xref: /freebsd/sys/kern/kern_ktrace.c (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/capsicum.h>
43 #include <sys/systm.h>
44 #include <sys/fcntl.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/namei.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/unistd.h>
55 #include <sys/vnode.h>
56 #include <sys/socket.h>
57 #include <sys/stat.h>
58 #include <sys/ktrace.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysent.h>
62 #include <sys/syslog.h>
63 #include <sys/sysproto.h>
64 
65 #include <security/mac/mac_framework.h>
66 
67 /*
68  * The ktrace facility allows the tracing of certain key events in user space
69  * processes, such as system calls, signal delivery, context switches, and
70  * user generated events using utrace(2).  It works by streaming event
71  * records and data to a vnode associated with the process using the
72  * ktrace(2) system call.  In general, records can be written directly from
73  * the context that generates the event.  One important exception to this is
74  * during a context switch, where sleeping is not permitted.  To handle this
75  * case, trace events are generated using in-kernel ktr_request records, and
76  * then delivered to disk at a convenient moment -- either immediately, the
77  * next traceable event, at system call return, or at process exit.
78  *
79  * When dealing with multiple threads or processes writing to the same event
80  * log, ordering guarantees are weak: specifically, if an event has multiple
81  * records (i.e., system call enter and return), they may be interlaced with
82  * records from another event.  Process and thread ID information is provided
83  * in the record, and user applications can de-interlace events if required.
84  */
85 
86 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
87 
88 #ifdef KTRACE
89 
90 FEATURE(ktrace, "Kernel support for system-call tracing");
91 
92 #ifndef KTRACE_REQUEST_POOL
93 #define	KTRACE_REQUEST_POOL	100
94 #endif
95 
96 struct ktr_request {
97 	struct	ktr_header ktr_header;
98 	void	*ktr_buffer;
99 	union {
100 		struct	ktr_proc_ctor ktr_proc_ctor;
101 		struct	ktr_cap_fail ktr_cap_fail;
102 		struct	ktr_syscall ktr_syscall;
103 		struct	ktr_sysret ktr_sysret;
104 		struct	ktr_genio ktr_genio;
105 		struct	ktr_psig ktr_psig;
106 		struct	ktr_csw ktr_csw;
107 		struct	ktr_fault ktr_fault;
108 		struct	ktr_faultend ktr_faultend;
109 		struct  ktr_struct_array ktr_struct_array;
110 	} ktr_data;
111 	STAILQ_ENTRY(ktr_request) ktr_list;
112 };
113 
114 static int data_lengths[] = {
115 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
116 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
117 	[KTR_NAMEI] = 0,
118 	[KTR_GENIO] = sizeof(struct ktr_genio),
119 	[KTR_PSIG] = sizeof(struct ktr_psig),
120 	[KTR_CSW] = sizeof(struct ktr_csw),
121 	[KTR_USER] = 0,
122 	[KTR_STRUCT] = 0,
123 	[KTR_SYSCTL] = 0,
124 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
125 	[KTR_PROCDTOR] = 0,
126 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
127 	[KTR_FAULT] = sizeof(struct ktr_fault),
128 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
129 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
130 };
131 
132 static STAILQ_HEAD(, ktr_request) ktr_free;
133 
134 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
135     "KTRACE options");
136 
137 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
138 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
139 
140 u_int ktr_geniosize = PAGE_SIZE;
141 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
142     0, "Maximum size of genio event payload");
143 
144 static int print_message = 1;
145 static struct mtx ktrace_mtx;
146 static struct sx ktrace_sx;
147 
148 static void ktrace_init(void *dummy);
149 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
150 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
151 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
152 static struct ktr_request *ktr_getrequest(int type);
153 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
154 static void ktr_freeproc(struct proc *p, struct ucred **uc,
155     struct vnode **vp);
156 static void ktr_freerequest(struct ktr_request *req);
157 static void ktr_freerequest_locked(struct ktr_request *req);
158 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
159 static int ktrcanset(struct thread *,struct proc *);
160 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
161 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
162 static void ktrprocctor_entered(struct thread *, struct proc *);
163 
164 /*
165  * ktrace itself generates events, such as context switches, which we do not
166  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
167  * whether or not it is in a region where tracing of events should be
168  * suppressed.
