xref: /freebsd/sys/kern/kern_ktrace.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
34  * $FreeBSD$
35  */
36 
37 #include "opt_ktrace.h"
38 #include "opt_mac.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/fcntl.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/kthread.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/mac.h>
49 #include <sys/malloc.h>
50 #include <sys/namei.h>
51 #include <sys/proc.h>
52 #include <sys/unistd.h>
53 #include <sys/vnode.h>
54 #include <sys/ktrace.h>
55 #include <sys/sema.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/sysproto.h>
60 
61 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
62 
63 #ifdef KTRACE
64 
65 #ifndef KTRACE_REQUEST_POOL
66 #define	KTRACE_REQUEST_POOL	100
67 #endif
68 
69 struct ktr_request {
70 	struct	ktr_header ktr_header;
71 	struct	ucred *ktr_cred;
72 	struct	vnode *ktr_vp;
73 	union {
74 		struct	ktr_syscall ktr_syscall;
75 		struct	ktr_sysret ktr_sysret;
76 		struct	ktr_genio ktr_genio;
77 		struct	ktr_psig ktr_psig;
78 		struct	ktr_csw ktr_csw;
79 	} ktr_data;
80 	int	ktr_synchronous;
81 	STAILQ_ENTRY(ktr_request) ktr_list;
82 };
83 
84 static int data_lengths[] = {
85 	0,					/* none */
86 	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
87 	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
88 	0,					/* KTR_NAMEI */
89 	sizeof(struct ktr_genio),		/* KTR_GENIO */
90 	sizeof(struct ktr_psig),		/* KTR_PSIG */
91 	sizeof(struct ktr_csw),			/* KTR_CSW */
92 	0					/* KTR_USER */
93 };
94 
95 static STAILQ_HEAD(, ktr_request) ktr_todo;
96 static STAILQ_HEAD(, ktr_request) ktr_free;
97 
98 static uint ktr_requestpool = KTRACE_REQUEST_POOL;
99 TUNABLE_INT("kern.ktrace_request_pool", &ktr_requestpool);
100 
101 static int print_message = 1;
102 struct mtx ktrace_mtx;
103 static struct sema ktrace_sema;
104 
105 static void ktrace_init(void *dummy);
106 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
107 static uint ktrace_resize_pool(uint newsize);
108 static struct ktr_request *ktr_getrequest(int type);
109 static void ktr_submitrequest(struct ktr_request *req);
110 static void ktr_freerequest(struct ktr_request *req);
111 static void ktr_loop(void *dummy);
112 static void ktr_writerequest(struct ktr_request *req);
113 static int ktrcanset(struct thread *,struct proc *);
114 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
115 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
116 
117 static void
118 ktrace_init(void *dummy)
119 {
120 	struct ktr_request *req;
121 	int i;
122 
123 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
124 	sema_init(&ktrace_sema, 0, "ktrace");
125 	STAILQ_INIT(&ktr_todo);
126 	STAILQ_INIT(&ktr_free);
127 	for (i = 0; i < ktr_requestpool; i++) {
128 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
129 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
130 	}
131 	kthread_create(ktr_loop, NULL, NULL, RFHIGHPID, "ktrace");
132 }
133 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
134 
135 static int
136 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
137 {
138 	struct thread *td;
139 	uint newsize, oldsize, wantsize;
140 	int error;
141 
142 	/* Handle easy read-only case first to avoid warnings from GCC. */
143 	if (!req->newptr) {
144 		mtx_lock(&ktrace_mtx);
145 		oldsize = ktr_requestpool;
146 		mtx_unlock(&ktrace_mtx);
