1 /*- 2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 3 * Authors: Doug Rabson <dfr@rabson.org> 4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 /*- 28 * Copyright (c) 1982, 1986, 1989, 1993 29 * The Regents of the University of California. All rights reserved. 30 * 31 * This code is derived from software contributed to Berkeley by 32 * Scooter Morris at Genentech Inc. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 4. Neither the name of the University nor the names of its contributors 43 * may be used to endorse or promote products derived from this software 44 * without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_debug_lockf.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/hash.h> 69 #include <sys/kernel.h> 70 #include <sys/limits.h> 71 #include <sys/lock.h> 72 #include <sys/mount.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sx.h> 76 #include <sys/unistd.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/fcntl.h> 80 #include <sys/lockf.h> 81 #include <sys/taskqueue.h> 82 83 #ifdef LOCKF_DEBUG 84 #include <sys/sysctl.h> 85 86 #include <ufs/ufs/quota.h> 87 #include <ufs/ufs/inode.h> 88 89 static int lockf_debug = 0; /* control debug output */ 90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 91 #endif 92 93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 94 95 struct owner_edge; 96 struct owner_vertex; 97 struct owner_vertex_list; 98 struct owner_graph; 99 100 #define NOLOCKF (struct lockf_entry *)0 101 #define SELF 0x1 102 #define OTHERS 0x2 103 static void lf_init(void *); 104 static int lf_hash_owner(caddr_t, struct flock *, int); 105 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 106 int); 107 static struct lockf_entry * 108 lf_alloc_lock(struct lock_owner *); 109 static int lf_free_lock(struct lockf_entry *); 110 static int lf_clearlock(struct lockf *, struct lockf_entry *); 111 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 112 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 113 static void lf_free_edge(struct lockf_edge *); 114 static struct lockf_edge * 115 lf_alloc_edge(void); 116 static void lf_alloc_vertex(struct lockf_entry *); 117 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 118 static void lf_remove_edge(struct lockf_edge *); 119 static void lf_remove_outgoing(struct lockf_entry *); 120 static void lf_remove_incoming(struct lockf_entry *); 121 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 122 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 123 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 124 int); 125 static struct lockf_entry * 126 lf_getblock(struct lockf *, struct lockf_entry *); 127 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 128 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 129 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 130 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 131 int all, struct lockf_entry_list *); 132 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 133 struct lockf_entry_list*); 134 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 135 struct lockf_entry_list*); 136 static int lf_setlock(struct lockf *, struct lockf_entry *, 137 struct vnode *, void **cookiep); 138 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 139 static void lf_split(struct lockf *, struct lockf_entry *, 140 struct lockf_entry *, struct lockf_entry_list *); 141 #ifdef LOCKF_DEBUG 142 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 143 struct owner_vertex_list *path); 144 static void graph_check(struct owner_graph *g, int checkorder); 145 static void graph_print_vertices(struct owner_vertex_list *set); 146 #endif 147 static int graph_delta_forward(struct owner_graph *g, 148 struct owner_vertex *x, struct owner_vertex *y, 149 struct owner_vertex_list *delta); 150 static int graph_delta_backward(struct owner_graph *g, 151 struct owner_vertex *x, struct owner_vertex *y, 152 struct owner_vertex_list *delta); 153 static int graph_add_indices(int *indices, int n, 154 struct owner_vertex_list *set); 155 static int graph_assign_indices(struct owner_graph *g, int *indices, 156 int nextunused, struct owner_vertex_list *set); 157 static int graph_add_edge(struct owner_graph *g, 158 struct owner_vertex *x, struct owner_vertex *y); 159 static void graph_remove_edge(struct owner_graph *g, 160 struct owner_vertex *x, struct owner_vertex *y); 161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 162 struct lock_owner *lo); 163 static void graph_free_vertex(struct owner_graph *g, 164 struct owner_vertex *v); 165 static struct owner_graph * graph_init(struct owner_graph *g); 166 #ifdef LOCKF_DEBUG 167 static void lf_print(char *, struct lockf_entry *); 168 static void lf_printlist(char *, struct lockf_entry *); 169 static void lf_print_owner(struct lock_owner *); 170 #endif 171 172 /* 173 * This structure is used to keep track of both local and remote lock 174 * owners. The lf_owner field of the struct lockf_entry points back at 175 * the lock owner structure. Each possible lock owner (local proc for 176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 177 * pair for remote locks) is represented by a unique instance of 178 * struct lock_owner. 179 * 180 * If a lock owner has a lock that blocks some other lock or a lock 181 * that is waiting for some other lock, it also has a vertex in the 182 * owner_graph below. 183 * 184 * Locks: 185 * (s) locked by state->ls_lock 186 * (S) locked by lf_lock_states_lock 187 * (l) locked by lf_lock_owners_lock 188 * (g) locked by lf_owner_graph_lock 189 * (c) const until freeing 190 */ 191 #define LOCK_OWNER_HASH_SIZE 256 192 193 struct lock_owner { 194 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 195 int lo_refs; /* (l) Number of locks referring to this */ 196 int lo_flags; /* (c) Flags passwd to lf_advlock */ 197 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 198 pid_t lo_pid; /* (c) Process Id of the lock owner */ 199 int lo_sysid; /* (c) System Id of the lock owner */ 200 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 201 }; 202 203 LIST_HEAD(lock_owner_list, lock_owner); 204 205 static struct sx lf_lock_states_lock; 206 static struct lockf_list lf_lock_states; /* (S) */ 207 static struct sx lf_lock_owners_lock; 208 static struct lock_owner_list lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */ 209 210 /* 211 * Structures for deadlock detection. 212 * 213 * We have two types of directed graph, the first is the set of locks, 214 * both active and pending on a vnode. Within this graph, active locks 215 * are terminal nodes in the graph (i.e. have no out-going 216 * edges). Pending locks have out-going edges to each blocking active 217 * lock that prevents the lock from being granted and also to each 218 * older pending lock that would block them if it was active. The 219 * graph for each vnode is naturally acyclic; new edges are only ever 220 * added to or from new nodes (either new pending locks which only add 221 * out-going edges or new active locks which only add in-coming edges) 222 * therefore they cannot create loops in the lock graph. 223 * 224 * The second graph is a global graph of lock owners. Each lock owner 225 * is a vertex in that graph and an edge is added to the graph 226 * whenever an edge is added to a vnode graph, with end points 227 * corresponding to owner of the new pending lock and the owner of the 228 * lock upon which it waits. In order to prevent deadlock, we only add 229 * an edge to this graph if the new edge would not create a cycle. 230 * 231 * The lock owner graph is topologically sorted, i.e. if a node has 232 * any outgoing edges, then it has an order strictly less than any 233 * node to which it has an outgoing edge. We preserve this ordering 234 * (and detect cycles) on edge insertion using Algorithm PK from the 235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 237 * No. 1.7) 238 */ 239 struct owner_vertex; 240 241 struct owner_edge { 242 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 243 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 244 int e_refs; /* (g) number of times added */ 245 struct owner_vertex *e_from; /* (c) out-going from here */ 246 struct owner_vertex *e_to; /* (c) in-coming to here */ 247 }; 248 LIST_HEAD(owner_edge_list, owner_edge); 249 250 struct owner_vertex { 251 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 252 uint32_t v_gen; /* (g) workspace for edge insertion */ 253 int v_order; /* (g) order of vertex in graph */ 254 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 255 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 256 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 257 }; 258 TAILQ_HEAD(owner_vertex_list, owner_vertex); 259 260 struct owner_graph { 261 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 262 int g_size; /* (g) number of vertices */ 263 int g_space; /* (g) space allocated for vertices */ 264 int *g_indexbuf; /* (g) workspace for loop detection */ 265 uint32_t g_gen; /* (g) increment when re-ordering */ 266 }; 267 268 static struct sx lf_owner_graph_lock; 269 static struct owner_graph lf_owner_graph; 270 271 /* 272 * Initialise various structures and locks. 