 0; i < g->g_size; i++) {
2072 		if (!g->g_vertices[i]->v_owner)
2073 			continue;
2074 		KASSERT(g->g_vertices[i]->v_order == i,
2075 		    ("lock graph vertices disordered"));
2076 		if (checkorder) {
2077 			for (j = 0; j < i; j++) {
2078 				if (!g->g_vertices[j]->v_owner)
2079 					continue;
2080 				KASSERT(!graph_reaches(g->g_vertices[i],
2081 					g->g_vertices[j], NULL),
2082 				    ("lock graph vertices disordered"));
2083 			}
2084 		}
2085 	}
2086 }
2087 
2088 static void
2089 graph_print_vertices(struct owner_vertex_list *set)
2090 {
2091 	struct owner_vertex *v;
2092 
2093 	printf("{ ");
2094 	TAILQ_FOREACH(v, set, v_link) {
2095 		printf("%d:", v->v_order);
2096 		lf_print_owner(v->v_owner);
2097 		if (TAILQ_NEXT(v, v_link))
2098 			printf(", ");
2099 	}
2100 	printf(" }\n");
2101 }
2102 
2103 #endif
2104 
2105 /*
2106  * Calculate the sub-set of vertices v from the affected region [y..x]
2107  * where v is reachable from y. Return -1 if a loop was detected
2108  * (i.e. x is reachable from y, otherwise the number of vertices in
2109  * this subset.
2110  */
2111 static int
2112 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2113     struct owner_vertex *y, struct owner_vertex_list *delta)
2114 {
2115 	uint32_t gen;
2116 	struct owner_vertex *v;
2117 	struct owner_edge *e;
2118 	int n;
2119 
2120 	/*
2121 	 * We start with a set containing just y. Then for each vertex
2122 	 * v in the set so far unprocessed, we add each vertex that v
2123 	 * has an out-edge to and that is within the affected region
2124 	 * [y..x]. If we see the vertex x on our travels, stop
2125 	 * immediately.
2126 	 */
2127 	TAILQ_INIT(delta);
2128 	TAILQ_INSERT_TAIL(delta, y, v_link);
2129 	v = y;
2130 	n = 1;
2131 	gen = g->g_gen;
2132 	while (v) {
2133 		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2134 			if (e->e_to == x)
2135 				return -1;
2136 			if (e->e_to->v_order < x->v_order
2137 			    && e->e_to->v_gen != gen) {
2138 				e->e_to->v_gen = gen;
2139 				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2140 				n++;
2141 			}
2142 		}
2143 		v = TAILQ_NEXT(v, v_link);
2144 	}
2145 
2146 	return (n);
2147 }
2148 
2149 /*
2150  * Calculate the sub-set of vertices v from the affected region [y..x]
2151  * where v reaches x. Return the number of vertices in this subset.
2152  */
2153 static int
2154 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2155     struct owner_vertex *y, struct owner_vertex_list *delta)
2156 {
2157 	uint32_t gen;
2158 	struct owner_vertex *v;
2159 	struct owner_edge *e;
2160 	int n;
2161 
2162 	/*
2163 	 * We start with a set containing just x. Then for each vertex
2164 	 * v in the set so far unprocessed, we add each vertex that v
2165 	 * has an in-edge from and that is within the affected region
2166 	 * [y..x].
