xref: /freebsd/sys/kern/kern_ktrace.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 #include "opt_mac.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/namei.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/unistd.h>
53 #include <sys/vnode.h>
54 #include <sys/socket.h>
55 #include <sys/stat.h>
56 #include <sys/ktrace.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/syslog.h>
60 #include <sys/sysproto.h>
61 
62 #include <security/mac/mac_framework.h>
63 
64 /*
65  * The ktrace facility allows the tracing of certain key events in user space
66  * processes, such as system calls, signal delivery, context switches, and
67  * user generated events using utrace(2).  It works by streaming event
68  * records and data to a vnode associated with the process using the
69  * ktrace(2) system call.  In general, records can be written directly from
70  * the context that generates the event.  One important exception to this is
71  * during a context switch, where sleeping is not permitted.  To handle this
72  * case, trace events are generated using in-kernel ktr_request records, and
73  * then delivered to disk at a convenient moment -- either immediately, the
74  * next traceable event, at system call return, or at process exit.
75  *
76  * When dealing with multiple threads or processes writing to the same event
77  * log, ordering guarantees are weak: specifically, if an event has multiple
78  * records (i.e., system call enter and return), they may be interlaced with
79  * records from another event.  Process and thread ID information is provided
80  * in the record, and user applications can de-interlace events if required.
81  */
82 
83 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84 
85 #ifdef KTRACE
86 
87 #ifndef KTRACE_REQUEST_POOL
88 #define	KTRACE_REQUEST_POOL	100
89 #endif
90 
91 struct ktr_request {
92 	struct	ktr_header ktr_header;
93 	void	*ktr_buffer;
94 	union {
95 		struct	ktr_syscall ktr_syscall;
96 		struct	ktr_sysret ktr_sysret;
97 		struct	ktr_genio ktr_genio;
98 		struct	ktr_psig ktr_psig;
99 		struct	ktr_csw ktr_csw;
100 	} ktr_data;
101 	STAILQ_ENTRY(ktr_request) ktr_list;
102 };
103 
104 static int data_lengths[] = {
105 	0,					/* none */
106 	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
107 	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
108 	0,					/* KTR_NAMEI */
109 	sizeof(struct ktr_genio),		/* KTR_GENIO */
110 	sizeof(struct ktr_psig),		/* KTR_PSIG */
111 	sizeof(struct ktr_csw),			/* KTR_CSW */
112 	0,					/* KTR_USER */
113 	0,					/* KTR_STRUCT */
114 	0,					/* KTR_SYSCTL */
115 };
116 
117 static STAILQ_HEAD(, ktr_request) ktr_free;
118 
119 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
120 
121 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
122 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
123 
124 static u_int ktr_geniosize = PAGE_SIZE;
125 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
126 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
127     0, "Maximum size of genio event payload");
128 
129 static int print_message = 1;
130 struct mtx ktrace_mtx;
131 static struct sx ktrace_sx;
132 
133 static void ktrace_init(void *dummy);
134 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
135 static u_int ktrace_resize_pool(u_int newsize);
136 static struct ktr_request *ktr_getrequest(int type);
137 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
138 static void ktr_freerequest(struct ktr_request *req);
139 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
140 static int ktrcanset(struct thread *,struct proc *);
141 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
142 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
143 
144 /*
145  * ktrace itself generates events, such as context switches, which we do not
146  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
147  * whether or not it is in a region where tracing of events should be
148  * suppressed.
