1 /*- 2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 3 * Authors: Doug Rabson <dfr@rabson.org> 4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 /*- 28 * Copyright (c) 1982, 1986, 1989, 1993 29 * The Regents of the University of California. All rights reserved. 30 * 31 * This code is derived from software contributed to Berkeley by 32 * Scooter Morris at Genentech Inc. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 4. Neither the name of the University nor the names of its contributors 43 * may be used to endorse or promote products derived from this software 44 * without specific prior written permission. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_debug_lockf.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/hash.h> 69 #include <sys/kernel.h> 70 #include <sys/limits.h> 71 #include <sys/lock.h> 72 #include <sys/mount.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/sx.h> 76 #include <sys/unistd.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/fcntl.h> 80 #include <sys/lockf.h> 81 #include <sys/taskqueue.h> 82 83 #ifdef LOCKF_DEBUG 84 #include <sys/sysctl.h> 85 86 #include <ufs/ufs/quota.h> 87 #include <ufs/ufs/inode.h> 88 89 static int lockf_debug = 0; /* control debug output */ 90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, ""); 91 #endif 92 93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures"); 94 95 struct owner_edge; 96 struct owner_vertex; 97 struct owner_vertex_list; 98 struct owner_graph; 99 100 #define NOLOCKF (struct lockf_entry *)0 101 #define SELF 0x1 102 #define OTHERS 0x2 103 static void lf_init(void *); 104 static int lf_hash_owner(caddr_t, struct flock *, int); 105 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, 106 int); 107 static struct lockf_entry * 108 lf_alloc_lock(struct lock_owner *); 109 static int lf_free_lock(struct lockf_entry *); 110 static int lf_clearlock(struct lockf *, struct lockf_entry *); 111 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *); 112 static int lf_blocks(struct lockf_entry *, struct lockf_entry *); 113 static void lf_free_edge(struct lockf_edge *); 114 static struct lockf_edge * 115 lf_alloc_edge(void); 116 static void lf_alloc_vertex(struct lockf_entry *); 117 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *); 118 static void lf_remove_edge(struct lockf_edge *); 119 static void lf_remove_outgoing(struct lockf_entry *); 120 static void lf_remove_incoming(struct lockf_entry *); 121 static int lf_add_outgoing(struct lockf *, struct lockf_entry *); 122 static int lf_add_incoming(struct lockf *, struct lockf_entry *); 123 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, 124 int); 125 static struct lockf_entry * 126 lf_getblock(struct lockf *, struct lockf_entry *); 127 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *); 128 static void lf_insert_lock(struct lockf *, struct lockf_entry *); 129 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *); 130 static void lf_update_dependancies(struct lockf *, struct lockf_entry *, 131 int all, struct lockf_entry_list *); 132 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, 133 struct lockf_entry_list*); 134 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, 135 struct lockf_entry_list*); 136 static int lf_setlock(struct lockf *, struct lockf_entry *, 137 struct vnode *, void **cookiep); 138 static int lf_cancel(struct lockf *, struct lockf_entry *, void *); 139 static void lf_split(struct lockf *, struct lockf_entry *, 140 struct lockf_entry *, struct lockf_entry_list *); 141 #ifdef LOCKF_DEBUG 142 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 143 struct owner_vertex_list *path); 144 static void graph_check(struct owner_graph *g, int checkorder); 145 static void graph_print_vertices(struct owner_vertex_list *set); 146 #endif 147 static int graph_delta_forward(struct owner_graph *g, 148 struct owner_vertex *x, struct owner_vertex *y, 149 struct owner_vertex_list *delta); 150 static int graph_delta_backward(struct owner_graph *g, 151 struct owner_vertex *x, struct owner_vertex *y, 152 struct owner_vertex_list *delta); 153 static int graph_add_indices(int *indices, int n, 154 struct owner_vertex_list *set); 155 static int graph_assign_indices(struct owner_graph *g, int *indices, 156 int nextunused, struct owner_vertex_list *set); 157 static int graph_add_edge(struct owner_graph *g, 158 struct owner_vertex *x, struct owner_vertex *y); 159 static void graph_remove_edge(struct owner_graph *g, 160 struct owner_vertex *x, struct owner_vertex *y); 161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g, 162 struct lock_owner *lo); 163 static void graph_free_vertex(struct owner_graph *g, 164 struct owner_vertex *v); 165 static struct owner_graph * graph_init(struct owner_graph *g); 166 #ifdef LOCKF_DEBUG 167 static void lf_print(char *, struct lockf_entry *); 168 static void lf_printlist(char *, struct lockf_entry *); 169 static void lf_print_owner(struct lock_owner *); 170 #endif 171 172 /* 173 * This structure is used to keep track of both local and remote lock 174 * owners. The lf_owner field of the struct lockf_entry points back at 175 * the lock owner structure. Each possible lock owner (local proc for 176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid> 177 * pair for remote locks) is represented by a unique instance of 178 * struct lock_owner. 179 * 180 * If a lock owner has a lock that blocks some other lock or a lock 181 * that is waiting for some other lock, it also has a vertex in the 182 * owner_graph below. 183 * 184 * Locks: 185 * (s) locked by state->ls_lock 186 * (S) locked by lf_lock_states_lock 187 * (l) locked by lf_lock_owners_lock 188 * (g) locked by lf_owner_graph_lock 189 * (c) const until freeing 190 */ 191 #define LOCK_OWNER_HASH_SIZE 256 192 193 struct lock_owner { 194 LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */ 195 int lo_refs; /* (l) Number of locks referring to this */ 196 int lo_flags; /* (c) Flags passwd to lf_advlock */ 197 caddr_t lo_id; /* (c) Id value passed to lf_advlock */ 198 pid_t lo_pid; /* (c) Process Id of the lock owner */ 199 int lo_sysid; /* (c) System Id of the lock owner */ 200 struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */ 201 }; 202 203 LIST_HEAD(lock_owner_list, lock_owner); 204 205 static struct sx lf_lock_states_lock; 206 static struct lockf_list lf_lock_states; /* (S) */ 207 static struct sx lf_lock_owners_lock; 208 static struct lock_owner_list lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */ 209 210 /* 211 * Structures for deadlock detection. 212 * 213 * We have two types of directed graph, the first is the set of locks, 214 * both active and pending on a vnode. Within this graph, active locks 215 * are terminal nodes in the graph (i.e. have no out-going 216 * edges). Pending locks have out-going edges to each blocking active 217 * lock that prevents the lock from being granted and also to each 218 * older pending lock that would block them if it was active. The 219 * graph for each vnode is naturally acyclic; new edges are only ever 220 * added to or from new nodes (either new pending locks which only add 221 * out-going edges or new active locks which only add in-coming edges) 222 * therefore they cannot create loops in the lock graph. 223 * 224 * The second graph is a global graph of lock owners. Each lock owner 225 * is a vertex in that graph and an edge is added to the graph 226 * whenever an edge is added to a vnode graph, with end points 227 * corresponding to owner of the new pending lock and the owner of the 228 * lock upon which it waits. In order to prevent deadlock, we only add 229 * an edge to this graph if the new edge would not create a cycle. 230 * 231 * The lock owner graph is topologically sorted, i.e. if a node has 232 * any outgoing edges, then it has an order strictly less than any 233 * node to which it has an outgoing edge. We preserve this ordering 234 * (and detect cycles) on edge insertion using Algorithm PK from the 235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic 236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article 237 * No. 1.7) 238 */ 239 struct owner_vertex; 240 241 struct owner_edge { 242 LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */ 243 LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */ 244 int e_refs; /* (g) number of times added */ 245 struct owner_vertex *e_from; /* (c) out-going from here */ 246 struct owner_vertex *e_to; /* (c) in-coming to here */ 247 }; 248 LIST_HEAD(owner_edge_list, owner_edge); 249 250 struct owner_vertex { 251 TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */ 252 uint32_t v_gen; /* (g) workspace for edge insertion */ 253 int v_order; /* (g) order of vertex in graph */ 254 struct owner_edge_list v_outedges;/* (g) list of out-edges */ 255 struct owner_edge_list v_inedges; /* (g) list of in-edges */ 256 struct lock_owner *v_owner; /* (c) corresponding lock owner */ 257 }; 258 TAILQ_HEAD(owner_vertex_list, owner_vertex); 259 260 struct owner_graph { 261 struct owner_vertex** g_vertices; /* (g) pointers to vertices */ 262 int g_size; /* (g) number of vertices */ 263 int g_space; /* (g) space allocated for vertices */ 264 int *g_indexbuf; /* (g) workspace for loop detection */ 265 uint32_t g_gen; /* (g) increment when re-ordering */ 266 }; 267 268 static struct sx lf_owner_graph_lock; 269 static struct owner_graph lf_owner_graph; 270 271 /* 272 * Initialise various structures and locks. 