273 */ 274 static void 275 lf_init(void *dummy) 276 { 277 int i; 278 279 sx_init(&lf_lock_states_lock, "lock states lock"); 280 LIST_INIT(&lf_lock_states); 281 282 sx_init(&lf_lock_owners_lock, "lock owners lock"); 283 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) 284 LIST_INIT(&lf_lock_owners[i]); 285 286 sx_init(&lf_owner_graph_lock, "owner graph lock"); 287 graph_init(&lf_owner_graph); 288 } 289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 290 291 /* 292 * Generate a hash value for a lock owner. 293 */ 294 static int 295 lf_hash_owner(caddr_t id, struct flock *fl, int flags) 296 { 297 uint32_t h; 298 299 if (flags & F_REMOTE) { 300 h = HASHSTEP(0, fl->l_pid); 301 h = HASHSTEP(h, fl->l_sysid); 302 } else if (flags & F_FLOCK) { 303 h = ((uintptr_t) id) >> 7; 304 } else { 305 struct proc *p = (struct proc *) id; 306 h = HASHSTEP(0, p->p_pid); 307 h = HASHSTEP(h, 0); 308 } 309 310 return (h % LOCK_OWNER_HASH_SIZE); 311 } 312 313 /* 314 * Return true if a lock owner matches the details passed to 315 * lf_advlock. 316 */ 317 static int 318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 319 int flags) 320 { 321 if (flags & F_REMOTE) { 322 return lo->lo_pid == fl->l_pid 323 && lo->lo_sysid == fl->l_sysid; 324 } else { 325 return lo->lo_id == id; 326 } 327 } 328 329 static struct lockf_entry * 330 lf_alloc_lock(struct lock_owner *lo) 331 { 332 struct lockf_entry *lf; 333 334 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 335 336 #ifdef LOCKF_DEBUG 337 if (lockf_debug & 4) 338 printf("Allocated lock %p\n", lf); 339 #endif 340 if (lo) { 341 sx_xlock(&lf_lock_owners_lock); 342 lo->lo_refs++; 343 sx_xunlock(&lf_lock_owners_lock); 344 lf->lf_owner = lo; 345 } 346 347 return (lf); 348 } 349 350 static int 351 lf_free_lock(struct lockf_entry *lock) 352 { 353 354 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 355 if (--lock->lf_refs > 0) 356 return (0); 357 /* 358 * Adjust the lock_owner reference count and 359 * reclaim the entry if this is the last lock 360 * for that owner. 361 */ 362 struct lock_owner *lo = lock->lf_owner; 363 if (lo) { 364 KASSERT(LIST_EMPTY(&lock->lf_outedges), 365 ("freeing lock with dependancies")); 366 KASSERT(LIST_EMPTY(&lock->lf_inedges), 367 ("freeing lock with dependants")); 368 sx_xlock(&lf_lock_owners_lock); 369 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 370 lo->lo_refs--; 371 if (lo->lo_refs == 0) { 372 #ifdef LOCKF_DEBUG 373 if (lockf_debug & 1) 374 printf("lf_free_lock: freeing lock owner %p\n", 375 lo); 376 #endif 377 if (lo->lo_vertex) { 378 sx_xlock(&lf_owner_graph_lock); 379 graph_free_vertex(&lf_owner_graph, 380 lo->lo_vertex); 381 sx_xunlock(&lf_owner_graph_lock); 382 } 383 LIST_REMOVE(lo, lo_link); 384 free(lo, M_LOCKF); 385 #ifdef LOCKF_DEBUG 386 if (lockf_debug & 4) 387 printf("Freed lock owner %p\n", lo); 388 #endif 389 } 390 sx_unlock(&lf_lock_owners_lock); 391 } 392 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 393 vrele(lock->lf_vnode); 394 lock->lf_vnode = NULL; 395 } 396 #ifdef LOCKF_DEBUG 397 if (lockf_debug & 4) 398 printf("Freed lock %p\n", lock); 399 #endif 400 free(lock, M_LOCKF); 401 return (1); 402 } 403 404 /* 405 * Advisory record locking support 406 */ 407 int 408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 409 u_quad_t size) 410 { 411 struct lockf *state, *freestate = NULL; 412 struct flock *fl = ap->a_fl; 413 struct lockf_entry *lock; 414 struct vnode *vp = ap->a_vp; 415 caddr_t id = ap->a_id; 416 int flags = ap->a_flags; 417 int hash; 418 struct lock_owner *lo; 419 off_t start, end, oadd; 420 int error; 421 422 /* 423 * Handle the F_UNLKSYS case first - no need to mess about 424 * creating a lock owner for this one. 425 */ 426 if (ap->a_op == F_UNLCKSYS) { 427 lf_clearremotesys(fl->l_sysid); 428 return (0); 429 } 430 431 /* 432 * Convert the flock structure into a start and end. 433 */ 434 switch (fl->l_whence) { 435 436 case SEEK_SET: 437 case SEEK_CUR: 438 /* 439 * Caller is responsible for adding any necessary offset 440 * when SEEK_CUR is used. 441 */ 442 start = fl->l_start; 443 break; 444 445 case SEEK_END: 446 if (size > OFF_MAX || 447 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 448 return (EOVERFLOW); 449 start = size + fl->l_start; 450 break; 451 452 default: 453 return (EINVAL); 454 } 455 if (start < 0) 456 return (EINVAL); 457 if (fl->l_len < 0) { 458 if (start == 0) 459 return (EINVAL); 460 end = start - 1; 461 start += fl->l_len; 462 if (start < 0) 463 return (EINVAL); 464 } else if (fl->l_len == 0) { 465 end = OFF_MAX; 466 } else { 467 oadd = fl->l_len - 1; 468 if (oadd > OFF_MAX - start) 469 return (EOVERFLOW); 470 end = start + oadd; 471 } 472 473 retry_setlock: 474 475 /* 476 * Avoid the common case of unlocking when inode has no locks. 477 */ 478 VI_LOCK(vp); 479 if ((*statep) == NULL) { 480 if (ap->a_op != F_SETLK) { 481 fl->l_type = F_UNLCK; 482 VI_UNLOCK(vp); 483 return (0); 484 } 485 } 486 VI_UNLOCK(vp); 487 488 /* 489 * Map our arguments to an existing lock owner or create one 490 * if this is the first time we have seen this owner. 491 */ 492 hash = lf_hash_owner(id, fl, flags); 493 sx_xlock(&lf_lock_owners_lock); 494 LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link) 495 if (lf_owner_matches(lo, id, fl, flags)) 496 break; 497 if (!lo) { 498 /* 499 * We initialise the lock with a reference 500 * count which matches the new lockf_entry 501 * structure created below. 502 */ 503 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 504 M_WAITOK|M_ZERO); 505 #ifdef LOCKF_DEBUG 506 if (lockf_debug & 4) 507 printf("Allocated lock owner %p\n", lo); 508 #endif 509 510 lo->lo_refs = 1; 511 lo->lo_flags = flags; 512 lo->lo_id = id; 513 if (flags & F_REMOTE) { 514 lo->lo_pid = fl->l_pid; 515 lo->lo_sysid = fl->l_sysid; 516 } else if (flags & F_FLOCK) { 517 lo->lo_pid = -1; 518 lo->lo_sysid = 0; 519 } else { 520 struct proc *p = (struct proc *) id; 521 lo->lo_pid = p->p_pid; 522 lo->lo_sysid = 0; 523 } 524 lo->lo_vertex = NULL; 525 526 #ifdef LOCKF_DEBUG 527 if (lockf_debug & 1) { 528 printf("lf_advlockasync: new lock owner %p ", lo); 529 lf_print_owner(lo); 530 printf("\n"); 531 } 532 #endif 533 534 LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link); 535 } else { 536 /* 537 * We have seen this lock owner before, increase its 538 * reference count to account for the new lockf_entry 539 * structure we create below. 540 */ 541 lo->lo_refs++; 542 } 543 sx_xunlock(&lf_lock_owners_lock); 544 545 /* 546 * Create the lockf structure. We initialise the lf_owner 547 * field here instead of in lf_alloc_lock() to avoid paying 548 * the lf_lock_owners_lock tax twice. 549 */ 550 lock = lf_alloc_lock(NULL); 551 lock->lf_refs = 1; 552 lock->lf_start = start; 553 lock->lf_end = end; 554 lock->lf_owner = lo; 555 lock->lf_vnode = vp; 556 if (flags & F_REMOTE) { 557 /* 558 * For remote locks, the caller may release its ref to 559 * the vnode at any time - we have to ref it here to 560 * prevent it from being recycled unexpectedly. 561 */ 562 vref(vp); 563 } 564 565 /* 566 * XXX The problem is that VTOI is ufs specific, so it will 567 * break LOCKF_DEBUG for all other FS's other than UFS because 568 * it casts the vnode->data ptr to struct inode *. 569 */ 570 /* lock->lf_inode = VTOI(ap->a_vp); */ 571 lock->lf_inode = (struct inode *)0; 572 lock->lf_type = fl->l_type; 573 LIST_INIT(&lock->lf_outedges); 574 LIST_INIT(&lock->lf_inedges); 575 lock->lf_async_task = ap->a_task; 576 lock->lf_flags = ap->a_flags; 577 578 /* 579 * Do the requested operation. First find our state structure 580 * and create a new one if necessary - the caller's *statep 581 * variable and the state's ls_threads count is protected by 582 * the vnode interlock. 583 */ 584 VI_LOCK(vp); 585 if (vp->v_iflag & VI_DOOMED) { 586 VI_UNLOCK(vp); 587 lf_free_lock(lock); 588 return (ENOENT); 589 } 590 591 /* 592 * Allocate a state structure if necessary. 593 */ 594 state = *statep; 595 if (state == NULL) { 596 struct lockf *ls; 597 598 VI_UNLOCK(vp); 599 600 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 601 sx_init(&ls->ls_lock, "ls_lock"); 602 LIST_INIT(&ls->ls_active); 603 LIST_INIT(&ls->ls_pending); 604 ls->ls_threads = 1; 605 606 sx_xlock(&lf_lock_states_lock); 607 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 608 sx_xunlock(&lf_lock_states_lock); 609 610 /* 611 * Cope if we lost a race with some other thread while 612 * trying to allocate memory. 