xref: /freebsd/sys/kern/kern_ktrace.c (revision d65cd7a57bf0600b722afc770838a5d0c1c3a8e1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/capsicum.h>
43 #include <sys/systm.h>
44 #include <sys/fcntl.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/namei.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/unistd.h>
55 #include <sys/vnode.h>
56 #include <sys/socket.h>
57 #include <sys/stat.h>
58 #include <sys/ktrace.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysent.h>
62 #include <sys/syslog.h>
63 #include <sys/sysproto.h>
64 
65 #include <security/mac/mac_framework.h>
66 
67 /*
68  * The ktrace facility allows the tracing of certain key events in user space
69  * processes, such as system calls, signal delivery, context switches, and
70  * user generated events using utrace(2).  It works by streaming event
71  * records and data to a vnode associated with the process using the
72  * ktrace(2) system call.  In general, records can be written directly from
73  * the context that generates the event.  One important exception to this is
74  * during a context switch, where sleeping is not permitted.  To handle this
75  * case, trace events are generated using in-kernel ktr_request records, and
76  * then delivered to disk at a convenient moment -- either immediately, the
77  * next traceable event, at system call return, or at process exit.
78  *
79  * When dealing with multiple threads or processes writing to the same event
80  * log, ordering guarantees are weak: specifically, if an event has multiple
81  * records (i.e., system call enter and return), they may be interlaced with
82  * records from another event.  Process and thread ID information is provided
83  * in the record, and user applications can de-interlace events if required.
84  */
85 
86 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
87 
88 #ifdef KTRACE
89 
90 FEATURE(ktrace, "Kernel support for system-call tracing");
91 
92 #ifndef KTRACE_REQUEST_POOL
93 #define	KTRACE_REQUEST_POOL	100
94 #endif
95 
96 struct ktr_request {
97 	struct	ktr_header ktr_header;
98 	void	*ktr_buffer;
99 	union {
100 		struct	ktr_proc_ctor ktr_proc_ctor;
101 		struct	ktr_cap_fail ktr_cap_fail;
102 		struct	ktr_syscall ktr_syscall;
103 		struct	ktr_sysret ktr_sysret;
104 		struct	ktr_genio ktr_genio;
105 		struct	ktr_psig ktr_psig;
106 		struct	ktr_csw ktr_csw;
107 		struct	ktr_fault ktr_fault;
108 		struct	ktr_faultend ktr_faultend;
109 		struct  ktr_struct_array ktr_struct_array;
110 	} ktr_data;
111 	STAILQ_ENTRY(ktr_request) ktr_list;
112 };
113 
114 static int data_lengths[] = {
115 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
116 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
117 	[KTR_NAMEI] = 0,
118 	[KTR_GENIO] = sizeof(struct ktr_genio),
119 	[KTR_PSIG] = sizeof(struct ktr_psig),
120 	[KTR_CSW] = sizeof(struct ktr_csw),
121 	[KTR_USER] = 0,
122 	[KTR_STRUCT] = 0,
123 	[KTR_SYSCTL] = 0,
124 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
125 	[KTR_PROCDTOR] = 0,
126 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
127 	[KTR_FAULT] = sizeof(struct ktr_fault),
128 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
129 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
130 };
131 
132 static STAILQ_HEAD(, ktr_request) ktr_free;
133 
134 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
135     "KTRACE options");
136 
137 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
138 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
139 
140 u_int ktr_geniosize = PAGE_SIZE;
141 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
142     0, "Maximum size of genio event payload");
143 
144 static int print_message = 1;
145 static struct mtx ktrace_mtx;
146 static struct sx ktrace_sx;
147 
148 static void ktrace_init(void *dummy);
149 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
150 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
151 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
152 static struct ktr_request *ktr_getrequest(int type);
153 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
154 static void ktr_freeproc(struct proc *p, struct ucred **uc,
155     struct vnode **vp);
156 static void ktr_freerequest(struct ktr_request *req);
157 static void ktr_freerequest_locked(struct ktr_request *req);
158 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
159 static int ktrcanset(struct thread *,struct proc *);
160 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
161 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
162 static void ktrprocctor_entered(struct thread *, struct proc *);
163 
164 /*
165  * ktrace itself generates events, such as context switches, which we do not
166  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
167  * whether or not it is in a region where tracing of events should be
168  * suppressed.