169  */
170 static void
171 ktrace_enter(struct thread *td)
172 {
173 
174 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
175 	td->td_pflags |= TDP_INKTRACE;
176 }
177 
178 static void
179 ktrace_exit(struct thread *td)
180 {
181 
182 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
183 	td->td_pflags &= ~TDP_INKTRACE;
184 }
185 
186 static void
187 ktrace_assert(struct thread *td)
188 {
189 
190 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
191 }
192 
193 static void
194 ktrace_init(void *dummy)
195 {
196 	struct ktr_request *req;
197 	int i;
198 
199 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
200 	sx_init(&ktrace_sx, "ktrace_sx");
201 	STAILQ_INIT(&ktr_free);
202 	for (i = 0; i < ktr_requestpool; i++) {
203 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
204 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
205 	}
206 }
207 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
208 
209 static int
210 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
211 {
212 	struct thread *td;
213 	u_int newsize, oldsize, wantsize;
214 	int error;
215 
216 	/* Handle easy read-only case first to avoid warnings from GCC. */
217 	if (!req->newptr) {
218 		oldsize = ktr_requestpool;
219 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
220 	}
221 
222 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
223 	if (error)
224 		return (error);
225 	td = curthread;
226 	ktrace_enter(td);
227 	oldsize = ktr_requestpool;
228 	newsize = ktrace_resize_pool(oldsize, wantsize);
229 	ktrace_exit(td);
230 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
231 	if (error)
232 		return (error);
233 	if (wantsize > oldsize && newsize < wantsize)
234 		return (ENOSPC);
235 	return (0);
236 }
237 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
238     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
239     sysctl_kern_ktrace_request_pool, "IU",
240     "Pool buffer size for ktrace(1)");
241 
242 static u_int
243 ktrace_resize_pool(u_int oldsize, u_int newsize)
244 {
245 	STAILQ_HEAD(, ktr_request) ktr_new;
246 	struct ktr_request *req;
247 	int bound;
248 
249 	print_message = 1;
250 	bound = newsize - oldsize;
251 	if (bound == 0)
252 		return (ktr_requestpool);
253 	if (bound < 0) {
254 		mtx_lock(&ktrace_mtx);
255 		/* Shrink pool down to newsize if possible. */
256 		while (bound++ < 0) {
257 			req = STAILQ_FIRST(&ktr_free);
258 			if (req == NULL)
259 				break;
260 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
261 			ktr_requestpool--;
262 			free(req, M_KTRACE);
263 		}
264 	} else {
265 		/* Grow pool up to newsize. */
266 		STAILQ_INIT(&ktr_new);
267 		while (bound-- > 0) {
268 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
269 			    M_WAITOK);
270 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
271 		}
272 		mtx_lock(&ktrace_mtx);
273 		STAILQ_CONCAT(&ktr_free, &ktr_new);
274 		ktr_requestpool += (newsize - oldsize);
275 	}
276 	mtx_unlock(&ktrace_mtx);
277 	return (ktr_requestpool);
278 }
279 
280 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
281 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
282     (sizeof((struct thread *)NULL)->td_name));
283 
284 static struct ktr_request *
285 ktr_getrequest_entered(struct thread *td, int type)
286 {
287 	struct ktr_request *req;
288 	struct proc *p = td->td_proc;
289 	int pm;
290 
291 	mtx_lock(&ktrace_mtx);
292 	if (!KTRCHECK(td, type)) {
293 		mtx_unlock(&ktrace_mtx);
294 		return (NULL);
295 	}
296 	req = STAILQ_FIRST(&ktr_free);
297 	if (req != NULL) {
298 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
299 		req->ktr_header.ktr_type = type;
300 		if (p->p_traceflag & KTRFAC_DROP) {
301 			req->ktr_header.ktr_type |= KTR_DROP;
302 			p->p_traceflag &= ~KTRFAC_DROP;
303 		}
304 		mtx_unlock(&ktrace_mtx);
305 		microtime(&req->ktr_header.ktr_time);
306 		req->ktr_header.ktr_pid = p->p_pid;
307 		req->ktr_header.ktr_tid = td->td_tid;
308 		bcopy(td->td_name, req->ktr_header.ktr_comm,
309 		    sizeof(req->ktr_header.ktr_comm));
310 		req->ktr_buffer = NULL;
311 		req->ktr_header.ktr_len = 0;
312 	} else {
313 		p->p_traceflag |= KTRFAC_DROP;
314 		pm = print_message;
315 		print_message = 0;
316 		mtx_unlock(&ktrace_mtx);
317 		if (pm)
318 			printf("Out of ktrace request objects.\n");
319 	}
320 	return (req);
321 }
322 
323 static struct ktr_request *
324 ktr_getrequest(int type)
325 {
326 	struct thread *td = curthread;
327 	struct ktr_request *req;
328 
329 	ktrace_enter(td);
330 	req = ktr_getrequest_entered(td, type);
331 	if (req == NULL)
332 		ktrace_exit(td);
333 
334 	return (req);
335 }
336 
337 /*
338  * Some trace generation environments don't permit direct access to VFS,
339  * such as during a context switch where sleeping is not allowed.  Under these
340  * circumstances, queue a request to the thread to be written asynchronously
341  * later.
342  */
343 static void
344 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
345 {
346 
347 	mtx_lock(&ktrace_mtx);
348 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
349 	mtx_unlock(&ktrace_mtx);
350 	thread_lock(td);
351 	td->td_flags |= TDF_ASTPENDING;
352 	thread_unlock(td);
353 }
354 
355 /*
356  * Drain any pending ktrace records from the per-thread queue to disk.  This
357  * is used both internally before committing other records, and also on
358  * system call return.  We drain all the ones we can find at the time when
359  * drain is requested, but don't keep draining after that as those events
360  * may be approximately "after" the current event.