2167 	 */
2168 	TAILQ_INIT(delta);
2169 	TAILQ_INSERT_TAIL(delta, x, v_link);
2170 	v = x;
2171 	n = 1;
2172 	gen = g->g_gen;
2173 	while (v) {
2174 		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2175 			if (e->e_from->v_order > y->v_order
2176 			    && e->e_from->v_gen != gen) {
2177 				e->e_from->v_gen = gen;
2178 				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2179 				n++;
2180 			}
2181 		}
2182 		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2183 	}
2184 
2185 	return (n);
2186 }
2187 
2188 static int
2189 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2190 {
2191 	struct owner_vertex *v;
2192 	int i, j;
2193 
2194 	TAILQ_FOREACH(v, set, v_link) {
2195 		for (i = n;
2196 		     i > 0 && indices[i - 1] > v->v_order; i--)
2197 			;
2198 		for (j = n - 1; j >= i; j--)
2199 			indices[j + 1] = indices[j];
2200 		indices[i] = v->v_order;
2201 		n++;
2202 	}
2203 
2204 	return (n);
2205 }
2206 
2207 static int
2208 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2209     struct owner_vertex_list *set)
2210 {
2211 	struct owner_vertex *v, *vlowest;
2212 
2213 	while (!TAILQ_EMPTY(set)) {
2214 		vlowest = NULL;
2215 		TAILQ_FOREACH(v, set, v_link) {
2216 			if (!vlowest || v->v_order < vlowest->v_order)
2217 				vlowest = v;
2218 		}
2219 		TAILQ_REMOVE(set, vlowest, v_link);
2220 		vlowest->v_order = indices[nextunused];
2221 		g->g_vertices[vlowest->v_order] = vlowest;
2222 		nextunused++;
2223 	}
2224 
2225 	return (nextunused);
2226 }
2227 
2228 static int
2229 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2230     struct owner_vertex *y)
2231 {
2232 	struct owner_edge *e;
2233 	struct owner_vertex_list deltaF, deltaB;
2234 	int nF, nB, n, vi, i;
2235 	int *indices;
2236 
2237 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2238 
2239 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2240 		if (e->e_to == y) {
2241 			e->e_refs++;
2242 			return (0);
2243 		}
2244 	}
2245 
2246 #ifdef LOCKF_DEBUG
2247 	if (lockf_debug & 8) {
2248 		printf("adding edge %d:", x->v_order);
2249 		lf_print_owner(x->v_owner);
2250 		printf(" -> %d:", y->v_order);
2251 		lf_print_owner(y->v_owner);
2252 		printf("\n");
2253 	}
2254 #endif
2255 	if (y->v_order < x->v_order) {
2256 		/*
2257 		 * The new edge violates the order. First find the set
2258 		 * of affected vertices reachable from y (deltaF) and
2259 		 * the set of affect vertices affected that reach x
2260 		 * (deltaB), using the graph generation number to
2261 		 * detect whether we have visited a given vertex
2262 		 * already. We re-order the graph so that each vertex
2263 		 * in deltaB appears before each vertex in deltaF.
2264 		 *
2265 		 * If x is a member of deltaF, then the new edge would
2266 		 * create a cycle. Otherwise, we may assume that
2267 		 * deltaF and deltaB are disjoint.
2268 		 */
2269 		g->g_gen++;
2270 		if (g->g_gen == 0) {
2271 			/*
2272 			 * Generation wrap.
2273 			 */
2274 			for (vi = 0; vi < g->g_size; vi++) {
2275 				g->g_vertices[vi]->v_gen = 0;
2276 			}
2277 			g->g_gen++;
2278 		}
2279 		nF = graph_delta_forward(g, x, y, &deltaF);
2280 		if (nF < 0) {
2281 #ifdef LOCKF_DEBUG
2282 			if (lockf_debug & 8) {
2283 				struct owner_vertex_list path;
2284 				printf("deadlock: ");
2285 				TAILQ_INIT(&path);
2286 				graph_reaches(y, x, &path);
2287 				graph_print_vertices(&path);
2288 			}
2289 #endif
2290 			return (EDEADLK);
2291 		}
2292 
2293 #ifdef LOCKF_DEBUG
2294 		if (lockf_debug & 8) {
2295 			printf("re-ordering graph vertices\n");
2296 			printf("deltaF = ");
2297 			graph_print_vertices(&deltaF);
2298 		}
2299 #endif
2300 
2301 		nB = graph_delta_backward(g, x, y, &deltaB);
2302 
2303 #ifdef LOCKF_DEBUG
2304 		if (lockf_debug & 8) {
2305 			printf("deltaB = ");
2306 			graph_print_vertices(&deltaB);
2307 		}
2308 #endif
2309 
2310 		/*
2311 		 * We first build a set of vertex indices (vertex
2312 		 * order values) that we may use, then we re-assign
2313 		 * orders first to those vertices in deltaB, then to
2314 		 * deltaF. Note that the contents of deltaF and deltaB
2315 		 * may be partially disordered - we perform an
2316 		 * insertion sort while building our index set.