147 		return (SYSCTL_OUT(req, &oldsize, sizeof(uint)));
148 	}
149 
150 	error = SYSCTL_IN(req, &wantsize, sizeof(uint));
151 	if (error)
152 		return (error);
153 	td = curthread;
154 	td->td_inktrace = 1;
155 	mtx_lock(&ktrace_mtx);
156 	oldsize = ktr_requestpool;
157 	newsize = ktrace_resize_pool(wantsize);
158 	mtx_unlock(&ktrace_mtx);
159 	td->td_inktrace = 0;
160 	error = SYSCTL_OUT(req, &oldsize, sizeof(uint));
161 	if (error)
162 		return (error);
163 	if (newsize != wantsize)
164 		return (ENOSPC);
165 	return (0);
166 }
167 SYSCTL_PROC(_kern, OID_AUTO, ktrace_request_pool, CTLTYPE_UINT|CTLFLAG_RW,
168     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
169 
170 static uint
171 ktrace_resize_pool(uint newsize)
172 {
173 	struct ktr_request *req;
174 
175 	mtx_assert(&ktrace_mtx, MA_OWNED);
176 	print_message = 1;
177 	if (newsize == ktr_requestpool)
178 		return (newsize);
179 	if (newsize < ktr_requestpool)
180 		/* Shrink pool down to newsize if possible. */
181 		while (ktr_requestpool > newsize) {
182 			req = STAILQ_FIRST(&ktr_free);
183 			if (req == NULL)
184 				return (ktr_requestpool);
185 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
186 			ktr_requestpool--;
187 			mtx_unlock(&ktrace_mtx);
188 			free(req, M_KTRACE);
189 			mtx_lock(&ktrace_mtx);
190 		}
191 	else
192 		/* Grow pool up to newsize. */
193 		while (ktr_requestpool < newsize) {
194 			mtx_unlock(&ktrace_mtx);
195 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
196 			    M_WAITOK);
197 			mtx_lock(&ktrace_mtx);
198 			STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
199 			ktr_requestpool++;
200 		}
201 	return (ktr_requestpool);
202 }
203 
204 static struct ktr_request *
205 ktr_getrequest(int type)
206 {
207 	struct ktr_request *req;
208 	struct thread *td = curthread;
209 	struct proc *p = td->td_proc;
210 	int pm;
211 
212 	td->td_inktrace = 1;
213 	mtx_lock(&ktrace_mtx);
214 	if (!KTRCHECK(td, type)) {
215 		mtx_unlock(&ktrace_mtx);
216 		td->td_inktrace = 0;
217 		return (NULL);
218 	}
219 	req = STAILQ_FIRST(&ktr_free);
220 	if (req != NULL) {
221 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
222 		req->ktr_header.ktr_type = type;
223 		KASSERT(p->p_tracep != NULL, ("ktrace: no trace vnode"));
224 		req->ktr_vp = p->p_tracep;
225 		VREF(p->p_tracep);
226 		mtx_unlock(&ktrace_mtx);
227 		microtime(&req->ktr_header.ktr_time);
228 		req->ktr_header.ktr_pid = p->p_pid;
229 		bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
230 		req->ktr_cred = crhold(td->td_ucred);
231 		req->ktr_header.ktr_buffer = NULL;
232 		req->ktr_header.ktr_len = 0;
233 		req->ktr_synchronous = 0;
234 	} else {
235 		pm = print_message;
236 		print_message = 0;
237 		mtx_unlock(&ktrace_mtx);
238 		if (pm)
239 			printf("Out of ktrace request objects.\n");
240 		td->td_inktrace = 0;
241 	}
242 	return (req);
243 }
244 
245 static void
246 ktr_submitrequest(struct ktr_request *req)
247 {
248 
249 	mtx_lock(&ktrace_mtx);
250 	STAILQ_INSERT_TAIL(&ktr_todo, req, ktr_list);
251 	sema_post(&ktrace_sema);
252 	if (req->ktr_synchronous) {
253 		/*
254 		 * For a synchronous request, we wait for the ktrace thread
255 		 * to get to our item in the todo list and wake us up.  Then
256 		 * we write the request out ourselves and wake the ktrace
257 		 * thread back up.