361  */
362 static void
363 ktr_drain(struct thread *td)
364 {
365 	struct ktr_request *queued_req;
366 	STAILQ_HEAD(, ktr_request) local_queue;
367 
368 	ktrace_assert(td);
369 	sx_assert(&ktrace_sx, SX_XLOCKED);
370 
371 	STAILQ_INIT(&local_queue);
372 
373 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
374 		mtx_lock(&ktrace_mtx);
375 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
376 		mtx_unlock(&ktrace_mtx);
377 
378 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
379 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
380 			ktr_writerequest(td, queued_req);
381 			ktr_freerequest(queued_req);
382 		}
383 	}
384 }
385 
386 /*
387  * Submit a trace record for immediate commit to disk -- to be used only
388  * where entering VFS is OK.  First drain any pending records that may have
389  * been cached in the thread.
390  */
391 static void
392 ktr_submitrequest(struct thread *td, struct ktr_request *req)
393 {
394 
395 	ktrace_assert(td);
396 
397 	sx_xlock(&ktrace_sx);
398 	ktr_drain(td);
399 	ktr_writerequest(td, req);
400 	ktr_freerequest(req);
401 	sx_xunlock(&ktrace_sx);
402 	ktrace_exit(td);
403 }
404 
405 static void
406 ktr_freerequest(struct ktr_request *req)
407 {
408 
409 	mtx_lock(&ktrace_mtx);
410 	ktr_freerequest_locked(req);
411 	mtx_unlock(&ktrace_mtx);
412 }
413 
414 static void
415 ktr_freerequest_locked(struct ktr_request *req)
416 {
417 
418 	mtx_assert(&ktrace_mtx, MA_OWNED);
419 	if (req->ktr_buffer != NULL)
420 		free(req->ktr_buffer, M_KTRACE);
421 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
422 }
423 
424 /*
425  * Disable tracing for a process and release all associated resources.
426  * The caller is responsible for releasing a reference on the returned
427  * vnode and credentials.
428  */
429 static void
430 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
431 {
432 	struct ktr_request *req;
433 
434 	PROC_LOCK_ASSERT(p, MA_OWNED);
435 	mtx_assert(&ktrace_mtx, MA_OWNED);
436 	*uc = p->p_tracecred;
437 	p->p_tracecred = NULL;
438 	if (vp != NULL)
439 		*vp = p->p_tracevp;
440 	p->p_tracevp = NULL;
441 	p->p_traceflag = 0;
442 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
443 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
444 		ktr_freerequest_locked(req);
445 	}
446 }
447 
448 void
449 ktrsyscall(int code, int narg, register_t args[])
450 {
451 	struct ktr_request *req;
452 	struct ktr_syscall *ktp;
453 	size_t buflen;
454 	char *buf = NULL;
455 
456 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
457 		return;
458 
459 	buflen = sizeof(register_t) * narg;
460 	if (buflen > 0) {
461 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
462 		bcopy(args, buf, buflen);
463 	}
464 	req = ktr_getrequest(KTR_SYSCALL);
465 	if (req == NULL) {
466 		if (buf != NULL)
467 			free(buf, M_KTRACE);
468 		return;
469 	}
470 	ktp = &req->ktr_data.ktr_syscall;
471 	ktp->ktr_code = code;
472 	ktp->ktr_narg = narg;
473 	if (buflen > 0) {
474 		req->ktr_header.ktr_len = buflen;
475 		req->ktr_buffer = buf;
476 	}
477 	ktr_submitrequest(curthread, req);
478 }
479 
480 void
481 ktrsysret(int code, int error, register_t retval)
482 {
483 	struct ktr_request *req;
484 	struct ktr_sysret *ktp;
485 
486 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
487 		return;
488 
489 	req = ktr_getrequest(KTR_SYSRET);
490 	if (req == NULL)
491 		return;
492 	ktp = &req->ktr_data.ktr_sysret;
493 	ktp->ktr_code = code;
494 	ktp->ktr_error = error;
495 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
496 	ktr_submitrequest(curthread, req);
497 }
498 
499 /*
500  * When a setuid process execs, disable tracing.
501  *
502  * XXX: We toss any pending asynchronous records.
503  */
504 void
505 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
506 {
507 
508 	PROC_LOCK_ASSERT(p, MA_OWNED);
509 	mtx_lock(&ktrace_mtx);
510 	ktr_freeproc(p, uc, vp);
511 	mtx_unlock(&ktrace_mtx);
512 }
513 
514 /*
515  * When a process exits, drain per-process asynchronous trace records
516  * and disable tracing.