613 */ 614 VI_LOCK(vp); 615 if (vp->v_iflag & VI_DOOMED) { 616 VI_UNLOCK(vp); 617 sx_xlock(&lf_lock_states_lock); 618 LIST_REMOVE(ls, ls_link); 619 sx_xunlock(&lf_lock_states_lock); 620 sx_destroy(&ls->ls_lock); 621 free(ls, M_LOCKF); 622 lf_free_lock(lock); 623 return (ENOENT); 624 } 625 if ((*statep) == NULL) { 626 state = *statep = ls; 627 VI_UNLOCK(vp); 628 } else { 629 state = *statep; 630 state->ls_threads++; 631 VI_UNLOCK(vp); 632 633 sx_xlock(&lf_lock_states_lock); 634 LIST_REMOVE(ls, ls_link); 635 sx_xunlock(&lf_lock_states_lock); 636 sx_destroy(&ls->ls_lock); 637 free(ls, M_LOCKF); 638 } 639 } else { 640 state->ls_threads++; 641 VI_UNLOCK(vp); 642 } 643 644 sx_xlock(&state->ls_lock); 645 /* 646 * Recheck the doomed vnode after state->ls_lock is 647 * locked. lf_purgelocks() requires that no new threads add 648 * pending locks when vnode is marked by VI_DOOMED flag. 649 */ 650 VI_LOCK(vp); 651 if (vp->v_iflag & VI_DOOMED) { 652 state->ls_threads--; 653 wakeup(state); 654 VI_UNLOCK(vp); 655 sx_xunlock(&state->ls_lock); 656 lf_free_lock(lock); 657 return (ENOENT); 658 } 659 VI_UNLOCK(vp); 660 661 switch (ap->a_op) { 662 case F_SETLK: 663 error = lf_setlock(state, lock, vp, ap->a_cookiep); 664 break; 665 666 case F_UNLCK: 667 error = lf_clearlock(state, lock); 668 lf_free_lock(lock); 669 break; 670 671 case F_GETLK: 672 error = lf_getlock(state, lock, fl); 673 lf_free_lock(lock); 674 break; 675 676 case F_CANCEL: 677 if (ap->a_cookiep) 678 error = lf_cancel(state, lock, *ap->a_cookiep); 679 else 680 error = EINVAL; 681 lf_free_lock(lock); 682 break; 683 684 default: 685 lf_free_lock(lock); 686 error = EINVAL; 687 break; 688 } 689 690 #ifdef INVARIANTS 691 /* 692 * Check for some can't happen stuff. In this case, the active 693 * lock list becoming disordered or containing mutually 694 * blocking locks. We also check the pending list for locks 695 * which should be active (i.e. have no out-going edges). 696 */ 697 LIST_FOREACH(lock, &state->ls_active, lf_link) { 698 struct lockf_entry *lf; 699 if (LIST_NEXT(lock, lf_link)) 700 KASSERT((lock->lf_start 701 <= LIST_NEXT(lock, lf_link)->lf_start), 702 ("locks disordered")); 703 LIST_FOREACH(lf, &state->ls_active, lf_link) { 704 if (lock == lf) 705 break; 706 KASSERT(!lf_blocks(lock, lf), 707 ("two conflicting active locks")); 708 if (lock->lf_owner == lf->lf_owner) 709 KASSERT(!lf_overlaps(lock, lf), 710 ("two overlapping locks from same owner")); 711 } 712 } 713 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 714 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 715 ("pending lock which should be active")); 716 } 717 #endif 718 sx_xunlock(&state->ls_lock); 719 720 /* 721 * If we have removed the last active lock on the vnode and 722 * this is the last thread that was in-progress, we can free 723 * the state structure. We update the caller's pointer inside 724 * the vnode interlock but call free outside. 725 * 726 * XXX alternatively, keep the state structure around until 727 * the filesystem recycles - requires a callback from the 728 * filesystem. 729 */ 730 VI_LOCK(vp); 731 732 state->ls_threads--; 733 wakeup(state); 734 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 735 KASSERT(LIST_EMPTY(&state->ls_pending), 736 ("freeing state with pending locks")); 737 freestate = state; 738 *statep = NULL; 739 } 740 741 VI_UNLOCK(vp); 742 743 if (freestate) { 744 sx_xlock(&lf_lock_states_lock); 745 LIST_REMOVE(freestate, ls_link); 746 sx_xunlock(&lf_lock_states_lock); 747 sx_destroy(&freestate->ls_lock); 748 free(freestate, M_LOCKF); 749 } 750 751 if (error == EDOOFUS) { 752 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 753 goto retry_setlock; 754 } 755 return (error); 756 } 757 758 int 759 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 760 { 761 struct vop_advlockasync_args a; 762 763 a.a_vp = ap->a_vp; 764 a.a_id = ap->a_id; 765 a.a_op = ap->a_op; 766 a.a_fl = ap->a_fl; 767 a.a_flags = ap->a_flags; 768 a.a_task = NULL; 769 a.a_cookiep = NULL; 770 771 return (lf_advlockasync(&a, statep, size)); 772 } 773 774 void 775 lf_purgelocks(struct vnode *vp, struct lockf **statep) 776 { 777 struct lockf *state; 778 struct lockf_entry *lock, *nlock; 779 780 /* 781 * For this to work correctly, the caller must ensure that no 782 * other threads enter the locking system for this vnode, 783 * e.g. by checking VI_DOOMED. We wake up any threads that are 784 * sleeping waiting for locks on this vnode and then free all 785 * the remaining locks. 786 */ 787 VI_LOCK(vp); 788 KASSERT(vp->v_iflag & VI_DOOMED, 789 ("lf_purgelocks: vp %p has not vgone yet", vp)); 790 state = *statep; 791 if (state) { 792 *statep = NULL; 793 state->ls_threads++; 794 VI_UNLOCK(vp); 795 796 sx_xlock(&state->ls_lock); 797 sx_xlock(&lf_owner_graph_lock); 798 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 799 LIST_REMOVE(lock, lf_link); 800 lf_remove_outgoing(lock); 801 lf_remove_incoming(lock); 802 803 /* 804 * If its an async lock, we can just free it 805 * here, otherwise we let the sleeping thread 806 * free it. 807 */ 808 if (lock->lf_async_task) { 809 lf_free_lock(lock); 810 } else { 811 lock->lf_flags |= F_INTR; 812 wakeup(lock); 813 } 814 } 815 sx_xunlock(&lf_owner_graph_lock); 816 sx_xunlock(&state->ls_lock); 817 818 /* 819 * Wait for all other threads, sleeping and otherwise 820 * to leave. 821 */ 822 VI_LOCK(vp); 823 while (state->ls_threads > 1) 824 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 825 VI_UNLOCK(vp); 826 827 /* 828 * We can just free all the active locks since they 829 * will have no dependancies (we removed them all 830 * above). We don't need to bother locking since we 831 * are the last thread using this state structure. 832 */ 833 KASSERT(LIST_EMPTY(&state->ls_pending), 834 ("lock pending for %p", state)); 835 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 836 LIST_REMOVE(lock, lf_link); 837 lf_free_lock(lock); 838 } 839 sx_xlock(&lf_lock_states_lock); 840 LIST_REMOVE(state, ls_link); 841 sx_xunlock(&lf_lock_states_lock); 842 sx_destroy(&state->ls_lock); 843 free(state, M_LOCKF); 844 } else { 845 VI_UNLOCK(vp); 846 } 847 } 848 849 /* 850 * Return non-zero if locks 'x' and 'y' overlap. 851 */ 852 static int 853 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 854 { 855 856 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 857 } 858 859 /* 860 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 861 */ 862 static int 863 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 864 { 865 866 return x->lf_owner != y->lf_owner 867 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 868 && lf_overlaps(x, y); 869 } 870 871 /* 872 * Allocate a lock edge from the free list 873 */ 874 static struct lockf_edge * 875 lf_alloc_edge(void) 876 { 877 878 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 879 } 880 881 /* 882 * Free a lock edge. 883 */ 884 static void 885 lf_free_edge(struct lockf_edge *e) 886 { 887 888 free(e, M_LOCKF); 889 } 890 891 892 /* 893 * Ensure that the lock's owner has a corresponding vertex in the 894 * owner graph. 895 */ 896 static void 897 lf_alloc_vertex(struct lockf_entry *lock) 898 { 899 struct owner_graph *g = &lf_owner_graph; 900 901 if (!lock->lf_owner->lo_vertex) 902 lock->lf_owner->lo_vertex = 903 graph_alloc_vertex(g, lock->lf_owner); 904 } 905 906 /* 907 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 908 * the new edge would cause a cycle in the owner graph. 909 */ 910 static int 911 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 912 { 913 struct owner_graph *g = &lf_owner_graph; 914 struct lockf_edge *e; 915 int error; 916 917 #ifdef INVARIANTS 918 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 919 KASSERT(e->le_to != y, ("adding lock edge twice")); 920 #endif 921 922 /* 923 * Make sure the two owners have entries in the owner graph. 924 */ 925 lf_alloc_vertex(x); 926 lf_alloc_vertex(y); 927 928 error = graph_add_edge(g, x->lf_owner->lo_vertex, 929 y->lf_owner->lo_vertex); 930 if (error) 931 return (error); 932 933 e = lf_alloc_edge(); 934 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 935 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 936 e->le_from = x; 937 e->le_to = y; 938 939 return (0); 940 } 941 942 /* 943 * Remove an edge from the lock graph. 