169  */
170 static void
171 ktrace_enter(struct thread *td)
172 {
173 
174 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
175 	td->td_pflags |= TDP_INKTRACE;
176 }
177 
178 static void
179 ktrace_exit(struct thread *td)
180 {
181 
182 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
183 	td->td_pflags &= ~TDP_INKTRACE;
184 }
185 
186 static void
187 ktrace_assert(struct thread *td)
188 {
189 
190 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
191 }
192 
193 static void
194 ktrace_init(void *dummy)
195 {
196 	struct ktr_request *req;
197 	int i;
198 
199 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
200 	sx_init(&ktrace_sx, "ktrace_sx");
201 	STAILQ_INIT(&ktr_free);
202 	for (i = 0; i < ktr_requestpool; i++) {
203 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
204 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
205 	}
206 }
207 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
208 
209 static int
210 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
211 {
212 	struct thread *td;
213 	u_int newsize, oldsize, wantsize;
214 	int error;
215 
216 	/* Handle easy read-only case first to avoid warnings from GCC. */
217 	if (!req->newptr) {
218 		oldsize = ktr_requestpool;
219 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
220 	}
221 
222 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
223 	if (error)
224 		return (error);
225 	td = curthread;
226 	ktrace_enter(td);
227 	oldsize = ktr_requestpool;
228 	newsize = ktrace_resize_pool(oldsize, wantsize);
229 	ktrace_exit(td);
230 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
231 	if (error)
232 		return (error);
233 	if (wantsize > oldsize && newsize < wantsize)
234 		return (ENOSPC);
235 	return (0);
236 }
237 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
238     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
239     sysctl_kern_ktrace_request_pool, "IU",
240     "Pool buffer size for ktrace(1)");
241 
242 static u_int
243 ktrace_resize_pool(u_int oldsize, u_int newsize)
244 {
245 	STAILQ_HEAD(, ktr_request) ktr_new;
246 	struct ktr_request *req;
247 	int bound;
248 
249 	print_message = 1;
250 	bound = newsize - oldsize;
251 	if (bound == 0)
252 		return (ktr_requestpool);
253 	if (bound < 0) {
254 		mtx_lock(&ktrace_mtx);
255 		/* Shrink pool down to newsize if possible. */
256 		while (bound++ < 0) {
257 			req = STAILQ_FIRST(&ktr_free);
258 			if (req == NULL)
259 				break;
260 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
261 			ktr_requestpool--;
262 			free(req, M_KTRACE);
263 		}
264 	} else {
265 		/* Grow pool up to newsize. */
266 		STAILQ_INIT(&ktr_new);
267 		while (bound-- > 0) {
268 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
269 			    M_WAITOK);
270 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
271 		}
272 		mtx_lock(&ktrace_mtx);
273 		STAILQ_CONCAT(&ktr_free, &ktr_new);
274 		ktr_requestpool += (newsize - oldsize);
275 	}
276 	mtx_unlock(&ktrace_mtx);
277 	return (ktr_requestpool);
278 }
279 
280 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
281 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
282     (sizeof((struct thread *)NULL)->td_name));
283 
284 static struct ktr_request *
285 ktr_getrequest_entered(struct thread *td, int type)
286 {
287 	struct ktr_request *req;
288 	struct proc *p = td->td_proc;
289 	int pm;
290 
291 	mtx_lock(&ktrace_mtx);
292 	if (!KTRCHECK(td, type)) {
293 		mtx_unlock(&ktrace_mtx);
294 		return (NULL);
295 	}
296 	req = STAILQ_FIRST(&ktr_free);
297 	if (req != NULL) {
298 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
299 		req->ktr_header.ktr_type = type;
300 		if (p->p_traceflag & KTRFAC_DROP) {
301 			req->ktr_header.ktr_type |= KTR_DROP;
302 			p->p_traceflag &= ~KTRFAC_DROP;
303 		}
304 		mtx_unlock(&ktrace_mtx);
305 		microtime(&req->ktr_header.ktr_time);
306 		req->ktr_header.ktr_pid = p->p_pid;
307 		req->ktr_header.ktr_tid = td->td_tid;
308 		bcopy(td->td_name, req->ktr_header.ktr_comm,
309 		    sizeof(req->ktr_header.ktr_comm));
310 		req->ktr_buffer = NULL;
311 		req->ktr_header.ktr_len = 0;
312 	} else {
313 		p->p_traceflag |= KTRFAC_DROP;
314 		pm = print_message;
315 		print_message = 0;
316 		mtx_unlock(&ktrace_mtx);
317 		if (pm)
318 			printf("Out of ktrace request objects.\n");
319 	}
320 	return (req);
321 }
322 
323 static struct ktr_request *
324 ktr_getrequest(int type)
325 {
326 	struct thread *td = curthread;
327 	struct ktr_request *req;
328 
329 	ktrace_enter(td);
330 	req = ktr_getrequest_entered(td, type);
331 	if (req == NULL)
332 		ktrace_exit(td);
333 
334 	return (req);
335 }
336 
337 /*
338  * Some trace generation environments don't permit direct access to VFS,
339  * such as during a context switch where sleeping is not allowed.  Under these
340  * circumstances, queue a request to the thread to be written asynchronously
341  * later.
342  */
343 static void
344 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
345 {
346 
347 	mtx_lock(&ktrace_mtx);
348 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
349 	mtx_unlock(&ktrace_mtx);
350 }
351 
352 /*
353  * Drain any pending ktrace records from the per-thread queue to disk.  This
354  * is used both internally before committing other records, and also on
355  * system call return.  We drain all the ones we can find at the time when
356  * drain is requested, but don't keep draining after that as those events
357  * may be approximately "after" the current event.