273 */ 274 static void 275 lf_init(void *dummy) 276 { 277 int i; 278 279 sx_init(&lf_lock_states_lock, "lock states lock"); 280 LIST_INIT(&lf_lock_states); 281 282 sx_init(&lf_lock_owners_lock, "lock owners lock"); 283 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) 284 LIST_INIT(&lf_lock_owners[i]); 285 286 sx_init(&lf_owner_graph_lock, "owner graph lock"); 287 graph_init(&lf_owner_graph); 288 } 289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL); 290 291 /* 292 * Generate a hash value for a lock owner. 293 */ 294 static int 295 lf_hash_owner(caddr_t id, struct flock *fl, int flags) 296 { 297 uint32_t h; 298 299 if (flags & F_REMOTE) { 300 h = HASHSTEP(0, fl->l_pid); 301 h = HASHSTEP(h, fl->l_sysid); 302 } else if (flags & F_FLOCK) { 303 h = ((uintptr_t) id) >> 7; 304 } else { 305 struct proc *p = (struct proc *) id; 306 h = HASHSTEP(0, p->p_pid); 307 h = HASHSTEP(h, 0); 308 } 309 310 return (h % LOCK_OWNER_HASH_SIZE); 311 } 312 313 /* 314 * Return true if a lock owner matches the details passed to 315 * lf_advlock. 316 */ 317 static int 318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl, 319 int flags) 320 { 321 if (flags & F_REMOTE) { 322 return lo->lo_pid == fl->l_pid 323 && lo->lo_sysid == fl->l_sysid; 324 } else { 325 return lo->lo_id == id; 326 } 327 } 328 329 static struct lockf_entry * 330 lf_alloc_lock(struct lock_owner *lo) 331 { 332 struct lockf_entry *lf; 333 334 lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO); 335 336 #ifdef LOCKF_DEBUG 337 if (lockf_debug & 4) 338 printf("Allocated lock %p\n", lf); 339 #endif 340 if (lo) { 341 sx_xlock(&lf_lock_owners_lock); 342 lo->lo_refs++; 343 sx_xunlock(&lf_lock_owners_lock); 344 lf->lf_owner = lo; 345 } 346 347 return (lf); 348 } 349 350 static int 351 lf_free_lock(struct lockf_entry *lock) 352 { 353 354 KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock)); 355 if (--lock->lf_refs > 0) 356 return (0); 357 /* 358 * Adjust the lock_owner reference count and 359 * reclaim the entry if this is the last lock 360 * for that owner. 361 */ 362 struct lock_owner *lo = lock->lf_owner; 363 if (lo) { 364 KASSERT(LIST_EMPTY(&lock->lf_outedges), 365 ("freeing lock with dependancies")); 366 KASSERT(LIST_EMPTY(&lock->lf_inedges), 367 ("freeing lock with dependants")); 368 sx_xlock(&lf_lock_owners_lock); 369 KASSERT(lo->lo_refs > 0, ("lock owner refcount")); 370 lo->lo_refs--; 371 if (lo->lo_refs == 0) { 372 #ifdef LOCKF_DEBUG 373 if (lockf_debug & 1) 374 printf("lf_free_lock: freeing lock owner %p\n", 375 lo); 376 #endif 377 if (lo->lo_vertex) { 378 sx_xlock(&lf_owner_graph_lock); 379 graph_free_vertex(&lf_owner_graph, 380 lo->lo_vertex); 381 sx_xunlock(&lf_owner_graph_lock); 382 } 383 LIST_REMOVE(lo, lo_link); 384 free(lo, M_LOCKF); 385 #ifdef LOCKF_DEBUG 386 if (lockf_debug & 4) 387 printf("Freed lock owner %p\n", lo); 388 #endif 389 } 390 sx_unlock(&lf_lock_owners_lock); 391 } 392 if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) { 393 vrele(lock->lf_vnode); 394 lock->lf_vnode = NULL; 395 } 396 #ifdef LOCKF_DEBUG 397 if (lockf_debug & 4) 398 printf("Freed lock %p\n", lock); 399 #endif 400 free(lock, M_LOCKF); 401 return (1); 402 } 403 404 /* 405 * Advisory record locking support 406 */ 407 int 408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, 409 u_quad_t size) 410 { 411 struct lockf *state, *freestate = NULL; 412 struct flock *fl = ap->a_fl; 413 struct lockf_entry *lock; 414 struct vnode *vp = ap->a_vp; 415 caddr_t id = ap->a_id; 416 int flags = ap->a_flags; 417 int hash; 418 struct lock_owner *lo; 419 off_t start, end, oadd; 420 int error; 421 422 /* 423 * Handle the F_UNLKSYS case first - no need to mess about 424 * creating a lock owner for this one. 425 */ 426 if (ap->a_op == F_UNLCKSYS) { 427 lf_clearremotesys(fl->l_sysid); 428 return (0); 429 } 430 431 /* 432 * Convert the flock structure into a start and end. 433 */ 434 switch (fl->l_whence) { 435 436 case SEEK_SET: 437 case SEEK_CUR: 438 /* 439 * Caller is responsible for adding any necessary offset 440 * when SEEK_CUR is used. 441 */ 442 start = fl->l_start; 443 break; 444 445 case SEEK_END: 446 if (size > OFF_MAX || 447 (fl->l_start > 0 && size > OFF_MAX - fl->l_start)) 448 return (EOVERFLOW); 449 start = size + fl->l_start; 450 break; 451 452 default: 453 return (EINVAL); 454 } 455 if (start < 0) 456 return (EINVAL); 457 if (fl->l_len < 0) { 458 if (start == 0) 459 return (EINVAL); 460 end = start - 1; 461 start += fl->l_len; 462 if (start < 0) 463 return (EINVAL); 464 } else if (fl->l_len == 0) { 465 end = OFF_MAX; 466 } else { 467 oadd = fl->l_len - 1; 468 if (oadd > OFF_MAX - start) 469 return (EOVERFLOW); 470 end = start + oadd; 471 } 472 473 retry_setlock: 474 475 /* 476 * Avoid the common case of unlocking when inode has no locks. 477 */ 478 VI_LOCK(vp); 479 if ((*statep) == NULL) { 480 if (ap->a_op != F_SETLK) { 481 fl->l_type = F_UNLCK; 482 VI_UNLOCK(vp); 483 return (0); 484 } 485 } 486 VI_UNLOCK(vp); 487 488 /* 489 * Map our arguments to an existing lock owner or create one 490 * if this is the first time we have seen this owner. 491 */ 492 hash = lf_hash_owner(id, fl, flags); 493 sx_xlock(&lf_lock_owners_lock); 494 LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link) 495 if (lf_owner_matches(lo, id, fl, flags)) 496 break; 497 if (!lo) { 498 /* 499 * We initialise the lock with a reference 500 * count which matches the new lockf_entry 501 * structure created below. 502 */ 503 lo = malloc(sizeof(struct lock_owner), M_LOCKF, 504 M_WAITOK|M_ZERO); 505 #ifdef LOCKF_DEBUG 506 if (lockf_debug & 4) 507 printf("Allocated lock owner %p\n", lo); 508 #endif 509 510 lo->lo_refs = 1; 511 lo->lo_flags = flags; 512 lo->lo_id = id; 513 if (flags & F_REMOTE) { 514 lo->lo_pid = fl->l_pid; 515 lo->lo_sysid = fl->l_sysid; 516 } else if (flags & F_FLOCK) { 517 lo->lo_pid = -1; 518 lo->lo_sysid = 0; 519 } else { 520 struct proc *p = (struct proc *) id; 521 lo->lo_pid = p->p_pid; 522 lo->lo_sysid = 0; 523 } 524 lo->lo_vertex = NULL; 525 526 #ifdef LOCKF_DEBUG 527 if (lockf_debug & 1) { 528 printf("lf_advlockasync: new lock owner %p ", lo); 529 lf_print_owner(lo); 530 printf("\n"); 531 } 532 #endif 533 534 LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link); 535 } else { 536 /* 537 * We have seen this lock owner before, increase its 538 * reference count to account for the new lockf_entry 539 * structure we create below. 540 */ 541 lo->lo_refs++; 542 } 543 sx_xunlock(&lf_lock_owners_lock); 544 545 /* 546 * Create the lockf structure. We initialise the lf_owner 547 * field here instead of in lf_alloc_lock() to avoid paying 548 * the lf_lock_owners_lock tax twice. 549 */ 550 lock = lf_alloc_lock(NULL); 551 lock->lf_refs = 1; 552 lock->lf_start = start; 553 lock->lf_end = end; 554 lock->lf_owner = lo; 555 lock->lf_vnode = vp; 556 if (flags & F_REMOTE) { 557 /* 558 * For remote locks, the caller may release its ref to 559 * the vnode at any time - we have to ref it here to 560 * prevent it from being recycled unexpectedly. 561 */ 562 vref(vp); 563 } 564 565 /* 566 * XXX The problem is that VTOI is ufs specific, so it will 567 * break LOCKF_DEBUG for all other FS's other than UFS because 568 * it casts the vnode->data ptr to struct inode *. 569 */ 570 /* lock->lf_inode = VTOI(ap->a_vp); */ 571 lock->lf_inode = (struct inode *)0; 572 lock->lf_type = fl->l_type; 573 LIST_INIT(&lock->lf_outedges); 574 LIST_INIT(&lock->lf_inedges); 575 lock->lf_async_task = ap->a_task; 576 lock->lf_flags = ap->a_flags; 577 578 /* 579 * Do the requested operation. First find our state structure 580 * and create a new one if necessary - the caller's *statep 581 * variable and the state's ls_threads count is protected by 582 * the vnode interlock. 583 */ 584 VI_LOCK(vp); 585 if (vp->v_iflag & VI_DOOMED) { 586 VI_UNLOCK(vp); 587 lf_free_lock(lock); 588 return (ENOENT); 589 } 590 591 /* 592 * Allocate a state structure if necessary. 