258 		 */
259 		msleep(req, &ktrace_mtx, curthread->td_priority, "ktrsync", 0);
260 		mtx_unlock(&ktrace_mtx);
261 		ktr_writerequest(req);
262 		mtx_lock(&ktrace_mtx);
263 		wakeup(req);
264 	}
265 	mtx_unlock(&ktrace_mtx);
266 	curthread->td_inktrace = 0;
267 }
268 
269 static void
270 ktr_freerequest(struct ktr_request *req)
271 {
272 
273 	crfree(req->ktr_cred);
274 	if (req->ktr_vp != NULL) {
275 		mtx_lock(&Giant);
276 		vrele(req->ktr_vp);
277 		mtx_unlock(&Giant);
278 	}
279 	mtx_lock(&ktrace_mtx);
280 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
281 	mtx_unlock(&ktrace_mtx);
282 }
283 
284 static void
285 ktr_loop(void *dummy)
286 {
287 	struct ktr_request *req;
288 	struct thread *td;
289 	struct ucred *cred;
290 
291 	/* Only cache these values once. */
292 	td = curthread;
293 	cred = td->td_ucred;
294 	for (;;) {
295 		sema_wait(&ktrace_sema);
296 		mtx_lock(&ktrace_mtx);
297 		req = STAILQ_FIRST(&ktr_todo);
298 		STAILQ_REMOVE_HEAD(&ktr_todo, ktr_list);
299 		KASSERT(req != NULL, ("got a NULL request"));
300 		if (req->ktr_synchronous) {
301 			wakeup(req);
302 			msleep(req, &ktrace_mtx, curthread->td_priority,
303 			    "ktrwait", 0);
304 			mtx_unlock(&ktrace_mtx);
305 		} else {
306 			mtx_unlock(&ktrace_mtx);
307 			/*
308 			 * It is not enough just to pass the cached cred
309 			 * to the VOP's in ktr_writerequest().  Some VFS
310 			 * operations use curthread->td_ucred, so we need
311 			 * to modify our thread's credentials as well.
312 			 * Evil.
313 			 */
314 			td->td_ucred = req->ktr_cred;
315 			ktr_writerequest(req);
316 			td->td_ucred = cred;
317 		}
318 		ktr_freerequest(req);
319 	}
320 }
321 
322 /*
323  * MPSAFE
324  */
325 void
326 ktrsyscall(code, narg, args)
327 	int code, narg;
328 	register_t args[];
329 {
330 	struct ktr_request *req;
331 	struct ktr_syscall *ktp;
332 	size_t buflen;
333 
334 	req = ktr_getrequest(KTR_SYSCALL);
335 	if (req == NULL)
336 		return;
337 	ktp = &req->ktr_data.ktr_syscall;
338 	ktp->ktr_code = code;
339 	ktp->ktr_narg = narg;
340 	buflen = sizeof(register_t) * narg;
341 	if (buflen > 0) {
342 		req->ktr_header.ktr_buffer = malloc(buflen, M_KTRACE, M_WAITOK);
343 		bcopy(args, req->ktr_header.ktr_buffer, buflen);
344 		req->ktr_header.ktr_len = buflen;
345 	}
346 	ktr_submitrequest(req);
347 }
348 
349 /*
350  * MPSAFE
351  */
352 void
353 ktrsysret(code, error, retval)
354 	int code, error;
355 	register_t retval;
356 {
357 	struct ktr_request *req;
358 	struct ktr_sysret *ktp;
359 
360 	req = ktr_getrequest(KTR_SYSRET);
361 	if (req == NULL)
362 		return;
363 	ktp = &req->ktr_data.ktr_sysret;
364 	ktp->ktr_code = code;
365 	ktp->ktr_error = error;
366 	ktp->ktr_retval = retval;		/* what about val2 ? */
367 	ktr_submitrequest(req);
368 }
369 
370 void
371 ktrnamei(path)
372 	char *path;
373 {
374 	struct ktr_request *req;
375 	int namelen;
376 
377 	req = ktr_getrequest(KTR_NAMEI);
378 	if (req == NULL)
379 		return;
380 	namelen = strlen(path);
381 	if (namelen > 0) {
382 		req->ktr_header.ktr_len = namelen;
383 		req->ktr_header.ktr_buffer = malloc(namelen, M_KTRACE,
384 		    M_WAITOK);
385 		bcopy(path, req->ktr_header.ktr_buffer, namelen);
386 	}
387 	ktr_submitrequest(req);
388 }
389 
390 /*
391  * Since the uio may not stay valid, we can not hand off this request to
392  * the thread and need to process it synchronously.  However, we wish to
393  * keep the relative order of records in a trace file correct, so we
394  * do put this request on the queue (if it isn't empty) and then block.