944 */ 945 static void 946 lf_remove_edge(struct lockf_edge *e) 947 { 948 struct owner_graph *g = &lf_owner_graph; 949 struct lockf_entry *x = e->le_from; 950 struct lockf_entry *y = e->le_to; 951 952 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 953 LIST_REMOVE(e, le_outlink); 954 LIST_REMOVE(e, le_inlink); 955 e->le_from = NULL; 956 e->le_to = NULL; 957 lf_free_edge(e); 958 } 959 960 /* 961 * Remove all out-going edges from lock x. 962 */ 963 static void 964 lf_remove_outgoing(struct lockf_entry *x) 965 { 966 struct lockf_edge *e; 967 968 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 969 lf_remove_edge(e); 970 } 971 } 972 973 /* 974 * Remove all in-coming edges from lock x. 975 */ 976 static void 977 lf_remove_incoming(struct lockf_entry *x) 978 { 979 struct lockf_edge *e; 980 981 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 982 lf_remove_edge(e); 983 } 984 } 985 986 /* 987 * Walk the list of locks for the file and create an out-going edge 988 * from lock to each blocking lock. 989 */ 990 static int 991 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 992 { 993 struct lockf_entry *overlap; 994 int error; 995 996 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 997 /* 998 * We may assume that the active list is sorted by 999 * lf_start. 1000 */ 1001 if (overlap->lf_start > lock->lf_end) 1002 break; 1003 if (!lf_blocks(lock, overlap)) 1004 continue; 1005 1006 /* 1007 * We've found a blocking lock. Add the corresponding 1008 * edge to the graphs and see if it would cause a 1009 * deadlock. 1010 */ 1011 error = lf_add_edge(lock, overlap); 1012 1013 /* 1014 * The only error that lf_add_edge returns is EDEADLK. 1015 * Remove any edges we added and return the error. 1016 */ 1017 if (error) { 1018 lf_remove_outgoing(lock); 1019 return (error); 1020 } 1021 } 1022 1023 /* 1024 * We also need to add edges to sleeping locks that block 1025 * us. This ensures that lf_wakeup_lock cannot grant two 1026 * mutually blocking locks simultaneously and also enforces a 1027 * 'first come, first served' fairness model. Note that this 1028 * only happens if we are blocked by at least one active lock 1029 * due to the call to lf_getblock in lf_setlock below. 1030 */ 1031 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1032 if (!lf_blocks(lock, overlap)) 1033 continue; 1034 /* 1035 * We've found a blocking lock. Add the corresponding 1036 * edge to the graphs and see if it would cause a 1037 * deadlock. 1038 */ 1039 error = lf_add_edge(lock, overlap); 1040 1041 /* 1042 * The only error that lf_add_edge returns is EDEADLK. 1043 * Remove any edges we added and return the error. 1044 */ 1045 if (error) { 1046 lf_remove_outgoing(lock); 1047 return (error); 1048 } 1049 } 1050 1051 return (0); 1052 } 1053 1054 /* 1055 * Walk the list of pending locks for the file and create an in-coming 1056 * edge from lock to each blocking lock. 1057 */ 1058 static int 1059 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1060 { 1061 struct lockf_entry *overlap; 1062 int error; 1063 1064 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1065 if (!lf_blocks(lock, overlap)) 1066 continue; 1067 1068 /* 1069 * We've found a blocking lock. Add the corresponding 1070 * edge to the graphs and see if it would cause a 1071 * deadlock. 1072 */ 1073 error = lf_add_edge(overlap, lock); 1074 1075 /* 1076 * The only error that lf_add_edge returns is EDEADLK. 1077 * Remove any edges we added and return the error. 1078 */ 1079 if (error) { 1080 lf_remove_incoming(lock); 1081 return (error); 1082 } 1083 } 1084 return (0); 1085 } 1086 1087 /* 1088 * Insert lock into the active list, keeping list entries ordered by 1089 * increasing values of lf_start. 1090 */ 1091 static void 1092 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1093 { 1094 struct lockf_entry *lf, *lfprev; 1095 1096 if (LIST_EMPTY(&state->ls_active)) { 1097 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1098 return; 1099 } 1100 1101 lfprev = NULL; 1102 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1103 if (lf->lf_start > lock->lf_start) { 1104 LIST_INSERT_BEFORE(lf, lock, lf_link); 1105 return; 1106 } 1107 lfprev = lf; 1108 } 1109 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1110 } 1111 1112 /* 1113 * Wake up a sleeping lock and remove it from the pending list now 1114 * that all its dependancies have been resolved. The caller should 1115 * arrange for the lock to be added to the active list, adjusting any 1116 * existing locks for the same owner as needed. 1117 */ 1118 static void 1119 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1120 { 1121 1122 /* 1123 * Remove from ls_pending list and wake up the caller 1124 * or start the async notification, as appropriate. 1125 */ 1126 LIST_REMOVE(wakelock, lf_link); 1127 #ifdef LOCKF_DEBUG 1128 if (lockf_debug & 1) 1129 lf_print("lf_wakeup_lock: awakening", wakelock); 1130 #endif /* LOCKF_DEBUG */ 1131 if (wakelock->lf_async_task) { 1132 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1133 } else { 1134 wakeup(wakelock); 1135 } 1136 } 1137 1138 /* 1139 * Re-check all dependant locks and remove edges to locks that we no 1140 * longer block. If 'all' is non-zero, the lock has been removed and 1141 * we must remove all the dependancies, otherwise it has simply been 1142 * reduced but remains active. Any pending locks which have been been 1143 * unblocked are added to 'granted' 1144 */ 1145 static void 1146 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1147 struct lockf_entry_list *granted) 1148 { 1149 struct lockf_edge *e, *ne; 1150 struct lockf_entry *deplock; 1151 1152 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1153 deplock = e->le_from; 1154 if (all || !lf_blocks(lock, deplock)) { 1155 sx_xlock(&lf_owner_graph_lock); 1156 lf_remove_edge(e); 1157 sx_xunlock(&lf_owner_graph_lock); 1158 if (LIST_EMPTY(&deplock->lf_outedges)) { 1159 lf_wakeup_lock(state, deplock); 1160 LIST_INSERT_HEAD(granted, deplock, lf_link); 1161 } 1162 } 1163 } 1164 } 1165 1166 /* 1167 * Set the start of an existing active lock, updating dependancies and 1168 * adding any newly woken locks to 'granted'. 1169 */ 1170 static void 1171 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1172 struct lockf_entry_list *granted) 1173 { 1174 1175 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1176 lock->lf_start = new_start; 1177 LIST_REMOVE(lock, lf_link); 1178 lf_insert_lock(state, lock); 1179 lf_update_dependancies(state, lock, FALSE, granted); 1180 } 1181 1182 /* 1183 * Set the end of an existing active lock, updating dependancies and 1184 * adding any newly woken locks to 'granted'. 1185 */ 1186 static void 1187 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1188 struct lockf_entry_list *granted) 1189 { 1190 1191 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1192 lock->lf_end = new_end; 1193 lf_update_dependancies(state, lock, FALSE, granted); 1194 } 1195 1196 /* 1197 * Add a lock to the active list, updating or removing any current 1198 * locks owned by the same owner and processing any pending locks that 1199 * become unblocked as a result. This code is also used for unlock 1200 * since the logic for updating existing locks is identical. 1201 * 1202 * As a result of processing the new lock, we may unblock existing 1203 * pending locks as a result of downgrading/unlocking. We simply 1204 * activate the newly granted locks by looping. 1205 * 1206 * Since the new lock already has its dependancies set up, we always 1207 * add it to the list (unless its an unlock request). This may 1208 * fragment the lock list in some pathological cases but its probably 1209 * not a real problem. 1210 */ 1211 static void 1212 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1213 { 1214 struct lockf_entry *overlap, *lf; 1215 struct lockf_entry_list granted; 1216 int ovcase; 1217 1218 LIST_INIT(&granted); 1219 LIST_INSERT_HEAD(&granted, lock, lf_link); 1220 1221 while (!LIST_EMPTY(&granted)) { 1222 lock = LIST_FIRST(&granted); 1223 LIST_REMOVE(lock, lf_link); 1224 1225 /* 1226 * Skip over locks owned by other processes. Handle 1227 * any locks that overlap and are owned by ourselves. 