593 */ 594 state = *statep; 595 if (state == NULL) { 596 struct lockf *ls; 597 598 VI_UNLOCK(vp); 599 600 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO); 601 sx_init(&ls->ls_lock, "ls_lock"); 602 LIST_INIT(&ls->ls_active); 603 LIST_INIT(&ls->ls_pending); 604 ls->ls_threads = 1; 605 606 sx_xlock(&lf_lock_states_lock); 607 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link); 608 sx_xunlock(&lf_lock_states_lock); 609 610 /* 611 * Cope if we lost a race with some other thread while 612 * trying to allocate memory. 613 */ 614 VI_LOCK(vp); 615 if (vp->v_iflag & VI_DOOMED) { 616 VI_UNLOCK(vp); 617 sx_xlock(&lf_lock_states_lock); 618 LIST_REMOVE(ls, ls_link); 619 sx_xunlock(&lf_lock_states_lock); 620 sx_destroy(&ls->ls_lock); 621 free(ls, M_LOCKF); 622 lf_free_lock(lock); 623 return (ENOENT); 624 } 625 if ((*statep) == NULL) { 626 state = *statep = ls; 627 VI_UNLOCK(vp); 628 } else { 629 state = *statep; 630 state->ls_threads++; 631 VI_UNLOCK(vp); 632 633 sx_xlock(&lf_lock_states_lock); 634 LIST_REMOVE(ls, ls_link); 635 sx_xunlock(&lf_lock_states_lock); 636 sx_destroy(&ls->ls_lock); 637 free(ls, M_LOCKF); 638 } 639 } else { 640 state->ls_threads++; 641 VI_UNLOCK(vp); 642 } 643 644 sx_xlock(&state->ls_lock); 645 /* 646 * Recheck the doomed vnode after state->ls_lock is 647 * locked. lf_purgelocks() requires that no new threads add 648 * pending locks when vnode is marked by VI_DOOMED flag. 649 */ 650 VI_LOCK(vp); 651 if (vp->v_iflag & VI_DOOMED) { 652 state->ls_threads--; 653 wakeup(state); 654 VI_UNLOCK(vp); 655 sx_xunlock(&state->ls_lock); 656 lf_free_lock(lock); 657 return (ENOENT); 658 } 659 VI_UNLOCK(vp); 660 661 switch (ap->a_op) { 662 case F_SETLK: 663 error = lf_setlock(state, lock, vp, ap->a_cookiep); 664 break; 665 666 case F_UNLCK: 667 error = lf_clearlock(state, lock); 668 lf_free_lock(lock); 669 break; 670 671 case F_GETLK: 672 error = lf_getlock(state, lock, fl); 673 lf_free_lock(lock); 674 break; 675 676 case F_CANCEL: 677 if (ap->a_cookiep) 678 error = lf_cancel(state, lock, *ap->a_cookiep); 679 else 680 error = EINVAL; 681 lf_free_lock(lock); 682 break; 683 684 default: 685 lf_free_lock(lock); 686 error = EINVAL; 687 break; 688 } 689 690 #ifdef INVARIANTS 691 /* 692 * Check for some can't happen stuff. In this case, the active 693 * lock list becoming disordered or containing mutually 694 * blocking locks. We also check the pending list for locks 695 * which should be active (i.e. have no out-going edges). 696 */ 697 LIST_FOREACH(lock, &state->ls_active, lf_link) { 698 struct lockf_entry *lf; 699 if (LIST_NEXT(lock, lf_link)) 700 KASSERT((lock->lf_start 701 <= LIST_NEXT(lock, lf_link)->lf_start), 702 ("locks disordered")); 703 LIST_FOREACH(lf, &state->ls_active, lf_link) { 704 if (lock == lf) 705 break; 706 KASSERT(!lf_blocks(lock, lf), 707 ("two conflicting active locks")); 708 if (lock->lf_owner == lf->lf_owner) 709 KASSERT(!lf_overlaps(lock, lf), 710 ("two overlapping locks from same owner")); 711 } 712 } 713 LIST_FOREACH(lock, &state->ls_pending, lf_link) { 714 KASSERT(!LIST_EMPTY(&lock->lf_outedges), 715 ("pending lock which should be active")); 716 } 717 #endif 718 sx_xunlock(&state->ls_lock); 719 720 /* 721 * If we have removed the last active lock on the vnode and 722 * this is the last thread that was in-progress, we can free 723 * the state structure. We update the caller's pointer inside 724 * the vnode interlock but call free outside. 725 * 726 * XXX alternatively, keep the state structure around until 727 * the filesystem recycles - requires a callback from the 728 * filesystem. 729 */ 730 VI_LOCK(vp); 731 732 state->ls_threads--; 733 wakeup(state); 734 if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) { 735 KASSERT(LIST_EMPTY(&state->ls_pending), 736 ("freeing state with pending locks")); 737 freestate = state; 738 *statep = NULL; 739 } 740 741 VI_UNLOCK(vp); 742 743 if (freestate != NULL) { 744 sx_xlock(&lf_lock_states_lock); 745 LIST_REMOVE(freestate, ls_link); 746 sx_xunlock(&lf_lock_states_lock); 747 sx_destroy(&freestate->ls_lock); 748 free(freestate, M_LOCKF); 749 freestate = NULL; 750 } 751 752 if (error == EDOOFUS) { 753 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS")); 754 goto retry_setlock; 755 } 756 return (error); 757 } 758 759 int 760 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size) 761 { 762 struct vop_advlockasync_args a; 763 764 a.a_vp = ap->a_vp; 765 a.a_id = ap->a_id; 766 a.a_op = ap->a_op; 767 a.a_fl = ap->a_fl; 768 a.a_flags = ap->a_flags; 769 a.a_task = NULL; 770 a.a_cookiep = NULL; 771 772 return (lf_advlockasync(&a, statep, size)); 773 } 774 775 void 776 lf_purgelocks(struct vnode *vp, struct lockf **statep) 777 { 778 struct lockf *state; 779 struct lockf_entry *lock, *nlock; 780 781 /* 782 * For this to work correctly, the caller must ensure that no 783 * other threads enter the locking system for this vnode, 784 * e.g. by checking VI_DOOMED. We wake up any threads that are 785 * sleeping waiting for locks on this vnode and then free all 786 * the remaining locks. 787 */ 788 VI_LOCK(vp); 789 KASSERT(vp->v_iflag & VI_DOOMED, 790 ("lf_purgelocks: vp %p has not vgone yet", vp)); 791 state = *statep; 792 if (state) { 793 *statep = NULL; 794 state->ls_threads++; 795 VI_UNLOCK(vp); 796 797 sx_xlock(&state->ls_lock); 798 sx_xlock(&lf_owner_graph_lock); 799 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) { 800 LIST_REMOVE(lock, lf_link); 801 lf_remove_outgoing(lock); 802 lf_remove_incoming(lock); 803 804 /* 805 * If its an async lock, we can just free it 806 * here, otherwise we let the sleeping thread 807 * free it. 808 */ 809 if (lock->lf_async_task) { 810 lf_free_lock(lock); 811 } else { 812 lock->lf_flags |= F_INTR; 813 wakeup(lock); 814 } 815 } 816 sx_xunlock(&lf_owner_graph_lock); 817 sx_xunlock(&state->ls_lock); 818 819 /* 820 * Wait for all other threads, sleeping and otherwise 821 * to leave. 822 */ 823 VI_LOCK(vp); 824 while (state->ls_threads > 1) 825 msleep(state, VI_MTX(vp), 0, "purgelocks", 0); 826 VI_UNLOCK(vp); 827 828 /* 829 * We can just free all the active locks since they 830 * will have no dependancies (we removed them all 831 * above). We don't need to bother locking since we 832 * are the last thread using this state structure. 833 */ 834 KASSERT(LIST_EMPTY(&state->ls_pending), 835 ("lock pending for %p", state)); 836 LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) { 837 LIST_REMOVE(lock, lf_link); 838 lf_free_lock(lock); 839 } 840 sx_xlock(&lf_lock_states_lock); 841 LIST_REMOVE(state, ls_link); 842 sx_xunlock(&lf_lock_states_lock); 843 sx_destroy(&state->ls_lock); 844 free(state, M_LOCKF); 845 } else { 846 VI_UNLOCK(vp); 847 } 848 } 849 850 /* 851 * Return non-zero if locks 'x' and 'y' overlap. 852 */ 853 static int 854 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y) 855 { 856 857 return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start); 858 } 859 860 /* 861 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa). 862 */ 863 static int 864 lf_blocks(struct lockf_entry *x, struct lockf_entry *y) 865 { 866 867 return x->lf_owner != y->lf_owner 868 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK) 869 && lf_overlaps(x, y); 870 } 871 872 /* 873 * Allocate a lock edge from the free list 874 */ 875 static struct lockf_edge * 876 lf_alloc_edge(void) 877 { 878 879 return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO)); 880 } 881 882 /* 883 * Free a lock edge. 884 */ 885 static void 886 lf_free_edge(struct lockf_edge *e) 887 { 888 889 free(e, M_LOCKF); 890 } 891 892 893 /* 894 * Ensure that the lock's owner has a corresponding vertex in the 895 * owner graph. 896 */ 897 static void 898 lf_alloc_vertex(struct lockf_entry *lock) 899 { 900 struct owner_graph *g = &lf_owner_graph; 901 902 if (!lock->lf_owner->lo_vertex) 903 lock->lf_owner->lo_vertex = 904 graph_alloc_vertex(g, lock->lf_owner); 905 } 906 907 /* 908 * Attempt to record an edge from lock x to lock y. Return EDEADLK if 909 * the new edge would cause a cycle in the owner graph. 910 */ 911 static int 912 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y) 913 { 914 struct owner_graph *g = &lf_owner_graph; 915 struct lockf_edge *e; 916 int error; 917 918 #ifdef INVARIANTS 919 LIST_FOREACH(e, &x->lf_outedges, le_outlink) 920 KASSERT(e->le_to != y, ("adding lock edge twice")); 921 #endif 922 923 /* 924 * Make sure the two owners have entries in the owner graph. 925 */ 926 lf_alloc_vertex(x); 927 lf_alloc_vertex(y); 928 929 error = graph_add_edge(g, x->lf_owner->lo_vertex, 930 y->lf_owner->lo_vertex); 931 if (error) 932 return (error); 933 934 e = lf_alloc_edge(); 935 LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink); 936 LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink); 937 e->le_from = x; 938 e->le_to = y; 939 940 return (0); 941 } 942 943 /* 944 * Remove an edge from the lock graph. 