149  */
150 static void
151 ktrace_enter(struct thread *td)
152 {
153 
154 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
155 	td->td_pflags |= TDP_INKTRACE;
156 }
157 
158 static void
159 ktrace_exit(struct thread *td)
160 {
161 
162 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
163 	td->td_pflags &= ~TDP_INKTRACE;
164 }
165 
166 static void
167 ktrace_assert(struct thread *td)
168 {
169 
170 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
171 }
172 
173 static void
174 ktrace_init(void *dummy)
175 {
176 	struct ktr_request *req;
177 	int i;
178 
179 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
180 	sx_init(&ktrace_sx, "ktrace_sx");
181 	STAILQ_INIT(&ktr_free);
182 	for (i = 0; i < ktr_requestpool; i++) {
183 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
184 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
185 	}
186 }
187 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
188 
189 static int
190 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
191 {
192 	struct thread *td;
193 	u_int newsize, oldsize, wantsize;
194 	int error;
195 
196 	/* Handle easy read-only case first to avoid warnings from GCC. */
197 	if (!req->newptr) {
198 		mtx_lock(&ktrace_mtx);
199 		oldsize = ktr_requestpool;
200 		mtx_unlock(&ktrace_mtx);
201 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
202 	}
203 
204 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
205 	if (error)
206 		return (error);
207 	td = curthread;
208 	ktrace_enter(td);
209 	mtx_lock(&ktrace_mtx);
210 	oldsize = ktr_requestpool;
211 	newsize = ktrace_resize_pool(wantsize);
212 	mtx_unlock(&ktrace_mtx);
213 	ktrace_exit(td);
214 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
215 	if (error)
216 		return (error);
217 	if (wantsize > oldsize && newsize < wantsize)
218 		return (ENOSPC);
219 	return (0);
220 }
221 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
222     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
223 
224 static u_int
225 ktrace_resize_pool(u_int newsize)
226 {
227 	struct ktr_request *req;
228 	int bound;
229 
230 	mtx_assert(&ktrace_mtx, MA_OWNED);
231 	print_message = 1;
232 	bound = newsize - ktr_requestpool;
233 	if (bound == 0)
234 		return (ktr_requestpool);
235 	if (bound < 0)
236 		/* Shrink pool down to newsize if possible. */
237 		while (bound++ < 0) {
238 			req = STAILQ_FIRST(&ktr_free);
239 			if (req == NULL)
240 				return (ktr_requestpool);
241 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
242 			ktr_requestpool--;
243 			mtx_unlock(&ktrace_mtx);
244 			free(req, M_KTRACE);
245 			mtx_lock(&ktrace_mtx);
246 		}
247 	else
248 		/* Grow pool up to newsize. */
249 		while (bound-- > 0) {
250 			mtx_unlock(&ktrace_mtx);
251 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
252 			    M_WAITOK);
253 			mtx_lock(&ktrace_mtx);
254 			STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
255 			ktr_requestpool++;
256 		}
257 	return (ktr_requestpool);
258 }
259 
260 static struct ktr_request *
261 ktr_getrequest(int type)
262 {
263 	struct ktr_request *req;
264 	struct thread *td = curthread;
265 	struct proc *p = td->td_proc;
266 	int pm;
267 
268 	ktrace_enter(td);	/* XXX: In caller instead? */
269 	mtx_lock(&ktrace_mtx);
270 	if (!KTRCHECK(td, type)) {
271 		mtx_unlock(&ktrace_mtx);
272 		ktrace_exit(td);
273 		return (NULL);
274 	}
275 	req = STAILQ_FIRST(&ktr_free);
276 	if (req != NULL) {
277 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
278 		req->ktr_header.ktr_type = type;
279 		if (p->p_traceflag & KTRFAC_DROP) {
280 			req->ktr_header.ktr_type |= KTR_DROP;
281 			p->p_traceflag &= ~KTRFAC_DROP;
282 		}
283 		mtx_unlock(&ktrace_mtx);
284 		microtime(&req->ktr_header.ktr_time);
285 		req->ktr_header.ktr_pid = p->p_pid;
286 		req->ktr_header.ktr_tid = td->td_tid;
287 		bcopy(td->td_name, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
288 		req->ktr_buffer = NULL;
289 		req->ktr_header.ktr_len = 0;
290 	} else {
291 		p->p_traceflag |= KTRFAC_DROP;
292 		pm = print_message;
293 		print_message = 0;
294 		mtx_unlock(&ktrace_mtx);
295 		if (pm)
296 			printf("Out of ktrace request objects.\n");
297 		ktrace_exit(td);
298 	}
299 	return (req);
300 }
301 
302 /*
303  * Some trace generation environments don't permit direct access to VFS,
304  * such as during a context switch where sleeping is not allowed.  Under these
305  * circumstances, queue a request to the thread to be written asynchronously
306  * later.