2317 		 */
2318 		indices = g->g_indexbuf;
2319 		n = graph_add_indices(indices, 0, &deltaF);
2320 		graph_add_indices(indices, n, &deltaB);
2321 
2322 		/*
2323 		 * We must also be sure to maintain the relative
2324 		 * ordering of deltaF and deltaB when re-assigning
2325 		 * vertices. We do this by iteratively removing the
2326 		 * lowest ordered element from the set and assigning
2327 		 * it the next value from our new ordering.
2328 		 */
2329 		i = graph_assign_indices(g, indices, 0, &deltaB);
2330 		graph_assign_indices(g, indices, i, &deltaF);
2331 
2332 #ifdef LOCKF_DEBUG
2333 		if (lockf_debug & 8) {
2334 			struct owner_vertex_list set;
2335 			TAILQ_INIT(&set);
2336 			for (i = 0; i < nB + nF; i++)
2337 				TAILQ_INSERT_TAIL(&set,
2338 				    g->g_vertices[indices[i]], v_link);
2339 			printf("new ordering = ");
2340 			graph_print_vertices(&set);
2341 		}
2342 #endif
2343 	}
2344 
2345 	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2346 
2347 #ifdef LOCKF_DEBUG
2348 	if (lockf_debug & 8) {
2349 		graph_check(g, TRUE);
2350 	}
2351 #endif
2352 
2353 	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2354 
2355 	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2356 	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2357 	e->e_refs = 1;
2358 	e->e_from = x;
2359 	e->e_to = y;
2360 
2361 	return (0);
2362 }
2363 
2364 /*
2365  * Remove an edge x->y from the graph.
2366  */
2367 static void
2368 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2369     struct owner_vertex *y)
2370 {
2371 	struct owner_edge *e;
2372 
2373 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2374 
2375 	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2376 		if (e->e_to == y)
2377 			break;
2378 	}
2379 	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2380 
2381 	e->e_refs--;
2382 	if (e->e_refs == 0) {
2383 #ifdef LOCKF_DEBUG
2384 		if (lockf_debug & 8) {
2385 			printf("removing edge %d:", x->v_order);
2386 			lf_print_owner(x->v_owner);
2387 			printf(" -> %d:", y->v_order);
2388 			lf_print_owner(y->v_owner);
2389 			printf("\n");
2390 		}
2391 #endif
2392 		LIST_REMOVE(e, e_outlink);
2393 		LIST_REMOVE(e, e_inlink);
2394 		free(e, M_LOCKF);
2395 	}
2396 }
2397 
2398 /*
2399  * Allocate a vertex from the free list. Return ENOMEM if there are
2400  * none.
2401  */
2402 static struct owner_vertex *
2403 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2404 {
2405 	struct owner_vertex *v;
2406 
2407 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2408 
2409 	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2410 	if (g->g_size == g->g_space) {
2411 		g->g_vertices = realloc(g->g_vertices,
2412 		    2 * g->g_space * sizeof(struct owner_vertex *),
2413 		    M_LOCKF, M_WAITOK);
2414 		free(g->g_indexbuf, M_LOCKF);
2415 		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2416 		    M_LOCKF, M_WAITOK);
2417 		g->g_space = 2 * g->g_space;
2418 	}
2419 	v->v_order = g->g_size;
2420 	v->v_gen = g->g_gen;
2421 	g->g_vertices[g->g_size] = v;
2422 	g->g_size++;
2423 
2424 	LIST_INIT(&v->v_outedges);
2425 	LIST_INIT(&v->v_inedges);
2426 	v->v_owner = lo;
2427 
2428 	return (v);
2429 }
2430 
2431 static void
2432 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2433 {
2434 	struct owner_vertex *w;
2435 	int i;
2436 
2437 	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2438 
2439 	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2440 	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2441 
2442 	/*
2443 	 * Remove from the graph's array and close up the gap,
2444 	 * renumbering the other vertices.