945 */ 946 static void 947 lf_remove_edge(struct lockf_edge *e) 948 { 949 struct owner_graph *g = &lf_owner_graph; 950 struct lockf_entry *x = e->le_from; 951 struct lockf_entry *y = e->le_to; 952 953 graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex); 954 LIST_REMOVE(e, le_outlink); 955 LIST_REMOVE(e, le_inlink); 956 e->le_from = NULL; 957 e->le_to = NULL; 958 lf_free_edge(e); 959 } 960 961 /* 962 * Remove all out-going edges from lock x. 963 */ 964 static void 965 lf_remove_outgoing(struct lockf_entry *x) 966 { 967 struct lockf_edge *e; 968 969 while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) { 970 lf_remove_edge(e); 971 } 972 } 973 974 /* 975 * Remove all in-coming edges from lock x. 976 */ 977 static void 978 lf_remove_incoming(struct lockf_entry *x) 979 { 980 struct lockf_edge *e; 981 982 while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) { 983 lf_remove_edge(e); 984 } 985 } 986 987 /* 988 * Walk the list of locks for the file and create an out-going edge 989 * from lock to each blocking lock. 990 */ 991 static int 992 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock) 993 { 994 struct lockf_entry *overlap; 995 int error; 996 997 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 998 /* 999 * We may assume that the active list is sorted by 1000 * lf_start. 1001 */ 1002 if (overlap->lf_start > lock->lf_end) 1003 break; 1004 if (!lf_blocks(lock, overlap)) 1005 continue; 1006 1007 /* 1008 * We've found a blocking lock. Add the corresponding 1009 * edge to the graphs and see if it would cause a 1010 * deadlock. 1011 */ 1012 error = lf_add_edge(lock, overlap); 1013 1014 /* 1015 * The only error that lf_add_edge returns is EDEADLK. 1016 * Remove any edges we added and return the error. 1017 */ 1018 if (error) { 1019 lf_remove_outgoing(lock); 1020 return (error); 1021 } 1022 } 1023 1024 /* 1025 * We also need to add edges to sleeping locks that block 1026 * us. This ensures that lf_wakeup_lock cannot grant two 1027 * mutually blocking locks simultaneously and also enforces a 1028 * 'first come, first served' fairness model. Note that this 1029 * only happens if we are blocked by at least one active lock 1030 * due to the call to lf_getblock in lf_setlock below. 1031 */ 1032 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1033 if (!lf_blocks(lock, overlap)) 1034 continue; 1035 /* 1036 * We've found a blocking lock. Add the corresponding 1037 * edge to the graphs and see if it would cause a 1038 * deadlock. 1039 */ 1040 error = lf_add_edge(lock, overlap); 1041 1042 /* 1043 * The only error that lf_add_edge returns is EDEADLK. 1044 * Remove any edges we added and return the error. 1045 */ 1046 if (error) { 1047 lf_remove_outgoing(lock); 1048 return (error); 1049 } 1050 } 1051 1052 return (0); 1053 } 1054 1055 /* 1056 * Walk the list of pending locks for the file and create an in-coming 1057 * edge from lock to each blocking lock. 1058 */ 1059 static int 1060 lf_add_incoming(struct lockf *state, struct lockf_entry *lock) 1061 { 1062 struct lockf_entry *overlap; 1063 int error; 1064 1065 LIST_FOREACH(overlap, &state->ls_pending, lf_link) { 1066 if (!lf_blocks(lock, overlap)) 1067 continue; 1068 1069 /* 1070 * We've found a blocking lock. Add the corresponding 1071 * edge to the graphs and see if it would cause a 1072 * deadlock. 1073 */ 1074 error = lf_add_edge(overlap, lock); 1075 1076 /* 1077 * The only error that lf_add_edge returns is EDEADLK. 1078 * Remove any edges we added and return the error. 1079 */ 1080 if (error) { 1081 lf_remove_incoming(lock); 1082 return (error); 1083 } 1084 } 1085 return (0); 1086 } 1087 1088 /* 1089 * Insert lock into the active list, keeping list entries ordered by 1090 * increasing values of lf_start. 1091 */ 1092 static void 1093 lf_insert_lock(struct lockf *state, struct lockf_entry *lock) 1094 { 1095 struct lockf_entry *lf, *lfprev; 1096 1097 if (LIST_EMPTY(&state->ls_active)) { 1098 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link); 1099 return; 1100 } 1101 1102 lfprev = NULL; 1103 LIST_FOREACH(lf, &state->ls_active, lf_link) { 1104 if (lf->lf_start > lock->lf_start) { 1105 LIST_INSERT_BEFORE(lf, lock, lf_link); 1106 return; 1107 } 1108 lfprev = lf; 1109 } 1110 LIST_INSERT_AFTER(lfprev, lock, lf_link); 1111 } 1112 1113 /* 1114 * Wake up a sleeping lock and remove it from the pending list now 1115 * that all its dependancies have been resolved. The caller should 1116 * arrange for the lock to be added to the active list, adjusting any 1117 * existing locks for the same owner as needed. 1118 */ 1119 static void 1120 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock) 1121 { 1122 1123 /* 1124 * Remove from ls_pending list and wake up the caller 1125 * or start the async notification, as appropriate. 1126 */ 1127 LIST_REMOVE(wakelock, lf_link); 1128 #ifdef LOCKF_DEBUG 1129 if (lockf_debug & 1) 1130 lf_print("lf_wakeup_lock: awakening", wakelock); 1131 #endif /* LOCKF_DEBUG */ 1132 if (wakelock->lf_async_task) { 1133 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task); 1134 } else { 1135 wakeup(wakelock); 1136 } 1137 } 1138 1139 /* 1140 * Re-check all dependant locks and remove edges to locks that we no 1141 * longer block. If 'all' is non-zero, the lock has been removed and 1142 * we must remove all the dependancies, otherwise it has simply been 1143 * reduced but remains active. Any pending locks which have been been 1144 * unblocked are added to 'granted' 1145 */ 1146 static void 1147 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all, 1148 struct lockf_entry_list *granted) 1149 { 1150 struct lockf_edge *e, *ne; 1151 struct lockf_entry *deplock; 1152 1153 LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) { 1154 deplock = e->le_from; 1155 if (all || !lf_blocks(lock, deplock)) { 1156 sx_xlock(&lf_owner_graph_lock); 1157 lf_remove_edge(e); 1158 sx_xunlock(&lf_owner_graph_lock); 1159 if (LIST_EMPTY(&deplock->lf_outedges)) { 1160 lf_wakeup_lock(state, deplock); 1161 LIST_INSERT_HEAD(granted, deplock, lf_link); 1162 } 1163 } 1164 } 1165 } 1166 1167 /* 1168 * Set the start of an existing active lock, updating dependancies and 1169 * adding any newly woken locks to 'granted'. 1170 */ 1171 static void 1172 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start, 1173 struct lockf_entry_list *granted) 1174 { 1175 1176 KASSERT(new_start >= lock->lf_start, ("can't increase lock")); 1177 lock->lf_start = new_start; 1178 LIST_REMOVE(lock, lf_link); 1179 lf_insert_lock(state, lock); 1180 lf_update_dependancies(state, lock, FALSE, granted); 1181 } 1182 1183 /* 1184 * Set the end of an existing active lock, updating dependancies and 1185 * adding any newly woken locks to 'granted'. 1186 */ 1187 static void 1188 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end, 1189 struct lockf_entry_list *granted) 1190 { 1191 1192 KASSERT(new_end <= lock->lf_end, ("can't increase lock")); 1193 lock->lf_end = new_end; 1194 lf_update_dependancies(state, lock, FALSE, granted); 1195 } 1196 1197 /* 1198 * Add a lock to the active list, updating or removing any current 1199 * locks owned by the same owner and processing any pending locks that 1200 * become unblocked as a result. This code is also used for unlock 1201 * since the logic for updating existing locks is identical. 1202 * 1203 * As a result of processing the new lock, we may unblock existing 1204 * pending locks as a result of downgrading/unlocking. We simply 1205 * activate the newly granted locks by looping. 1206 * 1207 * Since the new lock already has its dependancies set up, we always 1208 * add it to the list (unless its an unlock request). This may 1209 * fragment the lock list in some pathological cases but its probably 1210 * not a real problem. 1211 */ 1212 static void 1213 lf_activate_lock(struct lockf *state, struct lockf_entry *lock) 1214 { 1215 struct lockf_entry *overlap, *lf; 1216 struct lockf_entry_list granted; 1217 int ovcase; 1218 1219 LIST_INIT(&granted); 1220 LIST_INSERT_HEAD(&granted, lock, lf_link); 1221 1222 while (!LIST_EMPTY(&granted)) { 1223 lock = LIST_FIRST(&granted); 1224 LIST_REMOVE(lock, lf_link); 1225 1226 /* 1227 * Skip over locks owned by other processes. Handle 1228 * any locks that overlap and are owned by ourselves. 