307  */
308 static void
309 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
310 {
311 
312 	mtx_lock(&ktrace_mtx);
313 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
314 	mtx_unlock(&ktrace_mtx);
315 	ktrace_exit(td);
316 }
317 
318 /*
319  * Drain any pending ktrace records from the per-thread queue to disk.  This
320  * is used both internally before committing other records, and also on
321  * system call return.  We drain all the ones we can find at the time when
322  * drain is requested, but don't keep draining after that as those events
323  * may be approximately "after" the current event.
324  */
325 static void
326 ktr_drain(struct thread *td)
327 {
328 	struct ktr_request *queued_req;
329 	STAILQ_HEAD(, ktr_request) local_queue;
330 
331 	ktrace_assert(td);
332 	sx_assert(&ktrace_sx, SX_XLOCKED);
333 
334 	STAILQ_INIT(&local_queue);	/* XXXRW: needed? */
335 
336 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
337 		mtx_lock(&ktrace_mtx);
338 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
339 		mtx_unlock(&ktrace_mtx);
340 
341 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
342 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
343 			ktr_writerequest(td, queued_req);
344 			ktr_freerequest(queued_req);
345 		}
346 	}
347 }
348 
349 /*
350  * Submit a trace record for immediate commit to disk -- to be used only
351  * where entering VFS is OK.  First drain any pending records that may have
352  * been cached in the thread.
353  */
354 static void
355 ktr_submitrequest(struct thread *td, struct ktr_request *req)
356 {
357 
358 	ktrace_assert(td);
359 
360 	sx_xlock(&ktrace_sx);
361 	ktr_drain(td);
362 	ktr_writerequest(td, req);
363 	ktr_freerequest(req);
364 	sx_xunlock(&ktrace_sx);
365 
366 	ktrace_exit(td);
367 }
368 
369 static void
370 ktr_freerequest(struct ktr_request *req)
371 {
372 
373 	if (req->ktr_buffer != NULL)
374 		free(req->ktr_buffer, M_KTRACE);
375 	mtx_lock(&ktrace_mtx);
376 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
377 	mtx_unlock(&ktrace_mtx);
378 }
379 
380 void
381 ktrsyscall(code, narg, args)
382 	int code, narg;
383 	register_t args[];
384 {
385 	struct ktr_request *req;
386 	struct ktr_syscall *ktp;
387 	size_t buflen;
388 	char *buf = NULL;
389 
390 	buflen = sizeof(register_t) * narg;
391 	if (buflen > 0) {
392 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
393 		bcopy(args, buf, buflen);
394 	}
395 	req = ktr_getrequest(KTR_SYSCALL);
396 	if (req == NULL) {
397 		if (buf != NULL)
398 			free(buf, M_KTRACE);
399 		return;
400 	}
401 	ktp = &req->ktr_data.ktr_syscall;
402 	ktp->ktr_code = code;
403 	ktp->ktr_narg = narg;
404 	if (buflen > 0) {
405 		req->ktr_header.ktr_len = buflen;
406 		req->ktr_buffer = buf;
407 	}
408 	ktr_submitrequest(curthread, req);
409 }
410 
411 void
412 ktrsysret(code, error, retval)
413 	int code, error;
414 	register_t retval;
415 {
416 	struct ktr_request *req;
417 	struct ktr_sysret *ktp;
418 
419 	req = ktr_getrequest(KTR_SYSRET);
420 	if (req == NULL)
421 		return;
422 	ktp = &req->ktr_data.ktr_sysret;
423 	ktp->ktr_code = code;
424 	ktp->ktr_error = error;
425 	ktp->ktr_retval = retval;		/* what about val2 ? */
426 	ktr_submitrequest(curthread, req);
427 }
428 
429 /*
430  * When a process exits, drain per-process asynchronous trace records.
431  */
432 void
433 ktrprocexit(struct thread *td)
434 {
435 
436 	ktrace_enter(td);
437 	sx_xlock(&ktrace_sx);
438 	ktr_drain(td);
439 	sx_xunlock(&ktrace_sx);
440 	ktrace_exit(td);
441 }
442 
443 /*
444  * When a thread returns, drain any asynchronous records generated by the
445  * system call.