395  * The ktrace thread waks us back up when it is time for this event to
396  * be posted and blocks until we have completed writing out the event
397  * and woken it back up.
398  */
399 void
400 ktrgenio(fd, rw, uio, error)
401 	int fd;
402 	enum uio_rw rw;
403 	struct uio *uio;
404 	int error;
405 {
406 	struct ktr_request *req;
407 	struct ktr_genio *ktg;
408 
409 	if (error)
410 		return;
411 	req = ktr_getrequest(KTR_GENIO);
412 	if (req == NULL)
413 		return;
414 	ktg = &req->ktr_data.ktr_genio;
415 	ktg->ktr_fd = fd;
416 	ktg->ktr_rw = rw;
417 	req->ktr_header.ktr_buffer = uio;
418 	uio->uio_offset = 0;
419 	uio->uio_rw = UIO_WRITE;
420 	req->ktr_synchronous = 1;
421 	ktr_submitrequest(req);
422 }
423 
424 void
425 ktrpsig(sig, action, mask, code)
426 	int sig;
427 	sig_t action;
428 	sigset_t *mask;
429 	int code;
430 {
431 	struct ktr_request *req;
432 	struct ktr_psig	*kp;
433 
434 	req = ktr_getrequest(KTR_PSIG);
435 	if (req == NULL)
436 		return;
437 	kp = &req->ktr_data.ktr_psig;
438 	kp->signo = (char)sig;
439 	kp->action = action;
440 	kp->mask = *mask;
441 	kp->code = code;
442 	ktr_submitrequest(req);
443 }
444 
445 void
446 ktrcsw(out, user)
447 	int out, user;
448 {
449 	struct ktr_request *req;
450 	struct ktr_csw *kc;
451 
452 	req = ktr_getrequest(KTR_CSW);
453 	if (req == NULL)
454 		return;
455 	kc = &req->ktr_data.ktr_csw;
456 	kc->out = out;
457 	kc->user = user;
458 	ktr_submitrequest(req);
459 }
460 #endif
461 
462 /* Interface and common routines */
463 
464 /*
465  * ktrace system call
466  */
467 #ifndef _SYS_SYSPROTO_H_
468 struct ktrace_args {
469 	char	*fname;
470 	int	ops;
471 	int	facs;
472 	int	pid;
473 };
474 #endif
475 /* ARGSUSED */
476 int
477 ktrace(td, uap)
478 	struct thread *td;
479 	register struct ktrace_args *uap;
480 {
481 #ifdef KTRACE
482 	register struct vnode *vp = NULL;
483 	register struct proc *p;
484 	struct pgrp *pg;
485 	int facs = uap->facs & ~KTRFAC_ROOT;
486 	int ops = KTROP(uap->ops);
487 	int descend = uap->ops & KTRFLAG_DESCEND;
488 	int ret = 0;
489 	int flags, error = 0;
490 	struct nameidata nd;
491 
492 	td->td_inktrace = 1;
493 	if (ops != KTROP_CLEAR) {
494 		/*
495 		 * an operation which requires a file argument.
496 		 */
497 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
498 		flags = FREAD | FWRITE | O_NOFOLLOW;
499 		error = vn_open(&nd, &flags, 0);
500 		if (error) {
501 			td->td_inktrace = 0;
502 			return (error);
503 		}
504 		NDFREE(&nd, NDF_ONLY_PNBUF);
505 		vp = nd.ni_vp;
506 		VOP_UNLOCK(vp, 0, td);
507 		if (vp->v_type != VREG) {
508 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
509 			td->td_inktrace = 0;
510 			return (EACCES);
511 		}
512 	}
513 	/*
514 	 * Clear all uses of the tracefile.