2445 	 */
2446 	for (i = v->v_order + 1; i < g->g_size; i++) {
2447 		w = g->g_vertices[i];
2448 		w->v_order--;
2449 		g->g_vertices[i - 1] = w;
2450 	}
2451 	g->g_size--;
2452 
2453 	free(v, M_LOCKF);
2454 }
2455 
2456 static struct owner_graph *
2457 graph_init(struct owner_graph *g)
2458 {
2459 
2460 	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2461 	    M_LOCKF, M_WAITOK);
2462 	g->g_size = 0;
2463 	g->g_space = 10;
2464 	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2465 	g->g_gen = 0;
2466 
2467 	return (g);
2468 }
2469 
2470 #ifdef LOCKF_DEBUG
2471 /*
2472  * Print description of a lock owner
2473  */
2474 static void
2475 lf_print_owner(struct lock_owner *lo)
2476 {
2477 
2478 	if (lo->lo_flags & F_REMOTE) {
2479 		printf("remote pid %d, system %d",
2480 		    lo->lo_pid, lo->lo_sysid);
2481 	} else if (lo->lo_flags & F_FLOCK) {
2482 		printf("file %p", lo->lo_id);
2483 	} else {
2484 		printf("local pid %d", lo->lo_pid);
2485 	}
2486 }
2487 
2488 /*
2489  * Print out a lock.
2490  */
2491 static void
2492 lf_print(char *tag, struct lockf_entry *lock)
2493 {
2494 
2495 	printf("%s: lock %p for ", tag, (void *)lock);
2496 	lf_print_owner(lock->lf_owner);
2497 	if (lock->lf_inode != (struct inode *)0)
2498 		printf(" in ino %ju on dev <%s>,",
2499 		    (uintmax_t)lock->lf_inode->i_number,
2500 		    devtoname(lock->lf_inode->i_dev));
2501 	printf(" %s, start %jd, end ",
2502 	    lock->lf_type == F_RDLCK ? "shared" :
2503 	    lock->lf_type == F_WRLCK ? "exclusive" :
2504 	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2505 	    (intmax_t)lock->lf_start);
2506 	if (lock->lf_end == OFF_MAX)
2507 		printf("EOF");
2508 	else
2509 		printf("%jd", (intmax_t)lock->lf_end);
2510 	if (!LIST_EMPTY(&lock->lf_outedges))
2511 		printf(" block %p\n",
2512 		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2513 	else
2514 		printf("\n");
2515 }
2516 
2517 static void
2518 lf_printlist(char *tag, struct lockf_entry *lock)
2519 {
2520 	struct lockf_entry *lf, *blk;
2521 	struct lockf_edge *e;
2522 
2523 	if (lock->lf_inode == (struct inode *)0)
2524 		return;
2525 
2526 	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2527 	    tag, (uintmax_t)lock->lf_inode->i_number,
2528 	    devtoname(lock->lf_inode->i_dev));
2529 	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2530 		printf("\tlock %p for ",(void *)lf);
2531 		lf_print_owner(lock->lf_owner);
2532 		printf(", %s, start %jd, end %jd",
2533 		    lf->lf_type == F_RDLCK ? "shared" :
2534 		    lf->lf_type == F_WRLCK ? "exclusive" :
2535 		    lf->lf_type == F_UNLCK ? "unlock" :
2536 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2537 		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2538 			blk = e->le_to;
2539 			printf("\n\t\tlock request %p for ", (void *)blk);
2540 			lf_print_owner(blk->lf_owner);
2541 			printf(", %s, start %jd, end %jd",
2542 			    blk->lf_type == F_RDLCK ? "shared" :
2543 			    blk->lf_type == F_WRLCK ? "exclusive" :
2544 			    blk->lf_type == F_UNLCK ? "unlock" :
2545 			    "unknown", (intmax_t)blk->lf_start,
2546 			    (intmax_t)blk->lf_end);
2547 			if (!LIST_EMPTY(&blk->lf_inedges))
2548 				panic("lf_printlist: bad list");
2549 		}
2550 		printf("\n");
2551 	}
2552 }
2553 #endif /* LOCKF_DEBUG */
2554