358  */
359 static void
360 ktr_drain(struct thread *td)
361 {
362 	struct ktr_request *queued_req;
363 	STAILQ_HEAD(, ktr_request) local_queue;
364 
365 	ktrace_assert(td);
366 	sx_assert(&ktrace_sx, SX_XLOCKED);
367 
368 	STAILQ_INIT(&local_queue);
369 
370 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
371 		mtx_lock(&ktrace_mtx);
372 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
373 		mtx_unlock(&ktrace_mtx);
374 
375 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
376 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
377 			ktr_writerequest(td, queued_req);
378 			ktr_freerequest(queued_req);
379 		}
380 	}
381 }
382 
383 /*
384  * Submit a trace record for immediate commit to disk -- to be used only
385  * where entering VFS is OK.  First drain any pending records that may have
386  * been cached in the thread.
387  */
388 static void
389 ktr_submitrequest(struct thread *td, struct ktr_request *req)
390 {
391 
392 	ktrace_assert(td);
393 
394 	sx_xlock(&ktrace_sx);
395 	ktr_drain(td);
396 	ktr_writerequest(td, req);
397 	ktr_freerequest(req);
398 	sx_xunlock(&ktrace_sx);
399 	ktrace_exit(td);
400 }
401 
402 static void
403 ktr_freerequest(struct ktr_request *req)
404 {
405 
406 	mtx_lock(&ktrace_mtx);
407 	ktr_freerequest_locked(req);
408 	mtx_unlock(&ktrace_mtx);
409 }
410 
411 static void
412 ktr_freerequest_locked(struct ktr_request *req)
413 {
414 
415 	mtx_assert(&ktrace_mtx, MA_OWNED);
416 	if (req->ktr_buffer != NULL)
417 		free(req->ktr_buffer, M_KTRACE);
418 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
419 }
420 
421 /*
422  * Disable tracing for a process and release all associated resources.
423  * The caller is responsible for releasing a reference on the returned
424  * vnode and credentials.
425  */
426 static void
427 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
428 {
429 	struct ktr_request *req;
430 
431 	PROC_LOCK_ASSERT(p, MA_OWNED);
432 	mtx_assert(&ktrace_mtx, MA_OWNED);
433 	*uc = p->p_tracecred;
434 	p->p_tracecred = NULL;
435 	if (vp != NULL)
436 		*vp = p->p_tracevp;
437 	p->p_tracevp = NULL;
438 	p->p_traceflag = 0;
439 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
440 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
441 		ktr_freerequest_locked(req);
442 	}
443 }
444 
445 void
446 ktrsyscall(int code, int narg, register_t args[])
447 {
448 	struct ktr_request *req;
449 	struct ktr_syscall *ktp;
450 	size_t buflen;
451 	char *buf = NULL;
452 
453 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
454 		return;
455 
456 	buflen = sizeof(register_t) * narg;
457 	if (buflen > 0) {
458 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
459 		bcopy(args, buf, buflen);
460 	}
461 	req = ktr_getrequest(KTR_SYSCALL);
462 	if (req == NULL) {
463 		if (buf != NULL)
464 			free(buf, M_KTRACE);
465 		return;
466 	}
467 	ktp = &req->ktr_data.ktr_syscall;
468 	ktp->ktr_code = code;
469 	ktp->ktr_narg = narg;
470 	if (buflen > 0) {
471 		req->ktr_header.ktr_len = buflen;
472 		req->ktr_buffer = buf;
473 	}
474 	ktr_submitrequest(curthread, req);
475 }
476 
477 void
478 ktrsysret(int code, int error, register_t retval)
479 {
480 	struct ktr_request *req;
481 	struct ktr_sysret *ktp;
482 
483 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
484 		return;
485 
486 	req = ktr_getrequest(KTR_SYSRET);
487 	if (req == NULL)
488 		return;
489 	ktp = &req->ktr_data.ktr_sysret;
490 	ktp->ktr_code = code;
491 	ktp->ktr_error = error;
492 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
493 	ktr_submitrequest(curthread, req);
494 }
495 
496 /*
497  * When a setuid process execs, disable tracing.
498  *
499  * XXX: We toss any pending asynchronous records.
500  */
501 void
502 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
503 {
504 
505 	PROC_LOCK_ASSERT(p, MA_OWNED);
506 	mtx_lock(&ktrace_mtx);
507 	ktr_freeproc(p, uc, vp);
508 	mtx_unlock(&ktrace_mtx);
509 }
510 
511 /*
512  * When a process exits, drain per-process asynchronous trace records
513  * and disable tracing.