517  */
518 void
519 ktrprocexit(struct thread *td)
520 {
521 	struct ktr_request *req;
522 	struct proc *p;
523 	struct ucred *cred;
524 	struct vnode *vp;
525 
526 	p = td->td_proc;
527 	if (p->p_traceflag == 0)
528 		return;
529 
530 	ktrace_enter(td);
531 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
532 	if (req != NULL)
533 		ktr_enqueuerequest(td, req);
534 	sx_xlock(&ktrace_sx);
535 	ktr_drain(td);
536 	sx_xunlock(&ktrace_sx);
537 	PROC_LOCK(p);
538 	mtx_lock(&ktrace_mtx);
539 	ktr_freeproc(p, &cred, &vp);
540 	mtx_unlock(&ktrace_mtx);
541 	PROC_UNLOCK(p);
542 	if (vp != NULL)
543 		vrele(vp);
544 	if (cred != NULL)
545 		crfree(cred);
546 	ktrace_exit(td);
547 }
548 
549 static void
550 ktrprocctor_entered(struct thread *td, struct proc *p)
551 {
552 	struct ktr_proc_ctor *ktp;
553 	struct ktr_request *req;
554 	struct thread *td2;
555 
556 	ktrace_assert(td);
557 	td2 = FIRST_THREAD_IN_PROC(p);
558 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
559 	if (req == NULL)
560 		return;
561 	ktp = &req->ktr_data.ktr_proc_ctor;
562 	ktp->sv_flags = p->p_sysent->sv_flags;
563 	ktr_enqueuerequest(td2, req);
564 }
565 
566 void
567 ktrprocctor(struct proc *p)
568 {
569 	struct thread *td = curthread;
570 
571 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
572 		return;
573 
574 	ktrace_enter(td);
575 	ktrprocctor_entered(td, p);
576 	ktrace_exit(td);
577 }
578 
579 /*
580  * When a process forks, enable tracing in the new process if needed.
581  */
582 void
583 ktrprocfork(struct proc *p1, struct proc *p2)
584 {
585 
586 	MPASS(p2->p_tracevp == NULL);
587 	MPASS(p2->p_traceflag == 0);
588 
589 	if (p1->p_traceflag == 0)
590 		return;
591 
592 	PROC_LOCK(p1);
593 	mtx_lock(&ktrace_mtx);
594 	if (p1->p_traceflag & KTRFAC_INHERIT) {
595 		p2->p_traceflag = p1->p_traceflag;
596 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
597 			VREF(p2->p_tracevp);
598 			KASSERT(p1->p_tracecred != NULL,
599 			    ("ktrace vnode with no cred"));
600 			p2->p_tracecred = crhold(p1->p_tracecred);
601 		}
602 	}
603 	mtx_unlock(&ktrace_mtx);
604 	PROC_UNLOCK(p1);
605 
606 	ktrprocctor(p2);
607 }
608 
609 /*
610  * When a thread returns, drain any asynchronous records generated by the
611  * system call.
612  */
613 void
614 ktruserret(struct thread *td)
615 {
616 
617 	ktrace_enter(td);
618 	sx_xlock(&ktrace_sx);
619 	ktr_drain(td);
620 	sx_xunlock(&ktrace_sx);
621 	ktrace_exit(td);
622 }
623 
624 void
625 ktrnamei(path)
626 	char *path;
627 {
628 	struct ktr_request *req;
629 	int namelen;
630 	char *buf = NULL;
631 
632 	namelen = strlen(path);
633 	if (namelen > 0) {
634 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
635 		bcopy(path, buf, namelen);
636 	}
637 	req = ktr_getrequest(KTR_NAMEI);
638 	if (req == NULL) {
639 		if (buf != NULL)
640 			free(buf, M_KTRACE);
641 		return;
642 	}
643 	if (namelen > 0) {
644 		req->ktr_header.ktr_len = namelen;
645 		req->ktr_buffer = buf;
646 	}
647 	ktr_submitrequest(curthread, req);
648 }
649 
650 void
651 ktrsysctl(int *name, u_int namelen)
652 {
653 	struct ktr_request *req;
654 	u_int mib[CTL_MAXNAME + 2];
655 	char *mibname;
656 	size_t mibnamelen;
657 	int error;
658 
659 	/* Lookup name of mib. */
660 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
661 	mib[0] = 0;
662 	mib[1] = 1;
663 	bcopy(name, mib + 2, namelen * sizeof(*name));
664 	mibnamelen = 128;
665 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
666 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
667 	    NULL, 0, &mibnamelen, 0);
668 	if (error) {
669 		free(mibname, M_KTRACE);
670 		return;
671 	}
672 	req = ktr_getrequest(KTR_SYSCTL);
673 	if (req == NULL) {
674 		free(mibname, M_KTRACE);
675 		return;
676 	}
677 	req->ktr_header.ktr_len = mibnamelen;
678 	req->ktr_buffer = mibname;
679 	ktr_submitrequest(curthread, req);
680 }
681 
682 void
683 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
684 {
685 	struct ktr_request *req;