1229 */ 1230 overlap = LIST_FIRST(&state->ls_active); 1231 for (;;) { 1232 ovcase = lf_findoverlap(&overlap, lock, SELF); 1233 1234 #ifdef LOCKF_DEBUG 1235 if (ovcase && (lockf_debug & 2)) { 1236 printf("lf_setlock: overlap %d", ovcase); 1237 lf_print("", overlap); 1238 } 1239 #endif 1240 /* 1241 * Six cases: 1242 * 0) no overlap 1243 * 1) overlap == lock 1244 * 2) overlap contains lock 1245 * 3) lock contains overlap 1246 * 4) overlap starts before lock 1247 * 5) overlap ends after lock 1248 */ 1249 switch (ovcase) { 1250 case 0: /* no overlap */ 1251 break; 1252 1253 case 1: /* overlap == lock */ 1254 /* 1255 * We have already setup the 1256 * dependants for the new lock, taking 1257 * into account a possible downgrade 1258 * or unlock. Remove the old lock. 1259 */ 1260 LIST_REMOVE(overlap, lf_link); 1261 lf_update_dependancies(state, overlap, TRUE, 1262 &granted); 1263 lf_free_lock(overlap); 1264 break; 1265 1266 case 2: /* overlap contains lock */ 1267 /* 1268 * Just split the existing lock. 1269 */ 1270 lf_split(state, overlap, lock, &granted); 1271 break; 1272 1273 case 3: /* lock contains overlap */ 1274 /* 1275 * Delete the overlap and advance to 1276 * the next entry in the list. 1277 */ 1278 lf = LIST_NEXT(overlap, lf_link); 1279 LIST_REMOVE(overlap, lf_link); 1280 lf_update_dependancies(state, overlap, TRUE, 1281 &granted); 1282 lf_free_lock(overlap); 1283 overlap = lf; 1284 continue; 1285 1286 case 4: /* overlap starts before lock */ 1287 /* 1288 * Just update the overlap end and 1289 * move on. 1290 */ 1291 lf_set_end(state, overlap, lock->lf_start - 1, 1292 &granted); 1293 overlap = LIST_NEXT(overlap, lf_link); 1294 continue; 1295 1296 case 5: /* overlap ends after lock */ 1297 /* 1298 * Change the start of overlap and 1299 * re-insert. 1300 */ 1301 lf_set_start(state, overlap, lock->lf_end + 1, 1302 &granted); 1303 break; 1304 } 1305 break; 1306 } 1307 #ifdef LOCKF_DEBUG 1308 if (lockf_debug & 1) { 1309 if (lock->lf_type != F_UNLCK) 1310 lf_print("lf_activate_lock: activated", lock); 1311 else 1312 lf_print("lf_activate_lock: unlocked", lock); 1313 lf_printlist("lf_activate_lock", lock); 1314 } 1315 #endif /* LOCKF_DEBUG */ 1316 if (lock->lf_type != F_UNLCK) 1317 lf_insert_lock(state, lock); 1318 } 1319 } 1320 1321 /* 1322 * Cancel a pending lock request, either as a result of a signal or a 1323 * cancel request for an async lock. 1324 */ 1325 static void 1326 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock) 1327 { 1328 struct lockf_entry_list granted; 1329 1330 /* 1331 * Note it is theoretically possible that cancelling this lock 1332 * may allow some other pending lock to become 1333 * active. Consider this case: 1334 * 1335 * Owner Action Result Dependancies 1336 * 1337 * A: lock [0..0] succeeds 1338 * B: lock [2..2] succeeds 1339 * C: lock [1..2] blocked C->B 1340 * D: lock [0..1] blocked C->B,D->A,D->C 1341 * A: unlock [0..0] C->B,D->C 1342 * C: cancel [1..2] 1343 */ 1344 1345 LIST_REMOVE(lock, lf_link); 1346 1347 /* 1348 * Removing out-going edges is simple. 1349 */ 1350 sx_xlock(&lf_owner_graph_lock); 1351 lf_remove_outgoing(lock); 1352 sx_xunlock(&lf_owner_graph_lock); 1353 1354 /* 1355 * Removing in-coming edges may allow some other lock to 1356 * become active - we use lf_update_dependancies to figure 1357 * this out. 1358 */ 1359 LIST_INIT(&granted); 1360 lf_update_dependancies(state, lock, TRUE, &granted); 1361 lf_free_lock(lock); 1362 1363 /* 1364 * Feed any newly active locks to lf_activate_lock. 1365 */ 1366 while (!LIST_EMPTY(&granted)) { 1367 lock = LIST_FIRST(&granted); 1368 LIST_REMOVE(lock, lf_link); 1369 lf_activate_lock(state, lock); 1370 } 1371 } 1372 1373 /* 1374 * Set a byte-range lock. 1375 */ 1376 static int 1377 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp, 1378 void **cookiep) 1379 { 1380 static char lockstr[] = "lockf"; 1381 int priority, error; 1382 1383 #ifdef LOCKF_DEBUG 1384 if (lockf_debug & 1) 1385 lf_print("lf_setlock", lock); 1386 #endif /* LOCKF_DEBUG */ 1387 1388 /* 1389 * Set the priority 1390 */ 1391 priority = PLOCK; 1392 if (lock->lf_type == F_WRLCK) 1393 priority += 4; 1394 if (!(lock->lf_flags & F_NOINTR)) 1395 priority |= PCATCH; 1396 /* 1397 * Scan lock list for this file looking for locks that would block us. 1398 */ 1399 if (lf_getblock(state, lock)) { 1400 /* 1401 * Free the structure and return if nonblocking. 1402 */ 1403 if ((lock->lf_flags & F_WAIT) == 0 1404 && lock->lf_async_task == NULL) { 1405 lf_free_lock(lock); 1406 error = EAGAIN; 1407 goto out; 1408 } 1409 1410 /* 1411 * For flock type locks, we must first remove 1412 * any shared locks that we hold before we sleep 1413 * waiting for an exclusive lock. 1414 */ 1415 if ((lock->lf_flags & F_FLOCK) && 1416 lock->lf_type == F_WRLCK) { 1417 lock->lf_type = F_UNLCK; 1418 lf_activate_lock(state, lock); 1419 lock->lf_type = F_WRLCK; 1420 } 1421 1422 /* 1423 * We are blocked. Create edges to each blocking lock, 1424 * checking for deadlock using the owner graph. For 1425 * simplicity, we run deadlock detection for all 1426 * locks, posix and otherwise. 1427 */ 1428 sx_xlock(&lf_owner_graph_lock); 1429 error = lf_add_outgoing(state, lock); 1430 sx_xunlock(&lf_owner_graph_lock); 1431 1432 if (error) { 1433 #ifdef LOCKF_DEBUG 1434 if (lockf_debug & 1) 1435 lf_print("lf_setlock: deadlock", lock); 1436 #endif 1437 lf_free_lock(lock); 1438 goto out; 1439 } 1440 1441 /* 1442 * We have added edges to everything that blocks 1443 * us. Sleep until they all go away. 1444 */ 1445 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link); 1446 #ifdef LOCKF_DEBUG 1447 if (lockf_debug & 1) { 1448 struct lockf_edge *e; 1449 LIST_FOREACH(e, &lock->lf_outedges, le_outlink) { 1450 lf_print("lf_setlock: blocking on", e->le_to); 1451 lf_printlist("lf_setlock", e->le_to); 1452 } 1453 } 1454 #endif /* LOCKF_DEBUG */ 1455 1456 if ((lock->lf_flags & F_WAIT) == 0) { 1457 /* 1458 * The caller requested async notification - 1459 * this callback happens when the blocking 1460 * lock is released, allowing the caller to 1461 * make another attempt to take the lock. 1462 */ 1463 *cookiep = (void *) lock; 1464 error = EINPROGRESS; 1465 goto out; 1466 } 1467 1468 lock->lf_refs++; 1469 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0); 1470 if (lf_free_lock(lock)) { 1471 error = EDOOFUS; 1472 goto out; 1473 } 1474 1475 /* 1476 * We may have been awakened by a signal and/or by a 1477 * debugger continuing us (in which cases we must 1478 * remove our lock graph edges) and/or by another 1479 * process releasing a lock (in which case our edges 1480 * have already been removed and we have been moved to 1481 * the active list). We may also have been woken by 1482 * lf_purgelocks which we report to the caller as 1483 * EINTR. In that case, lf_purgelocks will have 1484 * removed our lock graph edges. 1485 * 1486 * Note that it is possible to receive a signal after 1487 * we were successfully woken (and moved to the active 1488 * list) but before we resumed execution. In this 1489 * case, our lf_outedges list will be clear. We 1490 * pretend there was no error. 1491 * 1492 * Note also, if we have been sleeping long enough, we 1493 * may now have incoming edges from some newer lock 1494 * which is waiting behind us in the queue. 1495 */ 1496 if (lock->lf_flags & F_INTR) { 1497 error = EINTR; 1498 lf_free_lock(lock); 1499 goto out; 1500 } 1501 if (LIST_EMPTY(&lock->lf_outedges)) { 1502 error = 0; 1503 } else { 1504 lf_cancel_lock(state, lock); 1505 goto out; 1506 } 1507 #ifdef LOCKF_DEBUG 1508 if (lockf_debug & 1) { 1509 lf_print("lf_setlock: granted", lock); 1510 } 1511 #endif 1512 goto out; 1513 } 1514 /* 1515 * It looks like we are going to grant the lock. First add 1516 * edges from any currently pending lock that the new lock 1517 * would block. 1518 */ 1519 sx_xlock(&lf_owner_graph_lock); 1520 error = lf_add_incoming(state, lock); 1521 sx_xunlock(&lf_owner_graph_lock); 1522 if (error) { 1523 #ifdef LOCKF_DEBUG 1524 if (lockf_debug & 1) 1525 lf_print("lf_setlock: deadlock", lock); 1526 #endif 1527 lf_free_lock(lock); 1528 goto out; 1529 } 1530 1531 /* 1532 * No blocks!! Add the lock. Note that we will 1533 * downgrade or upgrade any overlapping locks this 1534 * process already owns. 1535 */ 1536 lf_activate_lock(state, lock); 1537 error = 0; 1538 out: 1539 return (error); 1540 } 1541 1542 /* 1543 * Remove a byte-range lock on an inode. 1544 * 1545 * Generally, find the lock (or an overlap to that lock) 1546 * and remove it (or shrink it), then wakeup anyone we can. 1547 */ 1548 static int 1549 lf_clearlock(struct lockf *state, struct lockf_entry *unlock) 1550 { 1551 struct lockf_entry *overlap; 1552 1553 overlap = LIST_FIRST(&state->ls_active); 1554 1555 if (overlap == NOLOCKF) 1556 return (0); 1557 #ifdef LOCKF_DEBUG 1558 if (unlock->lf_type != F_UNLCK) 1559 panic("lf_clearlock: bad type"); 1560 if (lockf_debug & 1) 1561 lf_print("lf_clearlock", unlock); 1562 #endif /* LOCKF_DEBUG */ 1563 1564 lf_activate_lock(state, unlock); 1565 1566 return (0); 1567 } 1568 1569 /* 1570 * Check whether there is a blocking lock, and if so return its 1571 * details in '*fl'. 