514  */
515 void
516 ktrprocexit(struct thread *td)
517 {
518 	struct ktr_request *req;
519 	struct proc *p;
520 	struct ucred *cred;
521 	struct vnode *vp;
522 
523 	p = td->td_proc;
524 	if (p->p_traceflag == 0)
525 		return;
526 
527 	ktrace_enter(td);
528 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
529 	if (req != NULL)
530 		ktr_enqueuerequest(td, req);
531 	sx_xlock(&ktrace_sx);
532 	ktr_drain(td);
533 	sx_xunlock(&ktrace_sx);
534 	PROC_LOCK(p);
535 	mtx_lock(&ktrace_mtx);
536 	ktr_freeproc(p, &cred, &vp);
537 	mtx_unlock(&ktrace_mtx);
538 	PROC_UNLOCK(p);
539 	if (vp != NULL)
540 		vrele(vp);
541 	if (cred != NULL)
542 		crfree(cred);
543 	ktrace_exit(td);
544 }
545 
546 static void
547 ktrprocctor_entered(struct thread *td, struct proc *p)
548 {
549 	struct ktr_proc_ctor *ktp;
550 	struct ktr_request *req;
551 	struct thread *td2;
552 
553 	ktrace_assert(td);
554 	td2 = FIRST_THREAD_IN_PROC(p);
555 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
556 	if (req == NULL)
557 		return;
558 	ktp = &req->ktr_data.ktr_proc_ctor;
559 	ktp->sv_flags = p->p_sysent->sv_flags;
560 	ktr_enqueuerequest(td2, req);
561 }
562 
563 void
564 ktrprocctor(struct proc *p)
565 {
566 	struct thread *td = curthread;
567 
568 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
569 		return;
570 
571 	ktrace_enter(td);
572 	ktrprocctor_entered(td, p);
573 	ktrace_exit(td);
574 }
575 
576 /*
577  * When a process forks, enable tracing in the new process if needed.
578  */
579 void
580 ktrprocfork(struct proc *p1, struct proc *p2)
581 {
582 
583 	MPASS(p2->p_tracevp == NULL);
584 	MPASS(p2->p_traceflag == 0);
585 
586 	if (p1->p_traceflag == 0)
587 		return;
588 
589 	PROC_LOCK(p1);
590 	mtx_lock(&ktrace_mtx);
591 	if (p1->p_traceflag & KTRFAC_INHERIT) {
592 		p2->p_traceflag = p1->p_traceflag;
593 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
594 			VREF(p2->p_tracevp);
595 			KASSERT(p1->p_tracecred != NULL,
596 			    ("ktrace vnode with no cred"));
597 			p2->p_tracecred = crhold(p1->p_tracecred);
598 		}
599 	}
600 	mtx_unlock(&ktrace_mtx);
601 	PROC_UNLOCK(p1);
602 
603 	ktrprocctor(p2);
604 }
605 
606 /*
607  * When a thread returns, drain any asynchronous records generated by the
608  * system call.
609  */
610 void
611 ktruserret(struct thread *td)
612 {
613 
614 	ktrace_enter(td);
615 	sx_xlock(&ktrace_sx);
616 	ktr_drain(td);
617 	sx_xunlock(&ktrace_sx);
618 	ktrace_exit(td);
619 }
620 
621 void
622 ktrnamei(path)
623 	char *path;
624 {
625 	struct ktr_request *req;
626 	int namelen;
627 	char *buf = NULL;
628 
629 	namelen = strlen(path);
630 	if (namelen > 0) {
631 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
632 		bcopy(path, buf, namelen);
633 	}
634 	req = ktr_getrequest(KTR_NAMEI);
635 	if (req == NULL) {
636 		if (buf != NULL)
637 			free(buf, M_KTRACE);
638 		return;
639 	}
640 	if (namelen > 0) {
641 		req->ktr_header.ktr_len = namelen;
642 		req->ktr_buffer = buf;
643 	}
644 	ktr_submitrequest(curthread, req);
645 }
646 
647 void
648 ktrsysctl(int *name, u_int namelen)
649 {
650 	struct ktr_request *req;
651 	u_int mib[CTL_MAXNAME + 2];
652 	char *mibname;
653 	size_t mibnamelen;
654 	int error;
655 
656 	/* Lookup name of mib. */
657 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
658 	mib[0] = 0;
659 	mib[1] = 1;
660 	bcopy(name, mib + 2, namelen * sizeof(*name));
661 	mibnamelen = 128;
662 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
663 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
664 	    NULL, 0, &mibnamelen, 0);
665 	if (error) {
666 		free(mibname, M_KTRACE);
667 		return;
668 	}
669 	req = ktr_getrequest(KTR_SYSCTL);
670 	if (req == NULL) {
671 		free(mibname, M_KTRACE);
672 		return;
673 	}
674 	req->ktr_header.ktr_len = mibnamelen;
675 	req->ktr_buffer = mibname;
676 	ktr_submitrequest(curthread, req);
677 }
678 
679 void
680 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
681 {
682 	struct ktr_request *req;