1228 */ 1229 overlap = LIST_FIRST(&state->ls_active); 1230 for (;;) { 1231 ovcase = lf_findoverlap(&overlap, lock, SELF); 1232 1233 #ifdef LOCKF_DEBUG 1234 if (ovcase && (lockf_debug & 2)) { 1235 printf("lf_setlock: overlap %d", ovcase); 1236 lf_print("", overlap); 1237 } 1238 #endif 1239 /* 1240 * Six cases: 1241 * 0) no overlap 1242 * 1) overlap == lock 1243 * 2) overlap contains lock 1244 * 3) lock contains overlap 1245 * 4) overlap starts before lock 1246 * 5) overlap ends after lock 1247 */ 1248 switch (ovcase) { 1249 case 0: /* no overlap */ 1250 break; 1251 1252 case 1: /* overlap == lock */ 1253 /* 1254 * We have already setup the 1255 * dependants for the new lock, taking 1256 * into account a possible downgrade 1257 * or unlock. Remove the old lock. 1258 */ 1259 LIST_REMOVE(overlap, lf_link); 1260 lf_update_dependancies(state, overlap, TRUE, 1261 &granted); 1262 lf_free_lock(overlap); 1263 break; 1264 1265 case 2: /* overlap contains lock */ 1266 /* 1267 * Just split the existing lock. 1268 */ 1269 lf_split(state, overlap, lock, &granted); 1270 break; 1271 1272 case 3: /* lock contains overlap */ 1273 /* 1274 * Delete the overlap and advance to 1275 * the next entry in the list. 1276 */ 1277 lf = LIST_NEXT(overlap, lf_link); 1278 LIST_REMOVE(overlap, lf_link); 1279 lf_update_dependancies(state, overlap, TRUE, 1280 &granted); 1281 lf_free_lock(overlap); 1282 overlap = lf; 1283 continue; 1284 1285 case 4: /* overlap starts before lock */ 1286 /* 1287 * Just update the overlap end and 1288 * move on. 1289 */ 1290 lf_set_end(state, overlap, lock->lf_start - 1, 1291 &granted); 1292 overlap = LIST_NEXT(overlap, lf_link); 1293 continue; 1294 1295 case 5: /* overlap ends after lock */ 1296 /* 1297 * Change the start of overlap and 1298 * re-insert. 1299 */ 1300 lf_set_start(state, overlap, lock->lf_end + 1, 1301 &granted); 1302 break; 1303 } 1304 break; 1305 } 1306 #ifdef LOCKF_DEBUG 1307 if (lockf_debug & 1) { 1308 if (lock->lf_type != F_UNLCK) 1309 lf_print("lf_activate_lock: activated", lock); 1310 else 1311 lf_print("lf_activate_lock: unlocked", lock); 1312 lf_printlist("lf_activate_lock", lock); 1313 } 1314 #endif /* LOCKF_DEBUG */ 1315 if (lock->lf_type != F_UNLCK) 1316 lf_insert_lock(state, lock); 1317 } 1318 } 1319 1320 /* 1321 * Cancel a pending lock request, either as a result of a signal or a 1322 * cancel request for an async lock. 1323 */ 1324 static void 1325 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1326 { 1327 struct lockf_entry_list granted; 1328 1329 /* 1330 * Note it is theoretically possible that cancelling this lock 1331 * may allow some other pending lock to become 1332 * active. Consider this case: 1333 * 1334 * Owner Action Result Dependancies 1335 * 1336 * A: lock [0..0] succeeds 1337 * B: lock [2..2] succeeds 1338 * C: lock [1..2] blocked C->B 1339 * D: lock [0..1] blocked C->B,D->A,D->C 1340 * A: unlock [0..0] C->B,D->C 1341 * C: cancel [1..2] 1342 */ 1343 1344 LIST_REMOVE(lock, lf_link); 1345 1346 /* 1347 * Removing out-going edges is simple. 1348 */ 1349 sx_xlock(&lf_owner_graph_lock); 1350 lf_remove_outgoing(lock); 1351 sx_xunlock(&lf_owner_graph_lock); 1352 1353 /* 1354 * Removing in-coming edges may allow some other lock to 1355 * become active - we use lf_update_dependancies to figure 1356 * this out. 1357 */ 1358 LIST_INIT(&granted); 1359 lf_update_dependancies(state, lock, TRUE, &granted); 1360 lf_free_lock(lock); 1361 1362 /* 1363 * Feed any newly active locks to lf_activate_lock. 1364 */ 1365 while (!LIST_EMPTY(&granted)) { 1366 lock = LIST_FIRST(&granted); 1367 LIST_REMOVE(lock, lf_link); 1368 lf_activate_lock(state, lock); 1369 } 1370 } 1371 1372 /* 1373 * Set a byte-range lock. 1374 */ 1375 static int 1376 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1377 void **cookiep) 1378 { 1379 static char lockstr[] = "lockf"; 1380 int priority, error; 1381 1382 #ifdef LOCKF_DEBUG 1383 if (lockf_debug & 1) 1384 lf_print("lf_setlock", lock); 1385 #endif /* LOCKF_DEBUG */ 1386 1387 /* 1388 * Set the priority 1389 */ 1390 priority = PLOCK; 1391 if (lock->lf_type == F_WRLCK) 1392 priority += 4; 1393 if (!(lock->lf_flags & F_NOINTR)) 1394 priority |= PCATCH; 1395 /* 1396 * Scan lock list for this file looking for locks that would block us. 1397 */ 1398 if (lf_getblock(state, lock)) { 1399 /* 1400 * Free the structure and return if nonblocking. 1401 */ 1402 if ((lock->lf_flags & F_WAIT) == 0 1403 && lock->lf_async_task == NULL) { 1404 lf_free_lock(lock); 1405 error = EAGAIN; 1406 goto out; 1407 } 1408 1409 /* 1410 * For flock type locks, we must first remove 1411 * any shared locks that we hold before we sleep 1412 * waiting for an exclusive lock. 1413 */ 1414 if ((lock->lf_flags & F_FLOCK) && 1415 lock->lf_type == F_WRLCK) { 1416 lock->lf_type = F_UNLCK; 1417 lf_activate_lock(state, lock); 1418 lock->lf_type = F_WRLCK; 1419 } 1420 1421 /* 1422 * We are blocked. Create edges to each blocking lock, 1423 * checking for deadlock using the owner graph. For 1424 * simplicity, we run deadlock detection for all 1425 * locks, posix and otherwise. 1426 */ 1427 sx_xlock(&lf_owner_graph_lock); 1428 error = lf_add_outgoing(state, lock); 1429 sx_xunlock(&lf_owner_graph_lock); 1430 1431 if (error) { 1432 #ifdef LOCKF_DEBUG 1433 if (lockf_debug & 1) 1434 lf_print("lf_setlock: deadlock", lock); 1435 #endif 1436 lf_free_lock(lock); 1437 goto out; 1438 } 1439 1440 /* 1441 * We have added edges to everything that blocks 1442 * us. Sleep until they all go away. 1443 */ 1444 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1445 #ifdef LOCKF_DEBUG 1446 if (lockf_debug & 1) { 1447 struct lockf_edge *e; 1448 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1449 lf_print("lf_setlock: blocking on", e->le_to); 1450 lf_printlist("lf_setlock", e->le_to); 1451 } 1452 } 1453 #endif /* LOCKF_DEBUG */ 1454 1455 if ((lock->lf_flags & F_WAIT) == 0) { 1456 /* 1457 * The caller requested async notification - 1458 * this callback happens when the blocking 1459 * lock is released, allowing the caller to 1460 * make another attempt to take the lock. 1461 */ 1462 *cookiep = (void *) lock; 1463 error = EINPROGRESS; 1464 goto out; 1465 } 1466 1467 lock->lf_refs++; 1468 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1469 if (lf_free_lock(lock)) { 1470 error = EDOOFUS; 1471 goto out; 1472 } 1473 1474 /* 1475 * We may have been awakened by a signal and/or by a 1476 * debugger continuing us (in which cases we must 1477 * remove our lock graph edges) and/or by another 1478 * process releasing a lock (in which case our edges 1479 * have already been removed and we have been moved to 1480 * the active list). We may also have been woken by 1481 * lf_purgelocks which we report to the caller as 1482 * EINTR. In that case, lf_purgelocks will have 1483 * removed our lock graph edges. 1484 * 1485 * Note that it is possible to receive a signal after 1486 * we were successfully woken (and moved to the active 1487 * list) but before we resumed execution. In this 1488 * case, our lf_outedges list will be clear. We 1489 * pretend there was no error. 1490 * 1491 * Note also, if we have been sleeping long enough, we 1492 * may now have incoming edges from some newer lock 1493 * which is waiting behind us in the queue. 1494 */ 1495 if (lock->lf_flags & F_INTR) { 1496 error = EINTR; 1497 lf_free_lock(lock); 1498 goto out; 1499 } 1500 if (LIST_EMPTY(&lock->lf_outedges)) { 1501 error = 0; 1502 } else { 1503 lf_cancel_lock(state, lock); 1504 goto out; 1505 } 1506 #ifdef LOCKF_DEBUG 1507 if (lockf_debug & 1) { 1508 lf_print("lf_setlock: granted", lock); 1509 } 1510 #endif 1511 goto out; 1512 } 1513 /* 1514 * It looks like we are going to grant the lock. First add 1515 * edges from any currently pending lock that the new lock 1516 * would block. 1517 */ 1518 sx_xlock(&lf_owner_graph_lock); 1519 error = lf_add_incoming(state, lock); 1520 sx_xunlock(&lf_owner_graph_lock); 1521 if (error) { 1522 #ifdef LOCKF_DEBUG 1523 if (lockf_debug & 1) 1524 lf_print("lf_setlock: deadlock", lock); 1525 #endif 1526 lf_free_lock(lock); 1527 goto out; 1528 } 1529 1530 /* 1531 * No blocks!! Add the lock. Note that we will 1532 * downgrade or upgrade any overlapping locks this 1533 * process already owns. 1534 */ 1535 lf_activate_lock(state, lock); 1536 error = 0; 1537 out: 1538 return (error); 1539 } 1540 1541 /* 1542 * Remove a byte-range lock on an inode. 1543 * 1544 * Generally, find the lock (or an overlap to that lock) 1545 * and remove it (or shrink it), then wakeup anyone we can. 1546 */ 1547 static int 1548 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1549 { 1550 struct lockf_entry *overlap; 1551 1552 overlap = LIST_FIRST(&state->ls_active); 1553 1554 if (overlap == NOLOCKF) 1555 return (0); 1556 #ifdef LOCKF_DEBUG 1557 if (unlock->lf_type != F_UNLCK) 1558 panic("lf_clearlock: bad type"); 1559 if (lockf_debug & 1) 1560 lf_print("lf_clearlock", unlock); 1561 #endif /* LOCKF_DEBUG */ 1562 1563 lf_activate_lock(state, unlock); 1564 1565 return (0); 1566 } 1567 1568 /* 1569 * Check whether there is a blocking lock, and if so return its 1570 * details in '*fl'. 1571 */ 1572 static int 1573 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1574 { 1575 struct lockf_entry *block; 1576 1577 #ifdef LOCKF_DEBUG 1578 if (lockf_debug & 1) 1579 lf_print("lf_getlock", lock); 1580 #endif /* LOCKF_DEBUG */ 1581 1582 if ((block = lf_getblock(state, lock))) { 1583 fl->l_type = block->lf_type; 1584 fl->l_whence = SEEK_SET; 1585 fl->l_start = block->lf_start; 1586 if (block->lf_end == OFF_MAX) 1587 fl->l_len = 0; 1588 else 1589 fl->l_len = block->lf_end - block->lf_start + 1; 1590 fl->l_pid = block->lf_owner->lo_pid; 1591 fl->l_sysid = block->lf_owner->lo_sysid; 1592 } else { 1593 fl->l_type = F_UNLCK; 1594 } 1595 return (0); 1596 } 1597 1598 /* 1599 * Cancel an async lock request. 