515 	 */
516 	if (ops == KTROP_CLEARFILE) {
517 		sx_slock(&allproc_lock);
518 		LIST_FOREACH(p, &allproc, p_list) {
519 			PROC_LOCK(p);
520 			if (p->p_tracep == vp) {
521 				if (ktrcanset(td, p)) {
522 					mtx_lock(&ktrace_mtx);
523 					p->p_tracep = NULL;
524 					p->p_traceflag = 0;
525 					mtx_unlock(&ktrace_mtx);
526 					PROC_UNLOCK(p);
527 					(void) vn_close(vp, FREAD|FWRITE,
528 						td->td_ucred, td);
529 				} else {
530 					PROC_UNLOCK(p);
531 					error = EPERM;
532 				}
533 			} else
534 				PROC_UNLOCK(p);
535 		}
536 		sx_sunlock(&allproc_lock);
537 		goto done;
538 	}
539 	/*
540 	 * need something to (un)trace (XXX - why is this here?)
541 	 */
542 	if (!facs) {
543 		error = EINVAL;
544 		goto done;
545 	}
546 	/*
547 	 * do it
548 	 */
549 	if (uap->pid < 0) {
550 		/*
551 		 * by process group
552 		 */
553 		sx_slock(&proctree_lock);
554 		pg = pgfind(-uap->pid);
555 		if (pg == NULL) {
556 			sx_sunlock(&proctree_lock);
557 			error = ESRCH;
558 			goto done;
559 		}
560 		/*
561 		 * ktrops() may call vrele(). Lock pg_members
562 		 * by the proctree_lock rather than pg_mtx.
563 		 */
564 		PGRP_UNLOCK(pg);
565 		LIST_FOREACH(p, &pg->pg_members, p_pglist)
566 			if (descend)
567 				ret |= ktrsetchildren(td, p, ops, facs, vp);
568 			else
569 				ret |= ktrops(td, p, ops, facs, vp);
570 		sx_sunlock(&proctree_lock);
571 	} else {
572 		/*
573 		 * by pid
574 		 */
575 		p = pfind(uap->pid);
576 		if (p == NULL) {
577 			error = ESRCH;
578 			goto done;
579 		}
580 		PROC_UNLOCK(p);
581 		/* XXX: UNLOCK above has a race */
582 		if (descend)
583 			ret |= ktrsetchildren(td, p, ops, facs, vp);
584 		else
585 			ret |= ktrops(td, p, ops, facs, vp);
586 	}
587 	if (!ret)
588 		error = EPERM;
589 done:
590 	if (vp != NULL)
591 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
592 	td->td_inktrace = 0;
593 	return (error);
594 #else
595 	return ENOSYS;
596 #endif
597 }
598 
599 /*
600  * utrace system call
601  */
602 /* ARGSUSED */
603 int
604 utrace(td, uap)
605 	struct thread *td;
606 	register struct utrace_args *uap;
607 {
608 
609 #ifdef KTRACE
610 	struct ktr_request *req;
611 	void *cp;
612 
613 	if (uap->len > KTR_USER_MAXLEN)
614 		return (EINVAL);
615 	req = ktr_getrequest(KTR_USER);
616 	if (req == NULL)
617 		return (0);
618 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
619 	if (!copyin(uap->addr, cp, uap->len)) {
620 		req->ktr_header.ktr_buffer = cp;
621 		req->ktr_header.ktr_len = uap->len;
622 		ktr_submitrequest(req);