683 	struct ktr_genio *ktg;
684 	int datalen;
685 	char *buf;
686 
687 	if (error) {
688 		free(uio, M_IOV);
689 		return;
690 	}
691 	uio->uio_offset = 0;
692 	uio->uio_rw = UIO_WRITE;
693 	datalen = MIN(uio->uio_resid, ktr_geniosize);
694 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
695 	error = uiomove(buf, datalen, uio);
696 	free(uio, M_IOV);
697 	if (error) {
698 		free(buf, M_KTRACE);
699 		return;
700 	}
701 	req = ktr_getrequest(KTR_GENIO);
702 	if (req == NULL) {
703 		free(buf, M_KTRACE);
704 		return;
705 	}
706 	ktg = &req->ktr_data.ktr_genio;
707 	ktg->ktr_fd = fd;
708 	ktg->ktr_rw = rw;
709 	req->ktr_header.ktr_len = datalen;
710 	req->ktr_buffer = buf;
711 	ktr_submitrequest(curthread, req);
712 }
713 
714 void
715 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
716 {
717 	struct thread *td = curthread;
718 	struct ktr_request *req;
719 	struct ktr_psig	*kp;
720 
721 	req = ktr_getrequest(KTR_PSIG);
722 	if (req == NULL)
723 		return;
724 	kp = &req->ktr_data.ktr_psig;
725 	kp->signo = (char)sig;
726 	kp->action = action;
727 	kp->mask = *mask;
728 	kp->code = code;
729 	ktr_enqueuerequest(td, req);
730 	ktrace_exit(td);
731 }
732 
733 void
734 ktrcsw(int out, int user, const char *wmesg)
735 {
736 	struct thread *td = curthread;
737 	struct ktr_request *req;
738 	struct ktr_csw *kc;
739 
740 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
741 		return;
742 
743 	req = ktr_getrequest(KTR_CSW);
744 	if (req == NULL)
745 		return;
746 	kc = &req->ktr_data.ktr_csw;
747 	kc->out = out;
748 	kc->user = user;
749 	if (wmesg != NULL)
750 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
751 	else
752 		bzero(kc->wmesg, sizeof(kc->wmesg));
753 	ktr_enqueuerequest(td, req);
754 	ktrace_exit(td);
755 }
756 
757 void
758 ktrstruct(const char *name, const void *data, size_t datalen)
759 {
760 	struct ktr_request *req;
761 	char *buf;
762 	size_t buflen, namelen;
763 
764 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
765 		return;
766 
767 	if (data == NULL)
768 		datalen = 0;
769 	namelen = strlen(name) + 1;
770 	buflen = namelen + datalen;
771 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
772 	strcpy(buf, name);
773 	bcopy(data, buf + namelen, datalen);
774 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
775 		free(buf, M_KTRACE);
776 		return;
777 	}
778 	req->ktr_buffer = buf;
779 	req->ktr_header.ktr_len = buflen;
780 	ktr_submitrequest(curthread, req);
781 }
782 
783 void
784 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
785 {
786 
787 	if (error == 0)
788 		ktrstruct(name, data, datalen);
789 }
790 
791 void
792 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
793     int num_items, size_t struct_size)
794 {
795 	struct ktr_request *req;
796 	struct ktr_struct_array *ksa;
797 	char *buf;
798 	size_t buflen, datalen, namelen;
799 	int max_items;
800 
801 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
802 		return;
803 
804 	/* Trim array length to genio size. */
805 	max_items = ktr_geniosize / struct_size;
806 	if (num_items > max_items) {
807 		if (max_items == 0)
808 			num_items = 1;
809 		else
810 			num_items = max_items;
811 	}
812 	datalen = num_items * struct_size;
813 
814 	if (data == NULL)
815 		datalen = 0;
816 
817 	namelen = strlen(name) + 1;
818 	buflen = namelen + datalen;
819 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
820 	strcpy(buf, name);
821 	if (seg == UIO_SYSSPACE)
822 		bcopy(data, buf + namelen, datalen);
823 	else {
824 		if (copyin(data, buf + namelen, datalen) != 0) {
825 			free(buf, M_KTRACE);
826 			return;
827 		}
828 	}
829 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
830 		free(buf, M_KTRACE);
831 		return;
832 	}
833 	ksa = &req->ktr_data.ktr_struct_array;
834 	ksa->struct_size = struct_size;
835 	req->ktr_buffer = buf;
836 	req->ktr_header.ktr_len = buflen;
837 	ktr_submitrequest(curthread, req);
838 }
839 
840 void