446  */
447 void
448 ktruserret(struct thread *td)
449 {
450 
451 	ktrace_enter(td);
452 	sx_xlock(&ktrace_sx);
453 	ktr_drain(td);
454 	sx_xunlock(&ktrace_sx);
455 	ktrace_exit(td);
456 }
457 
458 void
459 ktrnamei(path)
460 	char *path;
461 {
462 	struct ktr_request *req;
463 	int namelen;
464 	char *buf = NULL;
465 
466 	namelen = strlen(path);
467 	if (namelen > 0) {
468 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
469 		bcopy(path, buf, namelen);
470 	}
471 	req = ktr_getrequest(KTR_NAMEI);
472 	if (req == NULL) {
473 		if (buf != NULL)
474 			free(buf, M_KTRACE);
475 		return;
476 	}
477 	if (namelen > 0) {
478 		req->ktr_header.ktr_len = namelen;
479 		req->ktr_buffer = buf;
480 	}
481 	ktr_submitrequest(curthread, req);
482 }
483 
484 void
485 ktrsysctl(name, namelen)
486 	int *name;
487 	u_int namelen;
488 {
489 	struct ktr_request *req;
490 	u_int mib[CTL_MAXNAME + 2];
491 	char *mibname;
492 	size_t mibnamelen;
493 	int error;
494 
495 	/* Lookup name of mib. */
496 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
497 	mib[0] = 0;
498 	mib[1] = 1;
499 	bcopy(name, mib + 2, namelen * sizeof(*name));
500 	mibnamelen = 128;
501 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
502 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
503 	    NULL, 0, &mibnamelen, 0);
504 	if (error) {
505 		free(mibname, M_KTRACE);
506 		return;
507 	}
508 	req = ktr_getrequest(KTR_SYSCTL);
509 	if (req == NULL) {
510 		free(mibname, M_KTRACE);
511 		return;
512 	}
513 	req->ktr_header.ktr_len = mibnamelen;
514 	req->ktr_buffer = mibname;
515 	ktr_submitrequest(curthread, req);
516 }
517 
518 void
519 ktrgenio(fd, rw, uio, error)
520 	int fd;
521 	enum uio_rw rw;
522 	struct uio *uio;
523 	int error;
524 {
525 	struct ktr_request *req;
526 	struct ktr_genio *ktg;
527 	int datalen;
528 	char *buf;
529 
530 	if (error) {
531 		free(uio, M_IOV);
532 		return;
533 	}
534 	uio->uio_offset = 0;
535 	uio->uio_rw = UIO_WRITE;
536 	datalen = imin(uio->uio_resid, ktr_geniosize);
537 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
538 	error = uiomove(buf, datalen, uio);
539 	free(uio, M_IOV);
540 	if (error) {
541 		free(buf, M_KTRACE);
542 		return;
543 	}
544 	req = ktr_getrequest(KTR_GENIO);
545 	if (req == NULL) {
546 		free(buf, M_KTRACE);
547 		return;
548 	}
549 	ktg = &req->ktr_data.ktr_genio;
550 	ktg->ktr_fd = fd;
551 	ktg->ktr_rw = rw;
552 	req->ktr_header.ktr_len = datalen;
553 	req->ktr_buffer = buf;
554 	ktr_submitrequest(curthread, req);
555 }
556 
557 void
558 ktrpsig(sig, action, mask, code)
559 	int sig;
560 	sig_t action;
561 	sigset_t *mask;
562 	int code;
563 {
564 	struct ktr_request *req;
565 	struct ktr_psig	*kp;
566 
567 	req = ktr_getrequest(KTR_PSIG);
568 	if (req == NULL)
569 		return;
570 	kp = &req->ktr_data.ktr_psig;
571 	kp->signo = (char)sig;
572 	kp->action = action;
573 	kp->mask = *mask;
574 	kp->code = code;
575 	ktr_enqueuerequest(curthread, req);
576 }
577 
578 void
579 ktrcsw(out, user)
580 	int out, user;
581 {
582 	struct ktr_request *req;
583 	struct ktr_csw *kc;
584 
585 	req = ktr_getrequest(KTR_CSW);
586 	if (req == NULL)
587 		return;
588 	kc = &req->ktr_data.ktr_csw;
589 	kc->out = out;
590 	kc->user = user;
591 	ktr_enqueuerequest(curthread, req);
592 }
593 
594 void
595 ktrstruct(name, namelen, data, datalen)
596 	const char *name;