1600 */ 1601 static int 1602 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1603 { 1604 struct lockf_entry *reallock; 1605 1606 /* 1607 * We need to match this request with an existing lock 1608 * request. 1609 */ 1610 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1611 if ((void *) reallock == cookie) { 1612 /* 1613 * Double-check that this lock looks right 1614 * (maybe use a rolling ID for the cancel 1615 * cookie instead?) 1616 */ 1617 if (!(reallock->lf_vnode == lock->lf_vnode 1618 && reallock->lf_start == lock->lf_start 1619 && reallock->lf_end == lock->lf_end)) { 1620 return (ENOENT); 1621 } 1622 1623 /* 1624 * Make sure this lock was async and then just 1625 * remove it from its wait lists. 1626 */ 1627 if (!reallock->lf_async_task) { 1628 return (ENOENT); 1629 } 1630 1631 /* 1632 * Note that since any other thread must take 1633 * state->ls_lock before it can possibly 1634 * trigger the async callback, we are safe 1635 * from a race with lf_wakeup_lock, i.e. we 1636 * can free the lock (actually our caller does 1637 * this). 1638 */ 1639 lf_cancel_lock(state, reallock); 1640 return (0); 1641 } 1642 } 1643 1644 /* 1645 * We didn't find a matching lock - not much we can do here. 1646 */ 1647 return (ENOENT); 1648 } 1649 1650 /* 1651 * Walk the list of locks for an inode and 1652 * return the first blocking lock. 1653 */ 1654 static struct lockf_entry * 1655 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1656 { 1657 struct lockf_entry *overlap; 1658 1659 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1660 /* 1661 * We may assume that the active list is sorted by 1662 * lf_start. 1663 */ 1664 if (overlap->lf_start > lock->lf_end) 1665 break; 1666 if (!lf_blocks(lock, overlap)) 1667 continue; 1668 return (overlap); 1669 } 1670 return (NOLOCKF); 1671 } 1672 1673 /* 1674 * Walk the list of locks for an inode to find an overlapping lock (if 1675 * any) and return a classification of that overlap. 1676 * 1677 * Arguments: 1678 * *overlap The place in the lock list to start looking 1679 * lock The lock which is being tested 1680 * type Pass 'SELF' to test only locks with the same 1681 * owner as lock, or 'OTHER' to test only locks 1682 * with a different owner 1683 * 1684 * Returns one of six values: 1685 * 0) no overlap 1686 * 1) overlap == lock 1687 * 2) overlap contains lock 1688 * 3) lock contains overlap 1689 * 4) overlap starts before lock 1690 * 5) overlap ends after lock 1691 * 1692 * If there is an overlapping lock, '*overlap' is set to point at the 1693 * overlapping lock. 1694 * 1695 * NOTE: this returns only the FIRST overlapping lock. There 1696 * may be more than one. 1697 */ 1698 static int 1699 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1700 { 1701 struct lockf_entry *lf; 1702 off_t start, end; 1703 int res; 1704 1705 if ((*overlap) == NOLOCKF) { 1706 return (0); 1707 } 1708 #ifdef LOCKF_DEBUG 1709 if (lockf_debug & 2) 1710 lf_print("lf_findoverlap: looking for overlap in", lock); 1711 #endif /* LOCKF_DEBUG */ 1712 start = lock->lf_start; 1713 end = lock->lf_end; 1714 res = 0; 1715 while (*overlap) { 1716 lf = *overlap; 1717 if (lf->lf_start > end) 1718 break; 1719 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1720 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1721 *overlap = LIST_NEXT(lf, lf_link); 1722 continue; 1723 } 1724 #ifdef LOCKF_DEBUG 1725 if (lockf_debug & 2) 1726 lf_print("\tchecking", lf); 1727 #endif /* LOCKF_DEBUG */ 1728 /* 1729 * OK, check for overlap 1730 * 1731 * Six cases: 1732 * 0) no overlap 1733 * 1) overlap == lock 1734 * 2) overlap contains lock 1735 * 3) lock contains overlap 1736 * 4) overlap starts before lock 1737 * 5) overlap ends after lock 1738 */ 1739 if (start > lf->lf_end) { 1740 /* Case 0 */ 1741 #ifdef LOCKF_DEBUG 1742 if (lockf_debug & 2) 1743 printf("no overlap\n"); 1744 #endif /* LOCKF_DEBUG */ 1745 *overlap = LIST_NEXT(lf, lf_link); 1746 continue; 1747 } 1748 if (lf->lf_start == start && lf->lf_end == end) { 1749 /* Case 1 */ 1750 #ifdef LOCKF_DEBUG 1751 if (lockf_debug & 2) 1752 printf("overlap == lock\n"); 1753 #endif /* LOCKF_DEBUG */ 1754 res = 1; 1755 break; 1756 } 1757 if (lf->lf_start <= start && lf->lf_end >= end) { 1758 /* Case 2 */ 1759 #ifdef LOCKF_DEBUG 1760 if (lockf_debug & 2) 1761 printf("overlap contains lock\n"); 1762 #endif /* LOCKF_DEBUG */ 1763 res = 2; 1764 break; 1765 } 1766 if (start <= lf->lf_start && end >= lf->lf_end) { 1767 /* Case 3 */ 1768 #ifdef LOCKF_DEBUG 1769 if (lockf_debug & 2) 1770 printf("lock contains overlap\n"); 1771 #endif /* LOCKF_DEBUG */ 1772 res = 3; 1773 break; 1774 } 1775 if (lf->lf_start < start && lf->lf_end >= start) { 1776 /* Case 4 */ 1777 #ifdef LOCKF_DEBUG 1778 if (lockf_debug & 2) 1779 printf("overlap starts before lock\n"); 1780 #endif /* LOCKF_DEBUG */ 1781 res = 4; 1782 break; 1783 } 1784 if (lf->lf_start > start && lf->lf_end > end) { 1785 /* Case 5 */ 1786 #ifdef LOCKF_DEBUG 1787 if (lockf_debug & 2) 1788 printf("overlap ends after lock\n"); 1789 #endif /* LOCKF_DEBUG */ 1790 res = 5; 1791 break; 1792 } 1793 panic("lf_findoverlap: default"); 1794 } 1795 return (res); 1796 } 1797 1798 /* 1799 * Split an the existing 'lock1', based on the extent of the lock 1800 * described by 'lock2'. The existing lock should cover 'lock2' 1801 * entirely. 1802 * 1803 * Any pending locks which have been been unblocked are added to 1804 * 'granted' 1805 */ 1806 static void 1807 lf_split(struct lockf *state, struct lockf_entry *lock1, 1808 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1809 { 1810 struct lockf_entry *splitlock; 1811 1812 #ifdef LOCKF_DEBUG 1813 if (lockf_debug & 2) { 1814 lf_print("lf_split", lock1); 1815 lf_print("splitting from", lock2); 1816 } 1817 #endif /* LOCKF_DEBUG */ 1818 /* 1819 * Check to see if we don't need to split at all. 1820 */ 1821 if (lock1->lf_start == lock2->lf_start) { 1822 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1823 return; 1824 } 1825 if (lock1->lf_end == lock2->lf_end) { 1826 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1827 return; 1828 } 1829 /* 1830 * Make a new lock consisting of the last part of 1831 * the encompassing lock. 1832 */ 1833 splitlock = lf_alloc_lock(lock1->lf_owner); 1834 memcpy(splitlock, lock1, sizeof *splitlock); 1835 splitlock->lf_refs = 1; 1836 if (splitlock->lf_flags & F_REMOTE) 1837 vref(splitlock->lf_vnode); 1838 1839 /* 1840 * This cannot cause a deadlock since any edges we would add 1841 * to splitlock already exist in lock1. We must be sure to add 1842 * necessary dependancies to splitlock before we reduce lock1 1843 * otherwise we may accidentally grant a pending lock that 1844 * was blocked by the tail end of lock1. 1845 */ 1846 splitlock->lf_start = lock2->lf_end + 1; 1847 LIST_INIT(&splitlock->lf_outedges); 1848 LIST_INIT(&splitlock->lf_inedges); 1849 sx_xlock(&lf_owner_graph_lock); 1850 lf_add_incoming(state, splitlock); 1851 sx_xunlock(&lf_owner_graph_lock); 1852 1853 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1854 1855 /* 1856 * OK, now link it in 1857 */ 1858 lf_insert_lock(state, splitlock); 1859 } 1860 1861 struct lockdesc { 1862 STAILQ_ENTRY(lockdesc) link; 1863 struct vnode *vp; 1864 struct flock fl; 1865 }; 1866 STAILQ_HEAD(lockdesclist, lockdesc); 1867 1868 int 1869 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1870 { 1871 struct lockf *ls; 1872 struct lockf_entry *lf; 1873 struct lockdesc *ldesc; 1874 struct lockdesclist locks; 1875 int error; 1876 1877 /* 1878 * In order to keep the locking simple, we iterate over the 1879 * active lock lists to build a list of locks that need 1880 * releasing. We then call the iterator for each one in turn. 1881 * 1882 * We take an extra reference to the vnode for the duration to 1883 * make sure it doesn't go away before we are finished. 1884 */ 1885 STAILQ_INIT(&locks); 1886 sx_xlock(&lf_lock_states_lock); 1887 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1888 sx_xlock(&ls->ls_lock); 1889 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1890 if (lf->lf_owner->lo_sysid != sysid) 1891 continue; 1892 1893 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1894 M_WAITOK); 1895 ldesc->vp = lf->lf_vnode; 1896 vref(ldesc->vp); 1897 ldesc->fl.l_start = lf->lf_start; 1898 if (lf->lf_end == OFF_MAX) 1899 ldesc->fl.l_len = 0; 1900 else 1901 ldesc->fl.l_len = 1902 lf->lf_end - lf->lf_start + 1; 1903 ldesc->fl.l_whence = SEEK_SET; 1904 ldesc->fl.l_type = F_UNLCK; 1905 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1906 ldesc->fl.l_sysid = sysid; 1907 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1908 } 1909 sx_xunlock(&ls->ls_lock); 1910 } 1911 sx_xunlock(&lf_lock_states_lock); 1912 1913 /* 1914 * Call the iterator function for each lock in turn. If the 1915 * iterator returns an error code, just free the rest of the 1916 * lockdesc structures. 