841 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed,
842     const cap_rights_t *held)
843 {
844 	struct thread *td = curthread;
845 	struct ktr_request *req;
846 	struct ktr_cap_fail *kcf;
847 
848 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
849 		return;
850 
851 	req = ktr_getrequest(KTR_CAPFAIL);
852 	if (req == NULL)
853 		return;
854 	kcf = &req->ktr_data.ktr_cap_fail;
855 	kcf->cap_type = type;
856 	if (needed != NULL)
857 		kcf->cap_needed = *needed;
858 	else
859 		cap_rights_init(&kcf->cap_needed);
860 	if (held != NULL)
861 		kcf->cap_held = *held;
862 	else
863 		cap_rights_init(&kcf->cap_held);
864 	ktr_enqueuerequest(td, req);
865 	ktrace_exit(td);
866 }
867 
868 void
869 ktrfault(vm_offset_t vaddr, int type)
870 {
871 	struct thread *td = curthread;
872 	struct ktr_request *req;
873 	struct ktr_fault *kf;
874 
875 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
876 		return;
877 
878 	req = ktr_getrequest(KTR_FAULT);
879 	if (req == NULL)
880 		return;
881 	kf = &req->ktr_data.ktr_fault;
882 	kf->vaddr = vaddr;
883 	kf->type = type;
884 	ktr_enqueuerequest(td, req);
885 	ktrace_exit(td);
886 }
887 
888 void
889 ktrfaultend(int result)
890 {
891 	struct thread *td = curthread;
892 	struct ktr_request *req;
893 	struct ktr_faultend *kf;
894 
895 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
896 		return;
897 
898 	req = ktr_getrequest(KTR_FAULTEND);
899 	if (req == NULL)
900 		return;
901 	kf = &req->ktr_data.ktr_faultend;
902 	kf->result = result;
903 	ktr_enqueuerequest(td, req);
904 	ktrace_exit(td);
905 }
906 #endif /* KTRACE */
907 
908 /* Interface and common routines */
909 
910 #ifndef _SYS_SYSPROTO_H_
911 struct ktrace_args {
912 	char	*fname;
913 	int	ops;
914 	int	facs;
915 	int	pid;
916 };
917 #endif
918 /* ARGSUSED */
919 int
920 sys_ktrace(struct thread *td, struct ktrace_args *uap)
921 {
922 #ifdef KTRACE
923 	struct vnode *vp = NULL;
924 	struct proc *p;
925 	struct pgrp *pg;
926 	int facs = uap->facs & ~KTRFAC_ROOT;
927 	int ops = KTROP(uap->ops);
928 	int descend = uap->ops & KTRFLAG_DESCEND;
929 	int nfound, ret = 0;
930 	int flags, error = 0;
931 	struct nameidata nd;
932 	struct ucred *cred;
933 
934 	/*
935 	 * Need something to (un)trace.
936 	 */
937 	if (ops != KTROP_CLEARFILE && facs == 0)
938 		return (EINVAL);
939 
940 	ktrace_enter(td);
941 	if (ops != KTROP_CLEAR) {
942 		/*
943 		 * an operation which requires a file argument.
944 		 */
945 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
946 		flags = FREAD | FWRITE | O_NOFOLLOW;
947 		error = vn_open(&nd, &flags, 0, NULL);
948 		if (error) {
949 			ktrace_exit(td);
950 			return (error);
951 		}
952 		NDFREE(&nd, NDF_ONLY_PNBUF);
953 		vp = nd.ni_vp;
954 		VOP_UNLOCK(vp);
955 		if (vp->v_type != VREG) {
956 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
957 			ktrace_exit(td);
958 			return (EACCES);
959 		}
960 	}
961 	/*
962 	 * Clear all uses of the tracefile.
963 	 */
964 	if (ops == KTROP_CLEARFILE) {
965 		int vrele_count;
966 
967 		vrele_count = 0;
968 		sx_slock(&allproc_lock);
969 		FOREACH_PROC_IN_SYSTEM(p) {
970 			PROC_LOCK(p);
971 			if (p->p_tracevp == vp) {
972 				if (ktrcanset(td, p)) {
973 					mtx_lock(&ktrace_mtx);
974 					ktr_freeproc(p, &cred, NULL);
975 					mtx_unlock(&ktrace_mtx);
976 					vrele_count++;
977 					crfree(cred);
978 				} else
979 					error = EPERM;
980 			}
981 			PROC_UNLOCK(p);
982 		}
983 		sx_sunlock(&allproc_lock);
984 		if (vrele_count > 0) {
985 			while (vrele_count-- > 0)
986 				vrele(vp);
987 		}
988 		goto done;
989 	}
990 	/*
991 	 * do it
992 	 */
993 	sx_slock(&proctree_lock);
994 	if (uap->pid < 0) {
995 		/*
996 		 * by process group
997 		 */
998 		pg = pgfind(-uap->pid);
999 		if (pg == NULL) {
1000 			sx_sunlock(&proctree_lock);
1001 			error = ESRCH;
1002 			goto done;
1003 		}
1004 		/*
1005 		 * ktrops() may call vrele(). Lock pg_members
1006 		 * by the proctree_lock rather than pg_mtx.