623 	} else {
624 		ktr_freerequest(req);
625 		td->td_inktrace = 0;
626 	}
627 	return (0);
628 #else
629 	return (ENOSYS);
630 #endif
631 }
632 
633 #ifdef KTRACE
634 static int
635 ktrops(td, p, ops, facs, vp)
636 	struct thread *td;
637 	struct proc *p;
638 	int ops, facs;
639 	struct vnode *vp;
640 {
641 	struct vnode *tracevp = NULL;
642 
643 	PROC_LOCK(p);
644 	if (!ktrcanset(td, p)) {
645 		PROC_UNLOCK(p);
646 		return (0);
647 	}
648 	mtx_lock(&ktrace_mtx);
649 	if (ops == KTROP_SET) {
650 		if (p->p_tracep != vp) {
651 			/*
652 			 * if trace file already in use, relinquish below
653 			 */
654 			tracevp = p->p_tracep;
655 			VREF(vp);
656 			p->p_tracep = vp;
657 		}
658 		p->p_traceflag |= facs;
659 		if (td->td_ucred->cr_uid == 0)
660 			p->p_traceflag |= KTRFAC_ROOT;
661 	} else {
662 		/* KTROP_CLEAR */
663 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
664 			/* no more tracing */
665 			p->p_traceflag = 0;
666 			tracevp = p->p_tracep;
667 			p->p_tracep = NULL;
668 		}
669 	}
670 	mtx_unlock(&ktrace_mtx);
671 	PROC_UNLOCK(p);
672 	if (tracevp != NULL)
673 		vrele(tracevp);
674 
675 	return (1);
676 }
677 
678 static int
679 ktrsetchildren(td, top, ops, facs, vp)
680 	struct thread *td;
681 	struct proc *top;
682 	int ops, facs;
683 	struct vnode *vp;
684 {
685 	register struct proc *p;
686 	register int ret = 0;
687 
688 	p = top;
689 	sx_slock(&proctree_lock);
690 	for (;;) {
691 		ret |= ktrops(td, p, ops, facs, vp);
692 		/*
693 		 * If this process has children, descend to them next,
694 		 * otherwise do any siblings, and if done with this level,
695 		 * follow back up the tree (but not past top).
696 		 */
697 		if (!LIST_EMPTY(&p->p_children))
698 			p = LIST_FIRST(&p->p_children);
699 		else for (;;) {
700 			if (p == top) {
701 				sx_sunlock(&proctree_lock);
702 				return (ret);
703 			}
704 			if (LIST_NEXT(p, p_sibling)) {
705 				p = LIST_NEXT(p, p_sibling);
706 				break;
707 			}
708 			p = p->p_pptr;
709 		}
710 	}
711 	/*NOTREACHED*/
712 }
713 
714 static void
715 ktr_writerequest(struct ktr_request *req)
716 {
717 	struct ktr_header *kth;
718 	struct vnode *vp;
719 	struct uio *uio = NULL;
720 	struct proc *p;
721 	struct thread *td;
722 	struct ucred *cred;
723 	struct uio auio;
724 	struct iovec aiov[3];
725 	struct mount *mp;
726 	int datalen, buflen, vrele_count;
727 	int error;
728 
729 	vp = req->ktr_vp;
730 	/*
731 	 * If vp is NULL, the vp has been cleared out from under this
732 	 * request, so just drop it.