1917 */ 1918 error = 0; 1919 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1920 STAILQ_REMOVE_HEAD(&locks, link); 1921 if (!error) 1922 error = fn(ldesc->vp, &ldesc->fl, arg); 1923 vrele(ldesc->vp); 1924 free(ldesc, M_LOCKF); 1925 } 1926 1927 return (error); 1928 } 1929 1930 int 1931 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1932 { 1933 struct lockf *ls; 1934 struct lockf_entry *lf; 1935 struct lockdesc *ldesc; 1936 struct lockdesclist locks; 1937 int error; 1938 1939 /* 1940 * In order to keep the locking simple, we iterate over the 1941 * active lock lists to build a list of locks that need 1942 * releasing. We then call the iterator for each one in turn. 1943 * 1944 * We take an extra reference to the vnode for the duration to 1945 * make sure it doesn't go away before we are finished. 1946 */ 1947 STAILQ_INIT(&locks); 1948 VI_LOCK(vp); 1949 ls = vp->v_lockf; 1950 if (!ls) { 1951 VI_UNLOCK(vp); 1952 return (0); 1953 } 1954 ls->ls_threads++; 1955 VI_UNLOCK(vp); 1956 1957 sx_xlock(&ls->ls_lock); 1958 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1959 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1960 M_WAITOK); 1961 ldesc->vp = lf->lf_vnode; 1962 vref(ldesc->vp); 1963 ldesc->fl.l_start = lf->lf_start; 1964 if (lf->lf_end == OFF_MAX) 1965 ldesc->fl.l_len = 0; 1966 else 1967 ldesc->fl.l_len = 1968 lf->lf_end - lf->lf_start + 1; 1969 ldesc->fl.l_whence = SEEK_SET; 1970 ldesc->fl.l_type = F_UNLCK; 1971 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1972 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1973 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1974 } 1975 sx_xunlock(&ls->ls_lock); 1976 VI_LOCK(vp); 1977 ls->ls_threads--; 1978 wakeup(ls); 1979 VI_UNLOCK(vp); 1980 1981 /* 1982 * Call the iterator function for each lock in turn. If the 1983 * iterator returns an error code, just free the rest of the 1984 * lockdesc structures. 1985 */ 1986 error = 0; 1987 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1988 STAILQ_REMOVE_HEAD(&locks, link); 1989 if (!error) 1990 error = fn(ldesc->vp, &ldesc->fl, arg); 1991 vrele(ldesc->vp); 1992 free(ldesc, M_LOCKF); 1993 } 1994 1995 return (error); 1996 } 1997 1998 static int 1999 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 2000 { 2001 2002 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 2003 return (0); 2004 } 2005 2006 void 2007 lf_clearremotesys(int sysid) 2008 { 2009 2010 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2011 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2012 } 2013 2014 int 2015 lf_countlocks(int sysid) 2016 { 2017 int i; 2018 struct lock_owner *lo; 2019 int count; 2020 2021 count = 0; 2022 sx_xlock(&lf_lock_owners_lock); 2023 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) 2024 LIST_FOREACH(lo, &lf_lock_owners[i], lo_link) 2025 if (lo->lo_sysid == sysid) 2026 count += lo->lo_refs; 2027 sx_xunlock(&lf_lock_owners_lock); 2028 2029 return (count); 2030 } 2031 2032 #ifdef LOCKF_DEBUG 2033 2034 /* 2035 * Return non-zero if y is reachable from x using a brute force 2036 * search. If reachable and path is non-null, return the route taken 2037 * in path. 2038 */ 2039 static int 2040 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2041 struct owner_vertex_list *path) 2042 { 2043 struct owner_edge *e; 2044 2045 if (x == y) { 2046 if (path) 2047 TAILQ_INSERT_HEAD(path, x, v_link); 2048 return 1; 2049 } 2050 2051 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2052 if (graph_reaches(e->e_to, y, path)) { 2053 if (path) 2054 TAILQ_INSERT_HEAD(path, x, v_link); 2055 return 1; 2056 } 2057 } 2058 return 0; 2059 } 2060 2061 /* 2062 * Perform consistency checks on the graph. Make sure the values of 2063 * v_order are correct. If checkorder is non-zero, check no vertex can 2064 * reach any other vertex with a smaller order. 2065 */ 2066 static void 2067 graph_check(struct owner_graph *g, int checkorder) 2068 { 2069 int i, j; 2070 2071 for (i = 0; i < g->g_size; i++) { 2072 if (!g->g_vertices[i]->v_owner) 2073 continue; 2074 KASSERT(g->g_vertices[i]->v_order == i, 2075 ("lock graph vertices disordered")); 2076 if (checkorder) { 2077 for (j = 0; j < i; j++) { 2078 if (!g->g_vertices[j]->v_owner) 2079 continue; 2080 KASSERT(!graph_reaches(g->g_vertices[i], 2081 g->g_vertices[j], NULL), 2082 ("lock graph vertices disordered")); 2083 } 2084 } 2085 } 2086 } 2087 2088 static void 2089 graph_print_vertices(struct owner_vertex_list *set) 2090 { 2091 struct owner_vertex *v; 2092 2093 printf("{ "); 2094 TAILQ_FOREACH(v, set, v_link) { 2095 printf("%d:", v->v_order); 2096 lf_print_owner(v->v_owner); 2097 if (TAILQ_NEXT(v, v_link)) 2098 printf(", "); 2099 } 2100 printf(" }\n"); 2101 } 2102 2103 #endif 2104 2105 /* 2106 * Calculate the sub-set of vertices v from the affected region [y..x] 2107 * where v is reachable from y. Return -1 if a loop was detected 2108 * (i.e. x is reachable from y, otherwise the number of vertices in 2109 * this subset. 2110 */ 2111 static int 2112 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2113 struct owner_vertex *y, struct owner_vertex_list *delta) 2114 { 2115 uint32_t gen; 2116 struct owner_vertex *v; 2117 struct owner_edge *e; 2118 int n; 2119 2120 /* 2121 * We start with a set containing just y. Then for each vertex 2122 * v in the set so far unprocessed, we add each vertex that v 2123 * has an out-edge to and that is within the affected region 2124 * [y..x]. If we see the vertex x on our travels, stop 2125 * immediately. 2126 */ 2127 TAILQ_INIT(delta); 2128 TAILQ_INSERT_TAIL(delta, y, v_link); 2129 v = y; 2130 n = 1; 2131 gen = g->g_gen; 2132 while (v) { 2133 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2134 if (e->e_to == x) 2135 return -1; 2136 if (e->e_to->v_order < x->v_order 2137 && e->e_to->v_gen != gen) { 2138 e->e_to->v_gen = gen; 2139 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2140 n++; 2141 } 2142 } 2143 v = TAILQ_NEXT(v, v_link); 2144 } 2145 2146 return (n); 2147 } 2148 2149 /* 2150 * Calculate the sub-set of vertices v from the affected region [y..x] 2151 * where v reaches x. Return the number of vertices in this subset. 2152 */ 2153 static int 2154 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2155 struct owner_vertex *y, struct owner_vertex_list *delta) 2156 { 2157 uint32_t gen; 2158 struct owner_vertex *v; 2159 struct owner_edge *e; 2160 int n; 2161 2162 /* 2163 * We start with a set containing just x. Then for each vertex 2164 * v in the set so far unprocessed, we add each vertex that v 2165 * has an in-edge from and that is within the affected region 2166 * [y..x]. 2167 */ 2168 TAILQ_INIT(delta); 2169 TAILQ_INSERT_TAIL(delta, x, v_link); 2170 v = x; 2171 n = 1; 2172 gen = g->g_gen; 2173 while (v) { 2174 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2175 if (e->e_from->v_order > y->v_order 2176 && e->e_from->v_gen != gen) { 2177 e->e_from->v_gen = gen; 2178 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2179 n++; 2180 } 2181 } 2182 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2183 } 2184 2185 return (n); 2186 } 2187 2188 static int 2189 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2190 { 2191 struct owner_vertex *v; 2192 int i, j; 2193 2194 TAILQ_FOREACH(v, set, v_link) { 2195 for (i = n; 2196 i > 0 && indices[i - 1] > v->v_order; i--) 2197 ; 2198 for (j = n - 1; j >= i; j--) 2199 indices[j + 1] = indices[j]; 2200 indices[i] = v->v_order; 2201 n++; 2202 } 2203 2204 return (n); 2205 } 2206 2207 static int 2208 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2209 struct owner_vertex_list *set) 2210 { 2211 struct owner_vertex *v, *vlowest; 2212 2213 while (!TAILQ_EMPTY(set)) { 2214 vlowest = NULL; 2215 TAILQ_FOREACH(v, set, v_link) { 2216 if (!vlowest || v->v_order < vlowest->v_order) 2217 vlowest = v; 2218 } 2219 TAILQ_REMOVE(set, vlowest, v_link); 2220 vlowest->v_order = indices[nextunused]; 2221 g->g_vertices[vlowest->v_order] = vlowest; 2222 nextunused++; 2223 } 2224 2225 return (nextunused); 2226 } 2227 2228 static int 2229 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2230 struct owner_vertex *y) 2231 { 2232 struct owner_edge *e; 2233 struct owner_vertex_list deltaF, deltaB; 2234 int nF, nB, n, vi, i; 2235 int *indices; 2236 2237 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2238 2239 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2240 if (e->e_to == y) { 2241 e->e_refs++; 2242 return (0); 2243 } 2244 } 2245 2246 #ifdef LOCKF_DEBUG 2247 if (lockf_debug & 8) { 2248 printf("adding edge %d:", x->v_order); 2249 lf_print_owner(x->v_owner); 2250 printf(" -> %d:", y->v_order); 2251 lf_print_owner(y->v_owner); 2252 printf("\n"); 2253 } 2254 #endif 2255 if (y->v_order < x->v_order) { 2256 /* 2257 * The new edge violates the order. First find the set 2258 * of affected vertices reachable from y (deltaF) and 2259 * the set of affect vertices affected that reach x 2260 * (deltaB), using the graph generation number to 2261 * detect whether we have visited a given vertex 2262 * already. We re-order the graph so that each vertex 2263 * in deltaB appears before each vertex in deltaF. 