1007 		 */
1008 		PGRP_UNLOCK(pg);
1009 		nfound = 0;
1010 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1011 			PROC_LOCK(p);
1012 			if (p->p_state == PRS_NEW ||
1013 			    p_cansee(td, p) != 0) {
1014 				PROC_UNLOCK(p);
1015 				continue;
1016 			}
1017 			nfound++;
1018 			if (descend)
1019 				ret |= ktrsetchildren(td, p, ops, facs, vp);
1020 			else
1021 				ret |= ktrops(td, p, ops, facs, vp);
1022 		}
1023 		if (nfound == 0) {
1024 			sx_sunlock(&proctree_lock);
1025 			error = ESRCH;
1026 			goto done;
1027 		}
1028 	} else {
1029 		/*
1030 		 * by pid
1031 		 */
1032 		p = pfind(uap->pid);
1033 		if (p == NULL)
1034 			error = ESRCH;
1035 		else
1036 			error = p_cansee(td, p);
1037 		if (error) {
1038 			if (p != NULL)
1039 				PROC_UNLOCK(p);
1040 			sx_sunlock(&proctree_lock);
1041 			goto done;
1042 		}
1043 		if (descend)
1044 			ret |= ktrsetchildren(td, p, ops, facs, vp);
1045 		else
1046 			ret |= ktrops(td, p, ops, facs, vp);
1047 	}
1048 	sx_sunlock(&proctree_lock);
1049 	if (!ret)
1050 		error = EPERM;
1051 done:
1052 	if (vp != NULL)
1053 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
1054 	ktrace_exit(td);
1055 	return (error);
1056 #else /* !KTRACE */
1057 	return (ENOSYS);
1058 #endif /* KTRACE */
1059 }
1060 
1061 /* ARGSUSED */
1062 int
1063 sys_utrace(struct thread *td, struct utrace_args *uap)
1064 {
1065 
1066 #ifdef KTRACE
1067 	struct ktr_request *req;
1068 	void *cp;
1069 	int error;
1070 
1071 	if (!KTRPOINT(td, KTR_USER))
1072 		return (0);
1073 	if (uap->len > KTR_USER_MAXLEN)
1074 		return (EINVAL);
1075 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1076 	error = copyin(uap->addr, cp, uap->len);
1077 	if (error) {
1078 		free(cp, M_KTRACE);
1079 		return (error);
1080 	}
1081 	req = ktr_getrequest(KTR_USER);
1082 	if (req == NULL) {
1083 		free(cp, M_KTRACE);
1084 		return (ENOMEM);
1085 	}
1086 	req->ktr_buffer = cp;
1087 	req->ktr_header.ktr_len = uap->len;
1088 	ktr_submitrequest(td, req);
1089 	return (0);
1090 #else /* !KTRACE */
1091 	return (ENOSYS);
1092 #endif /* KTRACE */
1093 }
1094 
1095 #ifdef KTRACE
1096 static int
1097 ktrops(struct thread *td, struct proc *p, int ops, int facs, struct vnode *vp)
1098 {
1099 	struct vnode *tracevp = NULL;
1100 	struct ucred *tracecred = NULL;
1101 
1102 	PROC_LOCK_ASSERT(p, MA_OWNED);
1103 	if (!ktrcanset(td, p)) {
1104 		PROC_UNLOCK(p);
1105 		return (0);
1106 	}
1107 	if (p->p_flag & P_WEXIT) {
1108 		/* If the process is exiting, just ignore it. */
1109 		PROC_UNLOCK(p);
1110 		return (1);
1111 	}
1112 	mtx_lock(&ktrace_mtx);
1113 	if (ops == KTROP_SET) {
1114 		if (p->p_tracevp != vp) {
1115 			/*
1116 			 * if trace file already in use, relinquish below
1117 			 */
1118 			tracevp = p->p_tracevp;
1119 			VREF(vp);
1120 			p->p_tracevp = vp;
1121 		}
1122 		if (p->p_tracecred != td->td_ucred) {
1123 			tracecred = p->p_tracecred;
1124 			p->p_tracecred = crhold(td->td_ucred);
1125 		}
1126 		p->p_traceflag |= facs;
1127 		if (priv_check(td, PRIV_KTRACE) == 0)
1128 			p->p_traceflag |= KTRFAC_ROOT;
1129 	} else {
1130 		/* KTROP_CLEAR */
1131 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1132 			/* no more tracing */
1133 			ktr_freeproc(p, &tracecred, &tracevp);
1134 	}
1135 	mtx_unlock(&ktrace_mtx);
1136 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1137 		ktrprocctor_entered(td, p);
1138 	PROC_UNLOCK(p);
1139 	if (tracevp != NULL)
1140 		vrele(tracevp);
1141 	if (tracecred != NULL)
1142 		crfree(tracecred);
1143 
1144 	return (1);
1145 }
1146 
1147 static int
1148 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1149     struct vnode *vp)
1150 {
1151 	struct proc *p;
1152 	int ret = 0;
1153 
1154 	p = top;
1155 	PROC_LOCK_ASSERT(p, MA_OWNED);
1156 	sx_assert(&proctree_lock, SX_LOCKED);
1157 	for (;;) {
1158 		ret |= ktrops(td, p, ops, facs, vp);
1159 		/*
1160 		 * If this process has children, descend to them next,
1161 		 * otherwise do any siblings, and if done with this level,
1162 		 * follow back up the tree (but not past top).
1163 		 */
1164 		if (!LIST_EMPTY(&p->p_children))
1165 			p = LIST_FIRST(&p->p_children);
1166 		else for (;;) {
1167 			if (p == top)
1168 				return (ret);
1169 			if (LIST_NEXT(p, p_sibling)) {
1170 				p = LIST_NEXT(p, p_sibling);
1171 				break;
1172 			}
1173 			p = p->p_pptr;
1174 		}
1175 		PROC_LOCK(p);
1176 	}
1177 	/*NOTREACHED*/
1178 }
1179 
1180 static void
1181 ktr_writerequest(struct thread *td, struct ktr_request *req)
1182 {
1183 	struct ktr_header *kth;
1184 	struct vnode *vp;
1185 	struct proc *p;
1186 	struct ucred *cred;
1187 	struct uio auio;
1188 	struct iovec aiov[3];
1189 	struct mount *mp;
1190 	int datalen, buflen, vrele_count;
1191 	int error;
1192 
1193 	/*
1194 	 * We hold the vnode and credential for use in I/O in case ktrace is
1195 	 * disabled on the process as we write out the request.