686 	struct ktr_genio *ktg;
687 	int datalen;
688 	char *buf;
689 
690 	if (error) {
691 		free(uio, M_IOV);
692 		return;
693 	}
694 	uio->uio_offset = 0;
695 	uio->uio_rw = UIO_WRITE;
696 	datalen = MIN(uio->uio_resid, ktr_geniosize);
697 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
698 	error = uiomove(buf, datalen, uio);
699 	free(uio, M_IOV);
700 	if (error) {
701 		free(buf, M_KTRACE);
702 		return;
703 	}
704 	req = ktr_getrequest(KTR_GENIO);
705 	if (req == NULL) {
706 		free(buf, M_KTRACE);
707 		return;
708 	}
709 	ktg = &req->ktr_data.ktr_genio;
710 	ktg->ktr_fd = fd;
711 	ktg->ktr_rw = rw;
712 	req->ktr_header.ktr_len = datalen;
713 	req->ktr_buffer = buf;
714 	ktr_submitrequest(curthread, req);
715 }
716 
717 void
718 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
719 {
720 	struct thread *td = curthread;
721 	struct ktr_request *req;
722 	struct ktr_psig	*kp;
723 
724 	req = ktr_getrequest(KTR_PSIG);
725 	if (req == NULL)
726 		return;
727 	kp = &req->ktr_data.ktr_psig;
728 	kp->signo = (char)sig;
729 	kp->action = action;
730 	kp->mask = *mask;
731 	kp->code = code;
732 	ktr_enqueuerequest(td, req);
733 	ktrace_exit(td);
734 }
735 
736 void
737 ktrcsw(int out, int user, const char *wmesg)
738 {
739 	struct thread *td = curthread;
740 	struct ktr_request *req;
741 	struct ktr_csw *kc;
742 
743 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
744 		return;
745 
746 	req = ktr_getrequest(KTR_CSW);
747 	if (req == NULL)
748 		return;
749 	kc = &req->ktr_data.ktr_csw;
750 	kc->out = out;
751 	kc->user = user;
752 	if (wmesg != NULL)
753 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
754 	else
755 		bzero(kc->wmesg, sizeof(kc->wmesg));
756 	ktr_enqueuerequest(td, req);
757 	ktrace_exit(td);
758 }
759 
760 void
761 ktrstruct(const char *name, const void *data, size_t datalen)
762 {
763 	struct ktr_request *req;
764 	char *buf;
765 	size_t buflen, namelen;
766 
767 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
768 		return;
769 
770 	if (data == NULL)
771 		datalen = 0;
772 	namelen = strlen(name) + 1;
773 	buflen = namelen + datalen;
774 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
775 	strcpy(buf, name);
776 	bcopy(data, buf + namelen, datalen);
777 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
778 		free(buf, M_KTRACE);
779 		return;
780 	}
781 	req->ktr_buffer = buf;
782 	req->ktr_header.ktr_len = buflen;
783 	ktr_submitrequest(curthread, req);
784 }
785 
786 void
787 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
788 {
789 
790 	if (error == 0)
791 		ktrstruct(name, data, datalen);
792 }
793 
794 void
795 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
796     int num_items, size_t struct_size)
797 {
798 	struct ktr_request *req;
799 	struct ktr_struct_array *ksa;
800 	char *buf;
801 	size_t buflen, datalen, namelen;
802 	int max_items;
803 
804 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
805 		return;
806 
807 	/* Trim array length to genio size. */
808 	max_items = ktr_geniosize / struct_size;
809 	if (num_items > max_items) {
810 		if (max_items == 0)
811 			num_items = 1;
812 		else
813 			num_items = max_items;
814 	}
815 	datalen = num_items * struct_size;
816 
817 	if (data == NULL)
818 		datalen = 0;
819 
820 	namelen = strlen(name) + 1;
821 	buflen = namelen + datalen;
822 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
823 	strcpy(buf, name);
824 	if (seg == UIO_SYSSPACE)
825 		bcopy(data, buf + namelen, datalen);
826 	else {
827 		if (copyin(data, buf + namelen, datalen) != 0) {
828 			free(buf, M_KTRACE);
829 			return;
830 		}
831 	}
832 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
833 		free(buf, M_KTRACE);
834 		return;
835 	}
836 	ksa = &req->ktr_data.ktr_struct_array;
837 	ksa->struct_size = struct_size;
838 	req->ktr_buffer = buf;
839 	req->ktr_header.ktr_len = buflen;
840 	ktr_submitrequest(curthread, req);
841 }
842 
843 void