2264 * 2265 * If x is a member of deltaF, then the new edge would 2266 * create a cycle. Otherwise, we may assume that 2267 * deltaF and deltaB are disjoint. 2268 */ 2269 g->g_gen++; 2270 if (g->g_gen == 0) { 2271 /* 2272 * Generation wrap. 2273 */ 2274 for (vi = 0; vi < g->g_size; vi++) { 2275 g->g_vertices[vi]->v_gen = 0; 2276 } 2277 g->g_gen++; 2278 } 2279 nF = graph_delta_forward(g, x, y, &deltaF); 2280 if (nF < 0) { 2281 #ifdef LOCKF_DEBUG 2282 if (lockf_debug & 8) { 2283 struct owner_vertex_list path; 2284 printf("deadlock: "); 2285 TAILQ_INIT(&path); 2286 graph_reaches(y, x, &path); 2287 graph_print_vertices(&path); 2288 } 2289 #endif 2290 return (EDEADLK); 2291 } 2292 2293 #ifdef LOCKF_DEBUG 2294 if (lockf_debug & 8) { 2295 printf("re-ordering graph vertices\n"); 2296 printf("deltaF = "); 2297 graph_print_vertices(&deltaF); 2298 } 2299 #endif 2300 2301 nB = graph_delta_backward(g, x, y, &deltaB); 2302 2303 #ifdef LOCKF_DEBUG 2304 if (lockf_debug & 8) { 2305 printf("deltaB = "); 2306 graph_print_vertices(&deltaB); 2307 } 2308 #endif 2309 2310 /* 2311 * We first build a set of vertex indices (vertex 2312 * order values) that we may use, then we re-assign 2313 * orders first to those vertices in deltaB, then to 2314 * deltaF. Note that the contents of deltaF and deltaB 2315 * may be partially disordered - we perform an 2316 * insertion sort while building our index set. 2317 */ 2318 indices = g->g_indexbuf; 2319 n = graph_add_indices(indices, 0, &deltaF); 2320 graph_add_indices(indices, n, &deltaB); 2321 2322 /* 2323 * We must also be sure to maintain the relative 2324 * ordering of deltaF and deltaB when re-assigning 2325 * vertices. We do this by iteratively removing the 2326 * lowest ordered element from the set and assigning 2327 * it the next value from our new ordering. 2328 */ 2329 i = graph_assign_indices(g, indices, 0, &deltaB); 2330 graph_assign_indices(g, indices, i, &deltaF); 2331 2332 #ifdef LOCKF_DEBUG 2333 if (lockf_debug & 8) { 2334 struct owner_vertex_list set; 2335 TAILQ_INIT(&set); 2336 for (i = 0; i < nB + nF; i++) 2337 TAILQ_INSERT_TAIL(&set, 2338 g->g_vertices[indices[i]], v_link); 2339 printf("new ordering = "); 2340 graph_print_vertices(&set); 2341 } 2342 #endif 2343 } 2344 2345 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2346 2347 #ifdef LOCKF_DEBUG 2348 if (lockf_debug & 8) { 2349 graph_check(g, TRUE); 2350 } 2351 #endif 2352 2353 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2354 2355 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2356 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2357 e->e_refs = 1; 2358 e->e_from = x; 2359 e->e_to = y; 2360 2361 return (0); 2362 } 2363 2364 /* 2365 * Remove an edge x->y from the graph. 2366 */ 2367 static void 2368 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2369 struct owner_vertex *y) 2370 { 2371 struct owner_edge *e; 2372 2373 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2374 2375 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2376 if (e->e_to == y) 2377 break; 2378 } 2379 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2380 2381 e->e_refs--; 2382 if (e->e_refs == 0) { 2383 #ifdef LOCKF_DEBUG 2384 if (lockf_debug & 8) { 2385 printf("removing edge %d:", x->v_order); 2386 lf_print_owner(x->v_owner); 2387 printf(" -> %d:", y->v_order); 2388 lf_print_owner(y->v_owner); 2389 printf("\n"); 2390 } 2391 #endif 2392 LIST_REMOVE(e, e_outlink); 2393 LIST_REMOVE(e, e_inlink); 2394 free(e, M_LOCKF); 2395 } 2396 } 2397 2398 /* 2399 * Allocate a vertex from the free list. Return ENOMEM if there are 2400 * none. 2401 */ 2402 static struct owner_vertex * 2403 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2404 { 2405 struct owner_vertex *v; 2406 2407 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2408 2409 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2410 if (g->g_size == g->g_space) { 2411 g->g_vertices = realloc(g->g_vertices, 2412 2 * g->g_space * sizeof(struct owner_vertex *), 2413 M_LOCKF, M_WAITOK); 2414 free(g->g_indexbuf, M_LOCKF); 2415 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2416 M_LOCKF, M_WAITOK); 2417 g->g_space = 2 * g->g_space; 2418 } 2419 v->v_order = g->g_size; 2420 v->v_gen = g->g_gen; 2421 g->g_vertices[g->g_size] = v; 2422 g->g_size++; 2423 2424 LIST_INIT(&v->v_outedges); 2425 LIST_INIT(&v->v_inedges); 2426 v->v_owner = lo; 2427 2428 return (v); 2429 } 2430 2431 static void 2432 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2433 { 2434 struct owner_vertex *w; 2435 int i; 2436 2437 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2438 2439 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2440 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2441 2442 /* 2443 * Remove from the graph's array and close up the gap, 2444 * renumbering the other vertices. 2445 */ 2446 for (i = v->v_order + 1; i < g->g_size; i++) { 2447 w = g->g_vertices[i]; 2448 w->v_order--; 2449 g->g_vertices[i - 1] = w; 2450 } 2451 g->g_size--; 2452 2453 free(v, M_LOCKF); 2454 } 2455 2456 static struct owner_graph * 2457 graph_init(struct owner_graph *g) 2458 { 2459 2460 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2461 M_LOCKF, M_WAITOK); 2462 g->g_size = 0; 2463 g->g_space = 10; 2464 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2465 g->g_gen = 0; 2466 2467 return (g); 2468 } 2469 2470 #ifdef LOCKF_DEBUG 2471 /* 2472 * Print description of a lock owner 2473 */ 2474 static void 2475 lf_print_owner(struct lock_owner *lo) 2476 { 2477 2478 if (lo->lo_flags & F_REMOTE) { 2479 printf("remote pid %d, system %d", 2480 lo->lo_pid, lo->lo_sysid); 2481 } else if (lo->lo_flags & F_FLOCK) { 2482 printf("file %p", lo->lo_id); 2483 } else { 2484 printf("local pid %d", lo->lo_pid); 2485 } 2486 } 2487 2488 /* 2489 * Print out a lock. 2490 */ 2491 static void 2492 lf_print(char *tag, struct lockf_entry *lock) 2493 { 2494 2495 printf("%s: lock %p for ", tag, (void *)lock); 2496 lf_print_owner(lock->lf_owner); 2497 if (lock->lf_inode != (struct inode *)0) 2498 printf(" in ino %ju on dev <%s>,", 2499 (uintmax_t)lock->lf_inode->i_number, 2500 devtoname(lock->lf_inode->i_dev)); 2501 printf(" %s, start %jd, end ", 2502 lock->lf_type == F_RDLCK ? "shared" : 2503 lock->lf_type == F_WRLCK ? "exclusive" : 2504 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2505 (intmax_t)lock->lf_start); 2506 if (lock->lf_end == OFF_MAX) 2507 printf("EOF"); 2508 else 2509 printf("%jd", (intmax_t)lock->lf_end); 2510 if (!LIST_EMPTY(&lock->lf_outedges)) 2511 printf(" block %p\n", 2512 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2513 else 2514 printf("\n"); 2515 } 2516 2517 static void 2518 lf_printlist(char *tag, struct lockf_entry *lock) 2519 { 2520 struct lockf_entry *lf, *blk; 2521 struct lockf_edge *e; 2522 2523 if (lock->lf_inode == (struct inode *)0) 2524 return; 2525 2526 printf("%s: Lock list for ino %ju on dev <%s>:\n", 2527 tag, (uintmax_t)lock->lf_inode->i_number, 2528 devtoname(lock->lf_inode->i_dev)); 2529 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2530 printf("\tlock %p for ",(void *)lf); 2531 lf_print_owner(lock->lf_owner); 2532 printf(", %s, start %jd, end %jd", 2533 lf->lf_type == F_RDLCK ? "shared" : 2534 lf->lf_type == F_WRLCK ? "exclusive" : 2535 lf->lf_type == F_UNLCK ? "unlock" : 2536 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2537 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2538 blk = e->le_to; 2539 printf("\n\t\tlock request %p for ", (void *)blk); 2540 lf_print_owner(blk->lf_owner); 2541 printf(", %s, start %jd, end %jd", 2542 blk->lf_type == F_RDLCK ? "shared" : 2543 blk->lf_type == F_WRLCK ? "exclusive" : 2544 blk->lf_type == F_UNLCK ? "unlock" : 2545 "unknown", (intmax_t)blk->lf_start, 2546 (intmax_t)blk->lf_end); 2547 if (!LIST_EMPTY(&blk->lf_inedges)) 2548 panic("lf_printlist: bad list"); 2549 } 2550 printf("\n"); 2551 } 2552 } 2553 #endif /* LOCKF_DEBUG */ 2554