597 	size_t namelen;
598 	void *data;
599 	size_t datalen;
600 {
601 	struct ktr_request *req;
602 	char *buf = NULL;
603 	size_t buflen;
604 
605 	if (!data)
606 		datalen = 0;
607 	buflen = namelen + 1 + datalen;
608 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
609 	bcopy(name, buf, namelen);
610 	buf[namelen] = '\0';
611 	bcopy(data, buf + namelen + 1, datalen);
612 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
613 		free(buf, M_KTRACE);
614 		return;
615 	}
616 	req->ktr_buffer = buf;
617 	req->ktr_header.ktr_len = buflen;
618 	ktr_submitrequest(curthread, req);
619 }
620 #endif /* KTRACE */
621 
622 /* Interface and common routines */
623 
624 #ifndef _SYS_SYSPROTO_H_
625 struct ktrace_args {
626 	char	*fname;
627 	int	ops;
628 	int	facs;
629 	int	pid;
630 };
631 #endif
632 /* ARGSUSED */
633 int
634 ktrace(td, uap)
635 	struct thread *td;
636 	register struct ktrace_args *uap;
637 {
638 #ifdef KTRACE
639 	register struct vnode *vp = NULL;
640 	register struct proc *p;
641 	struct pgrp *pg;
642 	int facs = uap->facs & ~KTRFAC_ROOT;
643 	int ops = KTROP(uap->ops);
644 	int descend = uap->ops & KTRFLAG_DESCEND;
645 	int nfound, ret = 0;
646 	int flags, error = 0, vfslocked;
647 	struct nameidata nd;
648 	struct ucred *cred;
649 
650 	/*
651 	 * Need something to (un)trace.
652 	 */
653 	if (ops != KTROP_CLEARFILE && facs == 0)
654 		return (EINVAL);
655 
656 	ktrace_enter(td);
657 	if (ops != KTROP_CLEAR) {
658 		/*
659 		 * an operation which requires a file argument.
660 		 */
661 		NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
662 		    uap->fname, td);
663 		flags = FREAD | FWRITE | O_NOFOLLOW;
664 		error = vn_open(&nd, &flags, 0, NULL);
665 		if (error) {
666 			ktrace_exit(td);
667 			return (error);
668 		}
669 		vfslocked = NDHASGIANT(&nd);
670 		NDFREE(&nd, NDF_ONLY_PNBUF);
671 		vp = nd.ni_vp;
672 		VOP_UNLOCK(vp, 0);
673 		if (vp->v_type != VREG) {
674 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
675 			VFS_UNLOCK_GIANT(vfslocked);
676 			ktrace_exit(td);
677 			return (EACCES);
678 		}
679 		VFS_UNLOCK_GIANT(vfslocked);
680 	}
681 	/*
682 	 * Clear all uses of the tracefile.
683 	 */
684 	if (ops == KTROP_CLEARFILE) {
685 		int vrele_count;
686 
687 		vrele_count = 0;
688 		sx_slock(&allproc_lock);
689 		FOREACH_PROC_IN_SYSTEM(p) {
690 			PROC_LOCK(p);
691 			if (p->p_tracevp == vp) {
692 				if (ktrcanset(td, p)) {
693 					mtx_lock(&ktrace_mtx);
694 					cred = p->p_tracecred;
695 					p->p_tracecred = NULL;
696 					p->p_tracevp = NULL;
697 					p->p_traceflag = 0;
698 					mtx_unlock(&ktrace_mtx);
699 					vrele_count++;
700 					crfree(cred);
701 				} else
702 					error = EPERM;
703 			}
704 			PROC_UNLOCK(p);
705 		}
706 		sx_sunlock(&allproc_lock);
707 		if (vrele_count > 0) {
708 			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
709 			while (vrele_count-- > 0)
710 				vrele(vp);
711 			VFS_UNLOCK_GIANT(vfslocked);
712 		}
713 		goto done;
714 	}
715 	/*
716 	 * do it
717 	 */
718 	sx_slock(&proctree_lock);
719 	if (uap->pid < 0) {
720 		/*
721 		 * by process group
722 		 */
723 		pg = pgfind(-uap->pid);
724 		if (pg == NULL) {
725 			sx_sunlock(&proctree_lock);
726 			error = ESRCH;
727 			goto done;
728 		}
729 		/*
730 		 * ktrops() may call vrele(). Lock pg_members
731 		 * by the proctree_lock rather than pg_mtx.