844 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed,
845     const cap_rights_t *held)
846 {
847 	struct thread *td = curthread;
848 	struct ktr_request *req;
849 	struct ktr_cap_fail *kcf;
850 
851 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
852 		return;
853 
854 	req = ktr_getrequest(KTR_CAPFAIL);
855 	if (req == NULL)
856 		return;
857 	kcf = &req->ktr_data.ktr_cap_fail;
858 	kcf->cap_type = type;
859 	if (needed != NULL)
860 		kcf->cap_needed = *needed;
861 	else
862 		cap_rights_init(&kcf->cap_needed);
863 	if (held != NULL)
864 		kcf->cap_held = *held;
865 	else
866 		cap_rights_init(&kcf->cap_held);
867 	ktr_enqueuerequest(td, req);
868 	ktrace_exit(td);
869 }
870 
871 void
872 ktrfault(vm_offset_t vaddr, int type)
873 {
874 	struct thread *td = curthread;
875 	struct ktr_request *req;
876 	struct ktr_fault *kf;
877 
878 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
879 		return;
880 
881 	req = ktr_getrequest(KTR_FAULT);
882 	if (req == NULL)
883 		return;
884 	kf = &req->ktr_data.ktr_fault;
885 	kf->vaddr = vaddr;
886 	kf->type = type;
887 	ktr_enqueuerequest(td, req);
888 	ktrace_exit(td);
889 }
890 
891 void
892 ktrfaultend(int result)
893 {
894 	struct thread *td = curthread;
895 	struct ktr_request *req;
896 	struct ktr_faultend *kf;
897 
898 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
899 		return;
900 
901 	req = ktr_getrequest(KTR_FAULTEND);
902 	if (req == NULL)
903 		return;
904 	kf = &req->ktr_data.ktr_faultend;
905 	kf->result = result;
906 	ktr_enqueuerequest(td, req);
907 	ktrace_exit(td);
908 }
909 #endif /* KTRACE */
910 
911 /* Interface and common routines */
912 
913 #ifndef _SYS_SYSPROTO_H_
914 struct ktrace_args {
915 	char	*fname;
916 	int	ops;
917 	int	facs;
918 	int	pid;
919 };
920 #endif
921 /* ARGSUSED */
922 int
923 sys_ktrace(struct thread *td, struct ktrace_args *uap)
924 {
925 #ifdef KTRACE
926 	struct vnode *vp = NULL;
927 	struct proc *p;
928 	struct pgrp *pg;
929 	int facs = uap->facs & ~KTRFAC_ROOT;
930 	int ops = KTROP(uap->ops);
931 	int descend = uap->ops & KTRFLAG_DESCEND;
932 	int nfound, ret = 0;
933 	int flags, error = 0;
934 	struct nameidata nd;
935 	struct ucred *cred;
936 
937 	/*
938 	 * Need something to (un)trace.
939 	 */
940 	if (ops != KTROP_CLEARFILE && facs == 0)
941 		return (EINVAL);
942 
943 	ktrace_enter(td);
944 	if (ops != KTROP_CLEAR) {
945 		/*
946 		 * an operation which requires a file argument.
947 		 */
948 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
949 		flags = FREAD | FWRITE | O_NOFOLLOW;
950 		error = vn_open(&nd, &flags, 0, NULL);
951 		if (error) {
952 			ktrace_exit(td);
953 			return (error);
954 		}
955 		NDFREE(&nd, NDF_ONLY_PNBUF);
956 		vp = nd.ni_vp;
957 		VOP_UNLOCK(vp);
958 		if (vp->v_type != VREG) {
959 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
960 			ktrace_exit(td);
961 			return (EACCES);
962 		}
963 	}
964 	/*
965 	 * Clear all uses of the tracefile.
966 	 */
967 	if (ops == KTROP_CLEARFILE) {
968 		int vrele_count;
969 
970 		vrele_count = 0;
971 		sx_slock(&allproc_lock);
972 		FOREACH_PROC_IN_SYSTEM(p) {
973 			PROC_LOCK(p);
974 			if (p->p_tracevp == vp) {
975 				if (ktrcanset(td, p)) {
976 					mtx_lock(&ktrace_mtx);
977 					ktr_freeproc(p, &cred, NULL);
978 					mtx_unlock(&ktrace_mtx);
979 					vrele_count++;
980 					crfree(cred);
981 				} else
982 					error = EPERM;
983 			}
984 			PROC_UNLOCK(p);
985 		}
986 		sx_sunlock(&allproc_lock);
987 		if (vrele_count > 0) {
988 			while (vrele_count-- > 0)
989 				vrele(vp);
990 		}
991 		goto done;
992 	}
993 	/*
994 	 * do it
995 	 */
996 	sx_slock(&proctree_lock);
997 	if (uap->pid < 0) {
998 		/*
999 		 * by process group
1000 		 */
1001 		pg = pgfind(-uap->pid);
1002 		if (pg == NULL) {
1003 			sx_sunlock(&proctree_lock);
1004 			error = ESRCH;
1005 			goto done;
1006 		}
1007 		/*
1008 		 * ktrops() may call vrele(). Lock pg_members
1009 		 * by the proctree_lock rather than pg_mtx.