1572 */ 1573 static int 1574 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl) 1575 { 1576 struct lockf_entry *block; 1577 1578 #ifdef LOCKF_DEBUG 1579 if (lockf_debug & 1) 1580 lf_print("lf_getlock", lock); 1581 #endif /* LOCKF_DEBUG */ 1582 1583 if ((block = lf_getblock(state, lock))) { 1584 fl->l_type = block->lf_type; 1585 fl->l_whence = SEEK_SET; 1586 fl->l_start = block->lf_start; 1587 if (block->lf_end == OFF_MAX) 1588 fl->l_len = 0; 1589 else 1590 fl->l_len = block->lf_end - block->lf_start + 1; 1591 fl->l_pid = block->lf_owner->lo_pid; 1592 fl->l_sysid = block->lf_owner->lo_sysid; 1593 } else { 1594 fl->l_type = F_UNLCK; 1595 } 1596 return (0); 1597 } 1598 1599 /* 1600 * Cancel an async lock request. 1601 */ 1602 static int 1603 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie) 1604 { 1605 struct lockf_entry *reallock; 1606 1607 /* 1608 * We need to match this request with an existing lock 1609 * request. 1610 */ 1611 LIST_FOREACH(reallock, &state->ls_pending, lf_link) { 1612 if ((void *) reallock == cookie) { 1613 /* 1614 * Double-check that this lock looks right 1615 * (maybe use a rolling ID for the cancel 1616 * cookie instead?) 1617 */ 1618 if (!(reallock->lf_vnode == lock->lf_vnode 1619 && reallock->lf_start == lock->lf_start 1620 && reallock->lf_end == lock->lf_end)) { 1621 return (ENOENT); 1622 } 1623 1624 /* 1625 * Make sure this lock was async and then just 1626 * remove it from its wait lists. 1627 */ 1628 if (!reallock->lf_async_task) { 1629 return (ENOENT); 1630 } 1631 1632 /* 1633 * Note that since any other thread must take 1634 * state->ls_lock before it can possibly 1635 * trigger the async callback, we are safe 1636 * from a race with lf_wakeup_lock, i.e. we 1637 * can free the lock (actually our caller does 1638 * this). 1639 */ 1640 lf_cancel_lock(state, reallock); 1641 return (0); 1642 } 1643 } 1644 1645 /* 1646 * We didn't find a matching lock - not much we can do here. 1647 */ 1648 return (ENOENT); 1649 } 1650 1651 /* 1652 * Walk the list of locks for an inode and 1653 * return the first blocking lock. 1654 */ 1655 static struct lockf_entry * 1656 lf_getblock(struct lockf *state, struct lockf_entry *lock) 1657 { 1658 struct lockf_entry *overlap; 1659 1660 LIST_FOREACH(overlap, &state->ls_active, lf_link) { 1661 /* 1662 * We may assume that the active list is sorted by 1663 * lf_start. 1664 */ 1665 if (overlap->lf_start > lock->lf_end) 1666 break; 1667 if (!lf_blocks(lock, overlap)) 1668 continue; 1669 return (overlap); 1670 } 1671 return (NOLOCKF); 1672 } 1673 1674 /* 1675 * Walk the list of locks for an inode to find an overlapping lock (if 1676 * any) and return a classification of that overlap. 1677 * 1678 * Arguments: 1679 * *overlap The place in the lock list to start looking 1680 * lock The lock which is being tested 1681 * type Pass 'SELF' to test only locks with the same 1682 * owner as lock, or 'OTHER' to test only locks 1683 * with a different owner 1684 * 1685 * Returns one of six values: 1686 * 0) no overlap 1687 * 1) overlap == lock 1688 * 2) overlap contains lock 1689 * 3) lock contains overlap 1690 * 4) overlap starts before lock 1691 * 5) overlap ends after lock 1692 * 1693 * If there is an overlapping lock, '*overlap' is set to point at the 1694 * overlapping lock. 1695 * 1696 * NOTE: this returns only the FIRST overlapping lock. There 1697 * may be more than one. 1698 */ 1699 static int 1700 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type) 1701 { 1702 struct lockf_entry *lf; 1703 off_t start, end; 1704 int res; 1705 1706 if ((*overlap) == NOLOCKF) { 1707 return (0); 1708 } 1709 #ifdef LOCKF_DEBUG 1710 if (lockf_debug & 2) 1711 lf_print("lf_findoverlap: looking for overlap in", lock); 1712 #endif /* LOCKF_DEBUG */ 1713 start = lock->lf_start; 1714 end = lock->lf_end; 1715 res = 0; 1716 while (*overlap) { 1717 lf = *overlap; 1718 if (lf->lf_start > end) 1719 break; 1720 if (((type & SELF) && lf->lf_owner != lock->lf_owner) || 1721 ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) { 1722 *overlap = LIST_NEXT(lf, lf_link); 1723 continue; 1724 } 1725 #ifdef LOCKF_DEBUG 1726 if (lockf_debug & 2) 1727 lf_print("\tchecking", lf); 1728 #endif /* LOCKF_DEBUG */ 1729 /* 1730 * OK, check for overlap 1731 * 1732 * Six cases: 1733 * 0) no overlap 1734 * 1) overlap == lock 1735 * 2) overlap contains lock 1736 * 3) lock contains overlap 1737 * 4) overlap starts before lock 1738 * 5) overlap ends after lock 1739 */ 1740 if (start > lf->lf_end) { 1741 /* Case 0 */ 1742 #ifdef LOCKF_DEBUG 1743 if (lockf_debug & 2) 1744 printf("no overlap\n"); 1745 #endif /* LOCKF_DEBUG */ 1746 *overlap = LIST_NEXT(lf, lf_link); 1747 continue; 1748 } 1749 if (lf->lf_start == start && lf->lf_end == end) { 1750 /* Case 1 */ 1751 #ifdef LOCKF_DEBUG 1752 if (lockf_debug & 2) 1753 printf("overlap == lock\n"); 1754 #endif /* LOCKF_DEBUG */ 1755 res = 1; 1756 break; 1757 } 1758 if (lf->lf_start <= start && lf->lf_end >= end) { 1759 /* Case 2 */ 1760 #ifdef LOCKF_DEBUG 1761 if (lockf_debug & 2) 1762 printf("overlap contains lock\n"); 1763 #endif /* LOCKF_DEBUG */ 1764 res = 2; 1765 break; 1766 } 1767 if (start <= lf->lf_start && end >= lf->lf_end) { 1768 /* Case 3 */ 1769 #ifdef LOCKF_DEBUG 1770 if (lockf_debug & 2) 1771 printf("lock contains overlap\n"); 1772 #endif /* LOCKF_DEBUG */ 1773 res = 3; 1774 break; 1775 } 1776 if (lf->lf_start < start && lf->lf_end >= start) { 1777 /* Case 4 */ 1778 #ifdef LOCKF_DEBUG 1779 if (lockf_debug & 2) 1780 printf("overlap starts before lock\n"); 1781 #endif /* LOCKF_DEBUG */ 1782 res = 4; 1783 break; 1784 } 1785 if (lf->lf_start > start && lf->lf_end > end) { 1786 /* Case 5 */ 1787 #ifdef LOCKF_DEBUG 1788 if (lockf_debug & 2) 1789 printf("overlap ends after lock\n"); 1790 #endif /* LOCKF_DEBUG */ 1791 res = 5; 1792 break; 1793 } 1794 panic("lf_findoverlap: default"); 1795 } 1796 return (res); 1797 } 1798 1799 /* 1800 * Split an the existing 'lock1', based on the extent of the lock 1801 * described by 'lock2'. The existing lock should cover 'lock2' 1802 * entirely. 1803 * 1804 * Any pending locks which have been been unblocked are added to 1805 * 'granted' 1806 */ 1807 static void 1808 lf_split(struct lockf *state, struct lockf_entry *lock1, 1809 struct lockf_entry *lock2, struct lockf_entry_list *granted) 1810 { 1811 struct lockf_entry *splitlock; 1812 1813 #ifdef LOCKF_DEBUG 1814 if (lockf_debug & 2) { 1815 lf_print("lf_split", lock1); 1816 lf_print("splitting from", lock2); 1817 } 1818 #endif /* LOCKF_DEBUG */ 1819 /* 1820 * Check to see if we don't need to split at all. 1821 */ 1822 if (lock1->lf_start == lock2->lf_start) { 1823 lf_set_start(state, lock1, lock2->lf_end + 1, granted); 1824 return; 1825 } 1826 if (lock1->lf_end == lock2->lf_end) { 1827 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1828 return; 1829 } 1830 /* 1831 * Make a new lock consisting of the last part of 1832 * the encompassing lock. 1833 */ 1834 splitlock = lf_alloc_lock(lock1->lf_owner); 1835 memcpy(splitlock, lock1, sizeof *splitlock); 1836 splitlock->lf_refs = 1; 1837 if (splitlock->lf_flags & F_REMOTE) 1838 vref(splitlock->lf_vnode); 1839 1840 /* 1841 * This cannot cause a deadlock since any edges we would add 1842 * to splitlock already exist in lock1. We must be sure to add 1843 * necessary dependancies to splitlock before we reduce lock1 1844 * otherwise we may accidentally grant a pending lock that 1845 * was blocked by the tail end of lock1. 1846 */ 1847 splitlock->lf_start = lock2->lf_end + 1; 1848 LIST_INIT(&splitlock->lf_outedges); 1849 LIST_INIT(&splitlock->lf_inedges); 1850 sx_xlock(&lf_owner_graph_lock); 1851 lf_add_incoming(state, splitlock); 1852 sx_xunlock(&lf_owner_graph_lock); 1853 1854 lf_set_end(state, lock1, lock2->lf_start - 1, granted); 1855 1856 /* 1857 * OK, now link it in 1858 */ 1859 lf_insert_lock(state, splitlock); 1860 } 1861 1862 struct lockdesc { 1863 STAILQ_ENTRY(lockdesc) link; 1864 struct vnode *vp; 1865 struct flock fl; 1866 }; 1867 STAILQ_HEAD(lockdesclist, lockdesc); 1868 1869 int 1870 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg) 1871 { 1872 struct lockf *ls; 1873 struct lockf_entry *lf; 1874 struct lockdesc *ldesc; 1875 struct lockdesclist locks; 1876 int error; 1877 1878 /* 1879 * In order to keep the locking simple, we iterate over the 1880 * active lock lists to build a list of locks that need 1881 * releasing. We then call the iterator for each one in turn. 1882 * 1883 * We take an extra reference to the vnode for the duration to 1884 * make sure it doesn't go away before we are finished. 1885 */ 1886 STAILQ_INIT(&locks); 1887 sx_xlock(&lf_lock_states_lock); 1888 LIST_FOREACH(ls, &lf_lock_states, ls_link) { 1889 sx_xlock(&ls->ls_lock); 1890 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1891 if (lf->lf_owner->lo_sysid != sysid) 1892 continue; 1893 1894 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1895 M_WAITOK); 1896 ldesc->vp = lf->lf_vnode; 1897 vref(ldesc->vp); 1898 ldesc->fl.l_start = lf->lf_start; 1899 if (lf->lf_end == OFF_MAX) 1900 ldesc->fl.l_len = 0; 1901 else 1902 ldesc->fl.l_len = 1903 lf->lf_end - lf->lf_start + 1; 1904 ldesc->fl.l_whence = SEEK_SET; 1905 ldesc->fl.l_type = F_UNLCK; 1906 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1907 ldesc->fl.l_sysid = sysid; 1908 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1909 } 1910 sx_xunlock(&ls->ls_lock); 1911 } 1912 sx_xunlock(&lf_lock_states_lock); 1913 1914 /* 1915 * Call the iterator function for each lock in turn. If the 1916 * iterator returns an error code, just free the rest of the 1917 * lockdesc structures. 