732 		 */
733 		PGRP_UNLOCK(pg);
734 		nfound = 0;
735 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
736 			PROC_LOCK(p);
737 			if (p_cansee(td, p) != 0) {
738 				PROC_UNLOCK(p);
739 				continue;
740 			}
741 			PROC_UNLOCK(p);
742 			nfound++;
743 			if (descend)
744 				ret |= ktrsetchildren(td, p, ops, facs, vp);
745 			else
746 				ret |= ktrops(td, p, ops, facs, vp);
747 		}
748 		if (nfound == 0) {
749 			sx_sunlock(&proctree_lock);
750 			error = ESRCH;
751 			goto done;
752 		}
753 	} else {
754 		/*
755 		 * by pid
756 		 */
757 		p = pfind(uap->pid);
758 		if (p == NULL) {
759 			sx_sunlock(&proctree_lock);
760 			error = ESRCH;
761 			goto done;
762 		}
763 		error = p_cansee(td, p);
764 		/*
765 		 * The slock of the proctree lock will keep this process
766 		 * from going away, so unlocking the proc here is ok.
767 		 */
768 		PROC_UNLOCK(p);
769 		if (error) {
770 			sx_sunlock(&proctree_lock);
771 			goto done;
772 		}
773 		if (descend)
774 			ret |= ktrsetchildren(td, p, ops, facs, vp);
775 		else
776 			ret |= ktrops(td, p, ops, facs, vp);
777 	}
778 	sx_sunlock(&proctree_lock);
779 	if (!ret)
780 		error = EPERM;
781 done:
782 	if (vp != NULL) {
783 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
784 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
785 		VFS_UNLOCK_GIANT(vfslocked);
786 	}
787 	ktrace_exit(td);
788 	return (error);
789 #else /* !KTRACE */
790 	return (ENOSYS);
791 #endif /* KTRACE */
792 }
793 
794 /* ARGSUSED */
795 int
796 utrace(td, uap)
797 	struct thread *td;
798 	register struct utrace_args *uap;
799 {
800 
801 #ifdef KTRACE
802 	struct ktr_request *req;
803 	void *cp;
804 	int error;
805 
806 	if (!KTRPOINT(td, KTR_USER))
807 		return (0);
808 	if (uap->len > KTR_USER_MAXLEN)
809 		return (EINVAL);
810 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
811 	error = copyin(uap->addr, cp, uap->len);
812 	if (error) {
813 		free(cp, M_KTRACE);
814 		return (error);
815 	}
816 	req = ktr_getrequest(KTR_USER);
817 	if (req == NULL) {
818 		free(cp, M_KTRACE);
819 		return (ENOMEM);
820 	}
821 	req->ktr_buffer = cp;
822 	req->ktr_header.ktr_len = uap->len;
823 	ktr_submitrequest(td, req);
824 	return (0);
825 #else /* !KTRACE */
826 	return (ENOSYS);
827 #endif /* KTRACE */
828 }
829 
830 #ifdef KTRACE
831 static int
832 ktrops(td, p, ops, facs, vp)
833 	struct thread *td;
834 	struct proc *p;
835 	int ops, facs;
836 	struct vnode *vp;
837 {
838 	struct vnode *tracevp = NULL;
839 	struct ucred *tracecred = NULL;
840 
841 	PROC_LOCK(p);
842 	if (!ktrcanset(td, p)) {
843 		PROC_UNLOCK(p);
844 		return (0);
845 	}
846 	mtx_lock(&ktrace_mtx);
847 	if (ops == KTROP_SET) {
848 		if (p->p_tracevp != vp) {
849 			/*