1010 		 */
1011 		PGRP_UNLOCK(pg);
1012 		nfound = 0;
1013 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1014 			PROC_LOCK(p);
1015 			if (p->p_state == PRS_NEW ||
1016 			    p_cansee(td, p) != 0) {
1017 				PROC_UNLOCK(p);
1018 				continue;
1019 			}
1020 			nfound++;
1021 			if (descend)
1022 				ret |= ktrsetchildren(td, p, ops, facs, vp);
1023 			else
1024 				ret |= ktrops(td, p, ops, facs, vp);
1025 		}
1026 		if (nfound == 0) {
1027 			sx_sunlock(&proctree_lock);
1028 			error = ESRCH;
1029 			goto done;
1030 		}
1031 	} else {
1032 		/*
1033 		 * by pid
1034 		 */
1035 		p = pfind(uap->pid);
1036 		if (p == NULL)
1037 			error = ESRCH;
1038 		else
1039 			error = p_cansee(td, p);
1040 		if (error) {
1041 			if (p != NULL)
1042 				PROC_UNLOCK(p);
1043 			sx_sunlock(&proctree_lock);
1044 			goto done;
1045 		}
1046 		if (descend)
1047 			ret |= ktrsetchildren(td, p, ops, facs, vp);
1048 		else
1049 			ret |= ktrops(td, p, ops, facs, vp);
1050 	}
1051 	sx_sunlock(&proctree_lock);
1052 	if (!ret)
1053 		error = EPERM;
1054 done:
1055 	if (vp != NULL)
1056 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
1057 	ktrace_exit(td);
1058 	return (error);
1059 #else /* !KTRACE */
1060 	return (ENOSYS);
1061 #endif /* KTRACE */
1062 }
1063 
1064 /* ARGSUSED */
1065 int
1066 sys_utrace(struct thread *td, struct utrace_args *uap)
1067 {
1068 
1069 #ifdef KTRACE
1070 	struct ktr_request *req;
1071 	void *cp;
1072 	int error;
1073 
1074 	if (!KTRPOINT(td, KTR_USER))
1075 		return (0);
1076 	if (uap->len > KTR_USER_MAXLEN)
1077 		return (EINVAL);
1078 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1079 	error = copyin(uap->addr, cp, uap->len);
1080 	if (error) {
1081 		free(cp, M_KTRACE);
1082 		return (error);
1083 	}
1084 	req = ktr_getrequest(KTR_USER);
1085 	if (req == NULL) {
1086 		free(cp, M_KTRACE);
1087 		return (ENOMEM);
1088 	}
1089 	req->ktr_buffer = cp;
1090 	req->ktr_header.ktr_len = uap->len;
1091 	ktr_submitrequest(td, req);
1092 	return (0);
1093 #else /* !KTRACE */
1094 	return (ENOSYS);
1095 #endif /* KTRACE */
1096 }
1097 
1098 #ifdef KTRACE
1099 static int
1100 ktrops(struct thread *td, struct proc *p, int ops, int facs, struct vnode *vp)
1101 {
1102 	struct vnode *tracevp = NULL;
1103 	struct ucred *tracecred = NULL;
1104 
1105 	PROC_LOCK_ASSERT(p, MA_OWNED);
1106 	if (!ktrcanset(td, p)) {
1107 		PROC_UNLOCK(p);
1108 		return (0);
1109 	}
1110 	if (p->p_flag & P_WEXIT) {
1111 		/* If the process is exiting, just ignore it. */
1112 		PROC_UNLOCK(p);
1113 		return (1);
1114 	}
1115 	mtx_lock(&ktrace_mtx);
1116 	if (ops == KTROP_SET) {
1117 		if (p->p_tracevp != vp) {
1118 			/*
1119 			 * if trace file already in use, relinquish below
1120 			 */
1121 			tracevp = p->p_tracevp;
1122 			VREF(vp);
1123 			p->p_tracevp = vp;
1124 		}
1125 		if (p->p_tracecred != td->td_ucred) {
1126 			tracecred = p->p_tracecred;
1127 			p->p_tracecred = crhold(td->td_ucred);
1128 		}
1129 		p->p_traceflag |= facs;
1130 		if (priv_check(td, PRIV_KTRACE) == 0)
1131 			p->p_traceflag |= KTRFAC_ROOT;
1132 	} else {
1133 		/* KTROP_CLEAR */
1134 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1135 			/* no more tracing */
1136 			ktr_freeproc(p, &tracecred, &tracevp);
1137 	}
1138 	mtx_unlock(&ktrace_mtx);
1139 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1140 		ktrprocctor_entered(td, p);
1141 	PROC_UNLOCK(p);
1142 	if (tracevp != NULL)
1143 		vrele(tracevp);
1144 	if (tracecred != NULL)
1145 		crfree(tracecred);
1146 
1147 	return (1);
1148 }
1149 
1150 static int
1151 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1152     struct vnode *vp)
1153 {
1154 	struct proc *p;
1155 	int ret = 0;
1156 
1157 	p = top;
1158 	PROC_LOCK_ASSERT(p, MA_OWNED);
1159 	sx_assert(&proctree_lock, SX_LOCKED);
1160 	for (;;) {
1161 		ret |= ktrops(td, p, ops, facs, vp);
1162 		/*
1163 		 * If this process has children, descend to them next,
1164 		 * otherwise do any siblings, and if done with this level,
1165 		 * follow back up the tree (but not past top).
1166 		 */
1167 		if (!LIST_EMPTY(&p->p_children))
1168 			p = LIST_FIRST(&p->p_children);
1169 		else for (;;) {
1170 			if (p == top)
1171 				return (ret);
1172 			if (LIST_NEXT(p, p_sibling)) {
1173 				p = LIST_NEXT(p, p_sibling);
1174 				break;
1175 			}
1176 			p = p->p_pptr;
1177 		}
1178 		PROC_LOCK(p);
1179 	}
1180 	/*NOTREACHED*/
1181 }
1182 
1183 static void
1184 ktr_writerequest(struct thread *td, struct ktr_request *req)
1185 {
1186 	struct ktr_header *kth;
1187 	struct vnode *vp;
1188 	struct proc *p;
1189 	struct ucred *cred;
1190 	struct uio auio;
1191 	struct iovec aiov[3];
1192 	struct mount *mp;
1193 	int datalen, buflen, vrele_count;
1194 	int error;
1195 
1196 	/*
1197 	 * We hold the vnode and credential for use in I/O in case ktrace is
1198 	 * disabled on the process as we write out the request.