1918 */ 1919 error = 0; 1920 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1921 STAILQ_REMOVE_HEAD(&locks, link); 1922 if (!error) 1923 error = fn(ldesc->vp, &ldesc->fl, arg); 1924 vrele(ldesc->vp); 1925 free(ldesc, M_LOCKF); 1926 } 1927 1928 return (error); 1929 } 1930 1931 int 1932 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg) 1933 { 1934 struct lockf *ls; 1935 struct lockf_entry *lf; 1936 struct lockdesc *ldesc; 1937 struct lockdesclist locks; 1938 int error; 1939 1940 /* 1941 * In order to keep the locking simple, we iterate over the 1942 * active lock lists to build a list of locks that need 1943 * releasing. We then call the iterator for each one in turn. 1944 * 1945 * We take an extra reference to the vnode for the duration to 1946 * make sure it doesn't go away before we are finished. 1947 */ 1948 STAILQ_INIT(&locks); 1949 VI_LOCK(vp); 1950 ls = vp->v_lockf; 1951 if (!ls) { 1952 VI_UNLOCK(vp); 1953 return (0); 1954 } 1955 ls->ls_threads++; 1956 VI_UNLOCK(vp); 1957 1958 sx_xlock(&ls->ls_lock); 1959 LIST_FOREACH(lf, &ls->ls_active, lf_link) { 1960 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF, 1961 M_WAITOK); 1962 ldesc->vp = lf->lf_vnode; 1963 vref(ldesc->vp); 1964 ldesc->fl.l_start = lf->lf_start; 1965 if (lf->lf_end == OFF_MAX) 1966 ldesc->fl.l_len = 0; 1967 else 1968 ldesc->fl.l_len = 1969 lf->lf_end - lf->lf_start + 1; 1970 ldesc->fl.l_whence = SEEK_SET; 1971 ldesc->fl.l_type = F_UNLCK; 1972 ldesc->fl.l_pid = lf->lf_owner->lo_pid; 1973 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid; 1974 STAILQ_INSERT_TAIL(&locks, ldesc, link); 1975 } 1976 sx_xunlock(&ls->ls_lock); 1977 VI_LOCK(vp); 1978 ls->ls_threads--; 1979 wakeup(ls); 1980 VI_UNLOCK(vp); 1981 1982 /* 1983 * Call the iterator function for each lock in turn. If the 1984 * iterator returns an error code, just free the rest of the 1985 * lockdesc structures. 1986 */ 1987 error = 0; 1988 while ((ldesc = STAILQ_FIRST(&locks)) != NULL) { 1989 STAILQ_REMOVE_HEAD(&locks, link); 1990 if (!error) 1991 error = fn(ldesc->vp, &ldesc->fl, arg); 1992 vrele(ldesc->vp); 1993 free(ldesc, M_LOCKF); 1994 } 1995 1996 return (error); 1997 } 1998 1999 static int 2000 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg) 2001 { 2002 2003 VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE); 2004 return (0); 2005 } 2006 2007 void 2008 lf_clearremotesys(int sysid) 2009 { 2010 2011 KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS")); 2012 lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL); 2013 } 2014 2015 int 2016 lf_countlocks(int sysid) 2017 { 2018 int i; 2019 struct lock_owner *lo; 2020 int count; 2021 2022 count = 0; 2023 sx_xlock(&lf_lock_owners_lock); 2024 for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) 2025 LIST_FOREACH(lo, &lf_lock_owners[i], lo_link) 2026 if (lo->lo_sysid == sysid) 2027 count += lo->lo_refs; 2028 sx_xunlock(&lf_lock_owners_lock); 2029 2030 return (count); 2031 } 2032 2033 #ifdef LOCKF_DEBUG 2034 2035 /* 2036 * Return non-zero if y is reachable from x using a brute force 2037 * search. If reachable and path is non-null, return the route taken 2038 * in path. 2039 */ 2040 static int 2041 graph_reaches(struct owner_vertex *x, struct owner_vertex *y, 2042 struct owner_vertex_list *path) 2043 { 2044 struct owner_edge *e; 2045 2046 if (x == y) { 2047 if (path) 2048 TAILQ_INSERT_HEAD(path, x, v_link); 2049 return 1; 2050 } 2051 2052 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2053 if (graph_reaches(e->e_to, y, path)) { 2054 if (path) 2055 TAILQ_INSERT_HEAD(path, x, v_link); 2056 return 1; 2057 } 2058 } 2059 return 0; 2060 } 2061 2062 /* 2063 * Perform consistency checks on the graph. Make sure the values of 2064 * v_order are correct. If checkorder is non-zero, check no vertex can 2065 * reach any other vertex with a smaller order. 2066 */ 2067 static void 2068 graph_check(struct owner_graph *g, int checkorder) 2069 { 2070 int i, j; 2071 2072 for (i = 0; i < g->g_size; i++) { 2073 if (!g->g_vertices[i]->v_owner) 2074 continue; 2075 KASSERT(g->g_vertices[i]->v_order == i, 2076 ("lock graph vertices disordered")); 2077 if (checkorder) { 2078 for (j = 0; j < i; j++) { 2079 if (!g->g_vertices[j]->v_owner) 2080 continue; 2081 KASSERT(!graph_reaches(g->g_vertices[i], 2082 g->g_vertices[j], NULL), 2083 ("lock graph vertices disordered")); 2084 } 2085 } 2086 } 2087 } 2088 2089 static void 2090 graph_print_vertices(struct owner_vertex_list *set) 2091 { 2092 struct owner_vertex *v; 2093 2094 printf("{ "); 2095 TAILQ_FOREACH(v, set, v_link) { 2096 printf("%d:", v->v_order); 2097 lf_print_owner(v->v_owner); 2098 if (TAILQ_NEXT(v, v_link)) 2099 printf(", "); 2100 } 2101 printf(" }\n"); 2102 } 2103 2104 #endif 2105 2106 /* 2107 * Calculate the sub-set of vertices v from the affected region [y..x] 2108 * where v is reachable from y. Return -1 if a loop was detected 2109 * (i.e. x is reachable from y, otherwise the number of vertices in 2110 * this subset. 2111 */ 2112 static int 2113 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, 2114 struct owner_vertex *y, struct owner_vertex_list *delta) 2115 { 2116 uint32_t gen; 2117 struct owner_vertex *v; 2118 struct owner_edge *e; 2119 int n; 2120 2121 /* 2122 * We start with a set containing just y. Then for each vertex 2123 * v in the set so far unprocessed, we add each vertex that v 2124 * has an out-edge to and that is within the affected region 2125 * [y..x]. If we see the vertex x on our travels, stop 2126 * immediately. 2127 */ 2128 TAILQ_INIT(delta); 2129 TAILQ_INSERT_TAIL(delta, y, v_link); 2130 v = y; 2131 n = 1; 2132 gen = g->g_gen; 2133 while (v) { 2134 LIST_FOREACH(e, &v->v_outedges, e_outlink) { 2135 if (e->e_to == x) 2136 return -1; 2137 if (e->e_to->v_order < x->v_order 2138 && e->e_to->v_gen != gen) { 2139 e->e_to->v_gen = gen; 2140 TAILQ_INSERT_TAIL(delta, e->e_to, v_link); 2141 n++; 2142 } 2143 } 2144 v = TAILQ_NEXT(v, v_link); 2145 } 2146 2147 return (n); 2148 } 2149 2150 /* 2151 * Calculate the sub-set of vertices v from the affected region [y..x] 2152 * where v reaches x. Return the number of vertices in this subset. 2153 */ 2154 static int 2155 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, 2156 struct owner_vertex *y, struct owner_vertex_list *delta) 2157 { 2158 uint32_t gen; 2159 struct owner_vertex *v; 2160 struct owner_edge *e; 2161 int n; 2162 2163 /* 2164 * We start with a set containing just x. Then for each vertex 2165 * v in the set so far unprocessed, we add each vertex that v 2166 * has an in-edge from and that is within the affected region 2167 * [y..x]. 2168 */ 2169 TAILQ_INIT(delta); 2170 TAILQ_INSERT_TAIL(delta, x, v_link); 2171 v = x; 2172 n = 1; 2173 gen = g->g_gen; 2174 while (v) { 2175 LIST_FOREACH(e, &v->v_inedges, e_inlink) { 2176 if (e->e_from->v_order > y->v_order 2177 && e->e_from->v_gen != gen) { 2178 e->e_from->v_gen = gen; 2179 TAILQ_INSERT_HEAD(delta, e->e_from, v_link); 2180 n++; 2181 } 2182 } 2183 v = TAILQ_PREV(v, owner_vertex_list, v_link); 2184 } 2185 2186 return (n); 2187 } 2188 2189 static int 2190 graph_add_indices(int *indices, int n, struct owner_vertex_list *set) 2191 { 2192 struct owner_vertex *v; 2193 int i, j; 2194 2195 TAILQ_FOREACH(v, set, v_link) { 2196 for (i = n; 2197 i > 0 && indices[i - 1] > v->v_order; i--) 2198 ; 2199 for (j = n - 1; j >= i; j--) 2200 indices[j + 1] = indices[j]; 2201 indices[i] = v->v_order; 2202 n++; 2203 } 2204 2205 return (n); 2206 } 2207 2208 static int 2209 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, 2210 struct owner_vertex_list *set) 2211 { 2212 struct owner_vertex *v, *vlowest; 2213 2214 while (!TAILQ_EMPTY(set)) { 2215 vlowest = NULL; 2216 TAILQ_FOREACH(v, set, v_link) { 2217 if (!vlowest || v->v_order < vlowest->v_order) 2218 vlowest = v; 2219 } 2220 TAILQ_REMOVE(set, vlowest, v_link); 2221 vlowest->v_order = indices[nextunused]; 2222 g->g_vertices[vlowest->v_order] = vlowest; 2223 nextunused++; 2224 } 2225 2226 return (nextunused); 2227 } 2228 2229 static int 2230 graph_add_edge(struct owner_graph *g, struct owner_vertex *x, 2231 struct owner_vertex *y) 2232 { 2233 struct owner_edge *e; 2234 struct owner_vertex_list deltaF, deltaB; 2235 int nF, nB, n, vi, i; 2236 int *indices; 2237 2238 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2239 2240 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2241 if (e->e_to == y) { 2242 e->e_refs++; 2243 return (0); 2244 } 2245 } 2246 2247 #ifdef LOCKF_DEBUG 2248 if (lockf_debug & 8) { 2249 printf("adding edge %d:", x->v_order); 2250 lf_print_owner(x->v_owner); 2251 printf(" -> %d:", y->v_order); 2252 lf_print_owner(y->v_owner); 2253 printf("\n"); 2254 } 2255 #endif 2256 if (y->v_order < x->v_order) { 2257 /* 2258 * The new edge violates the order. First find the set 2259 * of affected vertices reachable from y (deltaF) and 2260 * the set of affect vertices affected that reach x 2261 * (deltaB), using the graph generation number to 2262 * detect whether we have visited a given vertex 2263 * already. We re-order the graph so that each vertex 2264 * in deltaB appears before each vertex in deltaF. 