850 			 * if trace file already in use, relinquish below
851 			 */
852 			tracevp = p->p_tracevp;
853 			VREF(vp);
854 			p->p_tracevp = vp;
855 		}
856 		if (p->p_tracecred != td->td_ucred) {
857 			tracecred = p->p_tracecred;
858 			p->p_tracecred = crhold(td->td_ucred);
859 		}
860 		p->p_traceflag |= facs;
861 		if (priv_check(td, PRIV_KTRACE) == 0)
862 			p->p_traceflag |= KTRFAC_ROOT;
863 	} else {
864 		/* KTROP_CLEAR */
865 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
866 			/* no more tracing */
867 			p->p_traceflag = 0;
868 			tracevp = p->p_tracevp;
869 			p->p_tracevp = NULL;
870 			tracecred = p->p_tracecred;
871 			p->p_tracecred = NULL;
872 		}
873 	}
874 	mtx_unlock(&ktrace_mtx);
875 	PROC_UNLOCK(p);
876 	if (tracevp != NULL) {
877 		int vfslocked;
878 
879 		vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
880 		vrele(tracevp);
881 		VFS_UNLOCK_GIANT(vfslocked);
882 	}
883 	if (tracecred != NULL)
884 		crfree(tracecred);
885 
886 	return (1);
887 }
888 
889 static int
890 ktrsetchildren(td, top, ops, facs, vp)
891 	struct thread *td;
892 	struct proc *top;
893 	int ops, facs;
894 	struct vnode *vp;
895 {
896 	register struct proc *p;
897 	register int ret = 0;
898 
899 	p = top;
900 	sx_assert(&proctree_lock, SX_LOCKED);
901 	for (;;) {
902 		ret |= ktrops(td, p, ops, facs, vp);
903 		/*
904 		 * If this process has children, descend to them next,
905 		 * otherwise do any siblings, and if done with this level,
906 		 * follow back up the tree (but not past top).
907 		 */
908 		if (!LIST_EMPTY(&p->p_children))
909 			p = LIST_FIRST(&p->p_children);
910 		else for (;;) {
911 			if (p == top)
912 				return (ret);
913 			if (LIST_NEXT(p, p_sibling)) {
914 				p = LIST_NEXT(p, p_sibling);
915 				break;
916 			}
917 			p = p->p_pptr;
918 		}
919 	}
920 	/*NOTREACHED*/
921 }
922 
923 static void
924 ktr_writerequest(struct thread *td, struct ktr_request *req)
925 {
926 	struct ktr_header *kth;
927 	struct vnode *vp;
928 	struct proc *p;
929 	struct ucred *cred;
930 	struct uio auio;
931 	struct iovec aiov[3];
932 	struct mount *mp;
933 	int datalen, buflen, vrele_count;
934 	int error, vfslocked;
935 
936 	/*
937 	 * We hold the vnode and credential for use in I/O in case ktrace is
938 	 * disabled on the process as we write out the request.
939 	 *
940 	 * XXXRW: This is not ideal: we could end up performing a write after
941 	 * the vnode has been closed.
942 	 */
943 	mtx_lock(&ktrace_mtx);
944 	vp = td->td_proc->p_tracevp;
945 	cred = td->td_proc->p_tracecred;
946 
947 	/*
948 	 * If vp is NULL, the vp has been cleared out from under this
949 	 * request, so just drop it.  Make sure the credential and vnode are
950 	 * in sync: we should have both or neither.