1199 	 *
1200 	 * XXXRW: This is not ideal: we could end up performing a write after
1201 	 * the vnode has been closed.
1202 	 */
1203 	mtx_lock(&ktrace_mtx);
1204 	vp = td->td_proc->p_tracevp;
1205 	cred = td->td_proc->p_tracecred;
1206 
1207 	/*
1208 	 * If vp is NULL, the vp has been cleared out from under this
1209 	 * request, so just drop it.  Make sure the credential and vnode are
1210 	 * in sync: we should have both or neither.
1211 	 */
1212 	if (vp == NULL) {
1213 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1214 		mtx_unlock(&ktrace_mtx);
1215 		return;
1216 	}
1217 	VREF(vp);
1218 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1219 	crhold(cred);
1220 	mtx_unlock(&ktrace_mtx);
1221 
1222 	kth = &req->ktr_header;
1223 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths),
1224 	    ("data_lengths array overflow"));
1225 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1226 	buflen = kth->ktr_len;
1227 	auio.uio_iov = &aiov[0];
1228 	auio.uio_offset = 0;
1229 	auio.uio_segflg = UIO_SYSSPACE;
1230 	auio.uio_rw = UIO_WRITE;
1231 	aiov[0].iov_base = (caddr_t)kth;
1232 	aiov[0].iov_len = sizeof(struct ktr_header);
1233 	auio.uio_resid = sizeof(struct ktr_header);
1234 	auio.uio_iovcnt = 1;
1235 	auio.uio_td = td;
1236 	if (datalen != 0) {
1237 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1238 		aiov[1].iov_len = datalen;
1239 		auio.uio_resid += datalen;
1240 		auio.uio_iovcnt++;
1241 		kth->ktr_len += datalen;
1242 	}
1243 	if (buflen != 0) {
1244 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1245 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1246 		aiov[auio.uio_iovcnt].iov_len = buflen;
1247 		auio.uio_resid += buflen;
1248 		auio.uio_iovcnt++;
1249 	}
1250 
1251 	vn_start_write(vp, &mp, V_WAIT);
1252 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1253 #ifdef MAC
1254 	error = mac_vnode_check_write(cred, NOCRED, vp);
1255 	if (error == 0)
1256 #endif
1257 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1258 	VOP_UNLOCK(vp);
1259 	vn_finished_write(mp);
1260 	crfree(cred);
1261 	if (!error) {
1262 		vrele(vp);
1263 		return;
1264 	}
1265 
1266 	/*
1267 	 * If error encountered, give up tracing on this vnode.  We defer
1268 	 * all the vrele()'s on the vnode until after we are finished walking
1269 	 * the various lists to avoid needlessly holding locks.
1270 	 * NB: at this point we still hold the vnode reference that must
1271 	 * not go away as we need the valid vnode to compare with. Thus let
1272 	 * vrele_count start at 1 and the reference will be freed
1273 	 * by the loop at the end after our last use of vp.
1274 	 */
1275 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1276 	    error);
1277 	vrele_count = 1;
1278 	/*
1279 	 * First, clear this vnode from being used by any processes in the
1280 	 * system.
1281 	 * XXX - If one process gets an EPERM writing to the vnode, should
1282 	 * we really do this?  Other processes might have suitable
1283 	 * credentials for the operation.
1284 	 */
1285 	cred = NULL;
1286 	sx_slock(&allproc_lock);
1287 	FOREACH_PROC_IN_SYSTEM(p) {
1288 		PROC_LOCK(p);
1289 		if (p->p_tracevp == vp) {
1290 			mtx_lock(&ktrace_mtx);
1291 			ktr_freeproc(p, &cred, NULL);
1292 			mtx_unlock(&ktrace_mtx);
1293 			vrele_count++;
1294 		}
1295 		PROC_UNLOCK(p);
1296 		if (cred != NULL) {
1297 			crfree(cred);
1298 			cred = NULL;
1299 		}
1300 	}
1301 	sx_sunlock(&allproc_lock);
1302 
1303 	while (vrele_count-- > 0)
1304 		vrele(vp);
1305 }
1306 
1307 /*
1308  * Return true if caller has permission to set the ktracing state
1309  * of target.  Essentially, the target can't possess any
1310  * more permissions than the caller.  KTRFAC_ROOT signifies that
1311  * root previously set the tracing status on the target process, and
1312  * so, only root may further change it.
1313  */
1314 static int
1315 ktrcanset(struct thread *td, struct proc *targetp)
1316 {
1317 
1318 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1319 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1320 	    priv_check(td, PRIV_KTRACE))
1321 		return (0);
1322 
1323 	if (p_candebug(td, targetp) != 0)
1324 		return (0);
1325 
1326 	return (1);
1327 }
1328 
1329 #endif /* KTRACE */
1330