2265 * 2266 * If x is a member of deltaF, then the new edge would 2267 * create a cycle. Otherwise, we may assume that 2268 * deltaF and deltaB are disjoint. 2269 */ 2270 g->g_gen++; 2271 if (g->g_gen == 0) { 2272 /* 2273 * Generation wrap. 2274 */ 2275 for (vi = 0; vi < g->g_size; vi++) { 2276 g->g_vertices[vi]->v_gen = 0; 2277 } 2278 g->g_gen++; 2279 } 2280 nF = graph_delta_forward(g, x, y, &deltaF); 2281 if (nF < 0) { 2282 #ifdef LOCKF_DEBUG 2283 if (lockf_debug & 8) { 2284 struct owner_vertex_list path; 2285 printf("deadlock: "); 2286 TAILQ_INIT(&path); 2287 graph_reaches(y, x, &path); 2288 graph_print_vertices(&path); 2289 } 2290 #endif 2291 return (EDEADLK); 2292 } 2293 2294 #ifdef LOCKF_DEBUG 2295 if (lockf_debug & 8) { 2296 printf("re-ordering graph vertices\n"); 2297 printf("deltaF = "); 2298 graph_print_vertices(&deltaF); 2299 } 2300 #endif 2301 2302 nB = graph_delta_backward(g, x, y, &deltaB); 2303 2304 #ifdef LOCKF_DEBUG 2305 if (lockf_debug & 8) { 2306 printf("deltaB = "); 2307 graph_print_vertices(&deltaB); 2308 } 2309 #endif 2310 2311 /* 2312 * We first build a set of vertex indices (vertex 2313 * order values) that we may use, then we re-assign 2314 * orders first to those vertices in deltaB, then to 2315 * deltaF. Note that the contents of deltaF and deltaB 2316 * may be partially disordered - we perform an 2317 * insertion sort while building our index set. 2318 */ 2319 indices = g->g_indexbuf; 2320 n = graph_add_indices(indices, 0, &deltaF); 2321 graph_add_indices(indices, n, &deltaB); 2322 2323 /* 2324 * We must also be sure to maintain the relative 2325 * ordering of deltaF and deltaB when re-assigning 2326 * vertices. We do this by iteratively removing the 2327 * lowest ordered element from the set and assigning 2328 * it the next value from our new ordering. 2329 */ 2330 i = graph_assign_indices(g, indices, 0, &deltaB); 2331 graph_assign_indices(g, indices, i, &deltaF); 2332 2333 #ifdef LOCKF_DEBUG 2334 if (lockf_debug & 8) { 2335 struct owner_vertex_list set; 2336 TAILQ_INIT(&set); 2337 for (i = 0; i < nB + nF; i++) 2338 TAILQ_INSERT_TAIL(&set, 2339 g->g_vertices[indices[i]], v_link); 2340 printf("new ordering = "); 2341 graph_print_vertices(&set); 2342 } 2343 #endif 2344 } 2345 2346 KASSERT(x->v_order < y->v_order, ("Failed to re-order graph")); 2347 2348 #ifdef LOCKF_DEBUG 2349 if (lockf_debug & 8) { 2350 graph_check(g, TRUE); 2351 } 2352 #endif 2353 2354 e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK); 2355 2356 LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink); 2357 LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink); 2358 e->e_refs = 1; 2359 e->e_from = x; 2360 e->e_to = y; 2361 2362 return (0); 2363 } 2364 2365 /* 2366 * Remove an edge x->y from the graph. 2367 */ 2368 static void 2369 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, 2370 struct owner_vertex *y) 2371 { 2372 struct owner_edge *e; 2373 2374 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2375 2376 LIST_FOREACH(e, &x->v_outedges, e_outlink) { 2377 if (e->e_to == y) 2378 break; 2379 } 2380 KASSERT(e, ("Removing non-existent edge from deadlock graph")); 2381 2382 e->e_refs--; 2383 if (e->e_refs == 0) { 2384 #ifdef LOCKF_DEBUG 2385 if (lockf_debug & 8) { 2386 printf("removing edge %d:", x->v_order); 2387 lf_print_owner(x->v_owner); 2388 printf(" -> %d:", y->v_order); 2389 lf_print_owner(y->v_owner); 2390 printf("\n"); 2391 } 2392 #endif 2393 LIST_REMOVE(e, e_outlink); 2394 LIST_REMOVE(e, e_inlink); 2395 free(e, M_LOCKF); 2396 } 2397 } 2398 2399 /* 2400 * Allocate a vertex from the free list. Return ENOMEM if there are 2401 * none. 2402 */ 2403 static struct owner_vertex * 2404 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo) 2405 { 2406 struct owner_vertex *v; 2407 2408 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2409 2410 v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK); 2411 if (g->g_size == g->g_space) { 2412 g->g_vertices = realloc(g->g_vertices, 2413 2 * g->g_space * sizeof(struct owner_vertex *), 2414 M_LOCKF, M_WAITOK); 2415 free(g->g_indexbuf, M_LOCKF); 2416 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int), 2417 M_LOCKF, M_WAITOK); 2418 g->g_space = 2 * g->g_space; 2419 } 2420 v->v_order = g->g_size; 2421 v->v_gen = g->g_gen; 2422 g->g_vertices[g->g_size] = v; 2423 g->g_size++; 2424 2425 LIST_INIT(&v->v_outedges); 2426 LIST_INIT(&v->v_inedges); 2427 v->v_owner = lo; 2428 2429 return (v); 2430 } 2431 2432 static void 2433 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v) 2434 { 2435 struct owner_vertex *w; 2436 int i; 2437 2438 sx_assert(&lf_owner_graph_lock, SX_XLOCKED); 2439 2440 KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges")); 2441 KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges")); 2442 2443 /* 2444 * Remove from the graph's array and close up the gap, 2445 * renumbering the other vertices. 2446 */ 2447 for (i = v->v_order + 1; i < g->g_size; i++) { 2448 w = g->g_vertices[i]; 2449 w->v_order--; 2450 g->g_vertices[i - 1] = w; 2451 } 2452 g->g_size--; 2453 2454 free(v, M_LOCKF); 2455 } 2456 2457 static struct owner_graph * 2458 graph_init(struct owner_graph *g) 2459 { 2460 2461 g->g_vertices = malloc(10 * sizeof(struct owner_vertex *), 2462 M_LOCKF, M_WAITOK); 2463 g->g_size = 0; 2464 g->g_space = 10; 2465 g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK); 2466 g->g_gen = 0; 2467 2468 return (g); 2469 } 2470 2471 #ifdef LOCKF_DEBUG 2472 /* 2473 * Print description of a lock owner 2474 */ 2475 static void 2476 lf_print_owner(struct lock_owner *lo) 2477 { 2478 2479 if (lo->lo_flags & F_REMOTE) { 2480 printf("remote pid %d, system %d", 2481 lo->lo_pid, lo->lo_sysid); 2482 } else if (lo->lo_flags & F_FLOCK) { 2483 printf("file %p", lo->lo_id); 2484 } else { 2485 printf("local pid %d", lo->lo_pid); 2486 } 2487 } 2488 2489 /* 2490 * Print out a lock. 2491 */ 2492 static void 2493 lf_print(char *tag, struct lockf_entry *lock) 2494 { 2495 2496 printf("%s: lock %p for ", tag, (void *)lock); 2497 lf_print_owner(lock->lf_owner); 2498 if (lock->lf_inode != (struct inode *)0) 2499 printf(" in ino %ju on dev <%s>,", 2500 (uintmax_t)lock->lf_inode->i_number, 2501 devtoname(lock->lf_inode->i_dev)); 2502 printf(" %s, start %jd, end ", 2503 lock->lf_type == F_RDLCK ? "shared" : 2504 lock->lf_type == F_WRLCK ? "exclusive" : 2505 lock->lf_type == F_UNLCK ? "unlock" : "unknown", 2506 (intmax_t)lock->lf_start); 2507 if (lock->lf_end == OFF_MAX) 2508 printf("EOF"); 2509 else 2510 printf("%jd", (intmax_t)lock->lf_end); 2511 if (!LIST_EMPTY(&lock->lf_outedges)) 2512 printf(" block %p\n", 2513 (void *)LIST_FIRST(&lock->lf_outedges)->le_to); 2514 else 2515 printf("\n"); 2516 } 2517 2518 static void 2519 lf_printlist(char *tag, struct lockf_entry *lock) 2520 { 2521 struct lockf_entry *lf, *blk; 2522 struct lockf_edge *e; 2523 2524 if (lock->lf_inode == (struct inode *)0) 2525 return; 2526 2527 printf("%s: Lock list for ino %ju on dev <%s>:\n", 2528 tag, (uintmax_t)lock->lf_inode->i_number, 2529 devtoname(lock->lf_inode->i_dev)); 2530 LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) { 2531 printf("\tlock %p for ",(void *)lf); 2532 lf_print_owner(lock->lf_owner); 2533 printf(", %s, start %jd, end %jd", 2534 lf->lf_type == F_RDLCK ? "shared" : 2535 lf->lf_type == F_WRLCK ? "exclusive" : 2536 lf->lf_type == F_UNLCK ? "unlock" : 2537 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end); 2538 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) { 2539 blk = e->le_to; 2540 printf("\n\t\tlock request %p for ", (void *)blk); 2541 lf_print_owner(blk->lf_owner); 2542 printf(", %s, start %jd, end %jd", 2543 blk->lf_type == F_RDLCK ? "shared" : 2544 blk->lf_type == F_WRLCK ? "exclusive" : 2545 blk->lf_type == F_UNLCK ? "unlock" : 2546 "unknown", (intmax_t)blk->lf_start, 2547 (intmax_t)blk->lf_end); 2548 if (!LIST_EMPTY(&blk->lf_inedges)) 2549 panic("lf_printlist: bad list"); 2550 } 2551 printf("\n"); 2552 } 2553 } 2554 #endif /* LOCKF_DEBUG */ 2555