733 	 */
734 	if (vp == NULL)
735 		return;
736 	kth = &req->ktr_header;
737 	datalen = data_lengths[kth->ktr_type];
738 	buflen = kth->ktr_len;
739 	cred = req->ktr_cred;
740 	td = curthread;
741 	auio.uio_iov = &aiov[0];
742 	auio.uio_offset = 0;
743 	auio.uio_segflg = UIO_SYSSPACE;
744 	auio.uio_rw = UIO_WRITE;
745 	aiov[0].iov_base = (caddr_t)kth;
746 	aiov[0].iov_len = sizeof(struct ktr_header);
747 	auio.uio_resid = sizeof(struct ktr_header);
748 	auio.uio_iovcnt = 1;
749 	auio.uio_td = td;
750 	if (datalen != 0) {
751 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
752 		aiov[1].iov_len = datalen;
753 		auio.uio_resid += datalen;
754 		auio.uio_iovcnt++;
755 		kth->ktr_len += datalen;
756 	}
757 	if (buflen != 0) {
758 		KASSERT(kth->ktr_buffer != NULL, ("ktrace: nothing to write"));
759 		aiov[auio.uio_iovcnt].iov_base = kth->ktr_buffer;
760 		aiov[auio.uio_iovcnt].iov_len = buflen;
761 		auio.uio_resid += buflen;
762 		auio.uio_iovcnt++;
763 	} else
764 		uio = kth->ktr_buffer;
765 	KASSERT((uio == NULL) ^ (kth->ktr_type == KTR_GENIO),
766 	    ("ktrace: uio and genio mismatch"));
767 	if (uio != NULL)
768 		kth->ktr_len += uio->uio_resid;
769 	mtx_lock(&Giant);
770 	vn_start_write(vp, &mp, V_WAIT);
771 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
772 	(void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
773 #ifdef MAC
774 	error = mac_check_vnode_write(cred, NOCRED, vp);
775 	if (error == 0)
776 #endif
777 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
778 	if (error == 0 && uio != NULL) {
779 		(void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
780 		error = VOP_WRITE(vp, uio, IO_UNIT | IO_APPEND, cred);
781 	}
782 	VOP_UNLOCK(vp, 0, td);
783 	vn_finished_write(mp);
784 	mtx_unlock(&Giant);
785 	if (buflen != 0)
786 		free(kth->ktr_buffer, M_KTRACE);
787 	if (!error)
788 		return;
789 	/*
790 	 * If error encountered, give up tracing on this vnode.  We defer
791 	 * all the vrele()'s on the vnode until after we are finished walking
792 	 * the various lists to avoid needlessly holding locks.
793 	 */
794 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
795 	    error);
796 	vrele_count = 0;
797 	/*
798 	 * First, clear this vnode from being used by any processes in the
799 	 * system.
800 	 * XXX - If one process gets an EPERM writing to the vnode, should
801 	 * we really do this?  Other processes might have suitable
802 	 * credentials for the operation.
803 	 */
804 	sx_slock(&allproc_lock);
805 	LIST_FOREACH(p, &allproc, p_list) {
806 		PROC_LOCK(p);
807 		if (p->p_tracep == vp) {
808 			mtx_lock(&ktrace_mtx);
809 			p->p_tracep = NULL;
810 			p->p_traceflag = 0;
811 			mtx_unlock(&ktrace_mtx);
812 			vrele_count++;
813 		}
814 		PROC_UNLOCK(p);
815 	}
816 	sx_sunlock(&allproc_lock);
817 	/*
818 	 * Second, clear this vnode from any pending requests.
819 	 */
820 	mtx_lock(&ktrace_mtx);
821 	STAILQ_FOREACH(req, &ktr_todo, ktr_list) {
822 		if (req->ktr_vp == vp) {
823 			req->ktr_vp = NULL;
824 			vrele_count++;
825 		}
826 	}
827 	mtx_unlock(&ktrace_mtx);
828 	mtx_lock(&Giant);
829 	while (vrele_count-- > 0)
830 		vrele(vp);
831 	mtx_unlock(&Giant);
832 }
833 
834 /*
835  * Return true if caller has permission to set the ktracing state
836  * of target.  Essentially, the target can't possess any
837  * more permissions than the caller.  KTRFAC_ROOT signifies that
838  * root previously set the tracing status on the target process, and
839  * so, only root may further change it.
840  */
841 static int
842 ktrcanset(td, targetp)
843 	struct thread *td;
844 	struct proc *targetp;
845 {
846 
847 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
848 	if (targetp->p_traceflag & KTRFAC_ROOT &&
849 	    suser_cred(td->td_ucred, PRISON_ROOT))
850 		return (0);
851 
852 	if (p_candebug(td, targetp) != 0)
853 		return (0);
854 
855 	return (1);
856 }
857 
858 #endif /* KTRACE */
859