951 	 */
952 	if (vp == NULL) {
953 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
954 		mtx_unlock(&ktrace_mtx);
955 		return;
956 	}
957 	VREF(vp);
958 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
959 	crhold(cred);
960 	mtx_unlock(&ktrace_mtx);
961 
962 	kth = &req->ktr_header;
963 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
964 	    sizeof(data_lengths) / sizeof(data_lengths[0]),
965 	    ("data_lengths array overflow"));
966 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
967 	buflen = kth->ktr_len;
968 	auio.uio_iov = &aiov[0];
969 	auio.uio_offset = 0;
970 	auio.uio_segflg = UIO_SYSSPACE;
971 	auio.uio_rw = UIO_WRITE;
972 	aiov[0].iov_base = (caddr_t)kth;
973 	aiov[0].iov_len = sizeof(struct ktr_header);
974 	auio.uio_resid = sizeof(struct ktr_header);
975 	auio.uio_iovcnt = 1;
976 	auio.uio_td = td;
977 	if (datalen != 0) {
978 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
979 		aiov[1].iov_len = datalen;
980 		auio.uio_resid += datalen;
981 		auio.uio_iovcnt++;
982 		kth->ktr_len += datalen;
983 	}
984 	if (buflen != 0) {
985 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
986 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
987 		aiov[auio.uio_iovcnt].iov_len = buflen;
988 		auio.uio_resid += buflen;
989 		auio.uio_iovcnt++;
990 	}
991 
992 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
993 	vn_start_write(vp, &mp, V_WAIT);
994 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
995 #ifdef MAC
996 	error = mac_vnode_check_write(cred, NOCRED, vp);
997 	if (error == 0)
998 #endif
999 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1000 	VOP_UNLOCK(vp, 0);
1001 	vn_finished_write(mp);
1002 	crfree(cred);
1003 	if (!error) {
1004 		vrele(vp);
1005 		VFS_UNLOCK_GIANT(vfslocked);
1006 		return;
1007 	}
1008 	VFS_UNLOCK_GIANT(vfslocked);
1009 
1010 	/*
1011 	 * If error encountered, give up tracing on this vnode.  We defer
1012 	 * all the vrele()'s on the vnode until after we are finished walking
1013 	 * the various lists to avoid needlessly holding locks.
1014 	 * NB: at this point we still hold the vnode reference that must
1015 	 * not go away as we need the valid vnode to compare with. Thus let
1016 	 * vrele_count start at 1 and the reference will be freed
1017 	 * by the loop at the end after our last use of vp.
1018 	 */
1019 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1020 	    error);
1021 	vrele_count = 1;
1022 	/*
1023 	 * First, clear this vnode from being used by any processes in the
1024 	 * system.
1025 	 * XXX - If one process gets an EPERM writing to the vnode, should
1026 	 * we really do this?  Other processes might have suitable
1027 	 * credentials for the operation.
1028 	 */
1029 	cred = NULL;
1030 	sx_slock(&allproc_lock);
1031 	FOREACH_PROC_IN_SYSTEM(p) {
1032 		PROC_LOCK(p);
1033 		if (p->p_tracevp == vp) {
1034 			mtx_lock(&ktrace_mtx);
1035 			p->p_tracevp = NULL;
1036 			p->p_traceflag = 0;
1037 			cred = p->p_tracecred;
1038 			p->p_tracecred = NULL;
1039 			mtx_unlock(&ktrace_mtx);
1040 			vrele_count++;
1041 		}
1042 		PROC_UNLOCK(p);
1043 		if (cred != NULL) {
1044 			crfree(cred);
1045 			cred = NULL;
1046 		}
1047 	}
1048 	sx_sunlock(&allproc_lock);
1049 
1050 	/*
1051 	 * We can't clear any pending requests in threads that have cached
1052 	 * them but not yet committed them, as those are per-thread.  The
1053 	 * thread will have to clear it itself on system call return.
1054 	 */
1055 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1056 	while (vrele_count-- > 0)
1057 		vrele(vp);
1058 	VFS_UNLOCK_GIANT(vfslocked);
1059 }
1060 
1061 /*
1062  * Return true if caller has permission to set the ktracing state
1063  * of target.  Essentially, the target can't possess any
1064  * more permissions than the caller.  KTRFAC_ROOT signifies that
1065  * root previously set the tracing status on the target process, and
1066  * so, only root may further change it.
1067  */
1068 static int
1069 ktrcanset(td, targetp)
1070 	struct thread *td;
1071 	struct proc *targetp;
1072 {
1073 
1074 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1075 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1076 	    priv_check(td, PRIV_KTRACE))
1077 		return (0);
1078 
1079 	if (p_candebug(td, targetp) != 0)
1080 		return (0);
1081 
1082 	return (1);
1083 }
1084 
1085 #endif /* KTRACE */
1086