1196 	 *
1197 	 * XXXRW: This is not ideal: we could end up performing a write after
1198 	 * the vnode has been closed.
1199 	 */
1200 	mtx_lock(&ktrace_mtx);
1201 	vp = td->td_proc->p_tracevp;
1202 	cred = td->td_proc->p_tracecred;
1203 
1204 	/*
1205 	 * If vp is NULL, the vp has been cleared out from under this
1206 	 * request, so just drop it.  Make sure the credential and vnode are
1207 	 * in sync: we should have both or neither.
1208 	 */
1209 	if (vp == NULL) {
1210 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1211 		mtx_unlock(&ktrace_mtx);
1212 		return;
1213 	}
1214 	VREF(vp);
1215 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1216 	crhold(cred);
1217 	mtx_unlock(&ktrace_mtx);
1218 
1219 	kth = &req->ktr_header;
1220 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths),
1221 	    ("data_lengths array overflow"));
1222 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1223 	buflen = kth->ktr_len;
1224 	auio.uio_iov = &aiov[0];
1225 	auio.uio_offset = 0;
1226 	auio.uio_segflg = UIO_SYSSPACE;
1227 	auio.uio_rw = UIO_WRITE;
1228 	aiov[0].iov_base = (caddr_t)kth;
1229 	aiov[0].iov_len = sizeof(struct ktr_header);
1230 	auio.uio_resid = sizeof(struct ktr_header);
1231 	auio.uio_iovcnt = 1;
1232 	auio.uio_td = td;
1233 	if (datalen != 0) {
1234 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1235 		aiov[1].iov_len = datalen;
1236 		auio.uio_resid += datalen;
1237 		auio.uio_iovcnt++;
1238 		kth->ktr_len += datalen;
1239 	}
1240 	if (buflen != 0) {
1241 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1242 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1243 		aiov[auio.uio_iovcnt].iov_len = buflen;
1244 		auio.uio_resid += buflen;
1245 		auio.uio_iovcnt++;
1246 	}
1247 
1248 	vn_start_write(vp, &mp, V_WAIT);
1249 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1250 #ifdef MAC
1251 	error = mac_vnode_check_write(cred, NOCRED, vp);
1252 	if (error == 0)
1253 #endif
1254 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1255 	VOP_UNLOCK(vp);
1256 	vn_finished_write(mp);
1257 	crfree(cred);
1258 	if (!error) {
1259 		vrele(vp);
1260 		return;
1261 	}
1262 
1263 	/*
1264 	 * If error encountered, give up tracing on this vnode.  We defer
1265 	 * all the vrele()'s on the vnode until after we are finished walking
1266 	 * the various lists to avoid needlessly holding locks.
1267 	 * NB: at this point we still hold the vnode reference that must
1268 	 * not go away as we need the valid vnode to compare with. Thus let
1269 	 * vrele_count start at 1 and the reference will be freed
1270 	 * by the loop at the end after our last use of vp.
1271 	 */
1272 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1273 	    error);
1274 	vrele_count = 1;
1275 	/*
1276 	 * First, clear this vnode from being used by any processes in the
1277 	 * system.
1278 	 * XXX - If one process gets an EPERM writing to the vnode, should
1279 	 * we really do this?  Other processes might have suitable
1280 	 * credentials for the operation.
1281 	 */
1282 	cred = NULL;
1283 	sx_slock(&allproc_lock);
1284 	FOREACH_PROC_IN_SYSTEM(p) {
1285 		PROC_LOCK(p);
1286 		if (p->p_tracevp == vp) {
1287 			mtx_lock(&ktrace_mtx);
1288 			ktr_freeproc(p, &cred, NULL);
1289 			mtx_unlock(&ktrace_mtx);
1290 			vrele_count++;
1291 		}
1292 		PROC_UNLOCK(p);
1293 		if (cred != NULL) {
1294 			crfree(cred);
1295 			cred = NULL;
1296 		}
1297 	}
1298 	sx_sunlock(&allproc_lock);
1299 
1300 	while (vrele_count-- > 0)
1301 		vrele(vp);
1302 }
1303 
1304 /*
1305  * Return true if caller has permission to set the ktracing state
1306  * of target.  Essentially, the target can't possess any
1307  * more permissions than the caller.  KTRFAC_ROOT signifies that
1308  * root previously set the tracing status on the target process, and
1309  * so, only root may further change it.
1310  */
1311 static int
1312 ktrcanset(struct thread *td, struct proc *targetp)
1313 {
1314 
1315 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1316 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1317 	    priv_check(td, PRIV_KTRACE))
1318 		return (0);
1319 
1320 	if (p_candebug(td, targetp) != 0)
1321 		return (0);
1322 
1323 	return (1);
1324 }
1325 
1326 #endif /* KTRACE */
1327