xref: /freebsd/sys/kern/kern_ktrace.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/capsicum.h>
43 #include <sys/systm.h>
44 #include <sys/fcntl.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/namei.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/unistd.h>
55 #include <sys/vnode.h>
56 #include <sys/socket.h>
57 #include <sys/stat.h>
58 #include <sys/ktrace.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysent.h>
62 #include <sys/syslog.h>
63 #include <sys/sysproto.h>
64 
65 #include <security/mac/mac_framework.h>
66 
67 /*
68  * The ktrace facility allows the tracing of certain key events in user space
69  * processes, such as system calls, signal delivery, context switches, and
70  * user generated events using utrace(2).  It works by streaming event
71  * records and data to a vnode associated with the process using the
72  * ktrace(2) system call.  In general, records can be written directly from
73  * the context that generates the event.  One important exception to this is
74  * during a context switch, where sleeping is not permitted.  To handle this
75  * case, trace events are generated using in-kernel ktr_request records, and
76  * then delivered to disk at a convenient moment -- either immediately, the
77  * next traceable event, at system call return, or at process exit.
78  *
79  * When dealing with multiple threads or processes writing to the same event
80  * log, ordering guarantees are weak: specifically, if an event has multiple
81  * records (i.e., system call enter and return), they may be interlaced with
82  * records from another event.  Process and thread ID information is provided
83  * in the record, and user applications can de-interlace events if required.
84  */
85 
86 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
87 
88 #ifdef KTRACE
89 
90 FEATURE(ktrace, "Kernel support for system-call tracing");
91 
92 #ifndef KTRACE_REQUEST_POOL
93 #define	KTRACE_REQUEST_POOL	100
94 #endif
95 
96 struct ktr_request {
97 	struct	ktr_header ktr_header;
98 	void	*ktr_buffer;
99 	union {
100 		struct	ktr_proc_ctor ktr_proc_ctor;
101 		struct	ktr_cap_fail ktr_cap_fail;
102 		struct	ktr_syscall ktr_syscall;
103 		struct	ktr_sysret ktr_sysret;
104 		struct	ktr_genio ktr_genio;
105 		struct	ktr_psig ktr_psig;
106 		struct	ktr_csw ktr_csw;
107 		struct	ktr_fault ktr_fault;
108 		struct	ktr_faultend ktr_faultend;
109 		struct  ktr_struct_array ktr_struct_array;
110 	} ktr_data;
111 	STAILQ_ENTRY(ktr_request) ktr_list;
112 };
113 
114 static int data_lengths[] = {
115 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
116 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
117 	[KTR_NAMEI] = 0,
118 	[KTR_GENIO] = sizeof(struct ktr_genio),
119 	[KTR_PSIG] = sizeof(struct ktr_psig),
120 	[KTR_CSW] = sizeof(struct ktr_csw),
121 	[KTR_USER] = 0,
122 	[KTR_STRUCT] = 0,
123 	[KTR_SYSCTL] = 0,
124 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
125 	[KTR_PROCDTOR] = 0,
126 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
127 	[KTR_FAULT] = sizeof(struct ktr_fault),
128 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
129 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
130 };
131 
132 static STAILQ_HEAD(, ktr_request) ktr_free;
133 
134 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
135 
136 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
137 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
138 
139 u_int ktr_geniosize = PAGE_SIZE;
140 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
141     0, "Maximum size of genio event payload");
142 
143 static int print_message = 1;
144 static struct mtx ktrace_mtx;
145 static struct sx ktrace_sx;
146 
147 static void ktrace_init(void *dummy);
148 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
149 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
150 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
151 static struct ktr_request *ktr_getrequest(int type);
152 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
153 static void ktr_freeproc(struct proc *p, struct ucred **uc,
154     struct vnode **vp);
155 static void ktr_freerequest(struct ktr_request *req);
156 static void ktr_freerequest_locked(struct ktr_request *req);
157 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
158 static int ktrcanset(struct thread *,struct proc *);
159 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
160 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
161 static void ktrprocctor_entered(struct thread *, struct proc *);
162 
163 /*
164  * ktrace itself generates events, such as context switches, which we do not
165  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
166  * whether or not it is in a region where tracing of events should be
167  * suppressed.
168  */
169 static void
170 ktrace_enter(struct thread *td)
171 {
172 
173 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
174 	td->td_pflags |= TDP_INKTRACE;
175 }
176 
177 static void
178 ktrace_exit(struct thread *td)
179 {
180 
181 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
182 	td->td_pflags &= ~TDP_INKTRACE;
183 }
184 
185 static void
186 ktrace_assert(struct thread *td)
187 {
188 
189 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
190 }
191 
192 static void
193 ktrace_init(void *dummy)
194 {
195 	struct ktr_request *req;
196 	int i;
197 
198 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
199 	sx_init(&ktrace_sx, "ktrace_sx");
200 	STAILQ_INIT(&ktr_free);
201 	for (i = 0; i < ktr_requestpool; i++) {
202 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
203 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
204 	}
205 }
206 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
207 
208 static int
209 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
210 {
211 	struct thread *td;
212 	u_int newsize, oldsize, wantsize;
213 	int error;
214 
215 	/* Handle easy read-only case first to avoid warnings from GCC. */
216 	if (!req->newptr) {
217 		oldsize = ktr_requestpool;
218 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
219 	}
220 
221 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
222 	if (error)
223 		return (error);
224 	td = curthread;
225 	ktrace_enter(td);
226 	oldsize = ktr_requestpool;
227 	newsize = ktrace_resize_pool(oldsize, wantsize);
228 	ktrace_exit(td);
229 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
230 	if (error)
231 		return (error);
232 	if (wantsize > oldsize && newsize < wantsize)
233 		return (ENOSPC);
234 	return (0);
235 }
236 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
237     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
238     "Pool buffer size for ktrace(1)");
239 
240 static u_int
241 ktrace_resize_pool(u_int oldsize, u_int newsize)
242 {
243 	STAILQ_HEAD(, ktr_request) ktr_new;
244 	struct ktr_request *req;
245 	int bound;
246 
247 	print_message = 1;
248 	bound = newsize - oldsize;
249 	if (bound == 0)
250 		return (ktr_requestpool);
251 	if (bound < 0) {
252 		mtx_lock(&ktrace_mtx);
253 		/* Shrink pool down to newsize if possible. */
254 		while (bound++ < 0) {
255 			req = STAILQ_FIRST(&ktr_free);
256 			if (req == NULL)
257 				break;
258 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
259 			ktr_requestpool--;
260 			free(req, M_KTRACE);
261 		}
262 	} else {
263 		/* Grow pool up to newsize. */
264 		STAILQ_INIT(&ktr_new);
265 		while (bound-- > 0) {
266 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
267 			    M_WAITOK);
268 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
269 		}
270 		mtx_lock(&ktrace_mtx);
271 		STAILQ_CONCAT(&ktr_free, &ktr_new);
272 		ktr_requestpool += (newsize - oldsize);
273 	}
274 	mtx_unlock(&ktrace_mtx);
275 	return (ktr_requestpool);
276 }
277 
278 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
279 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
280     (sizeof((struct thread *)NULL)->td_name));
281 
282 static struct ktr_request *
283 ktr_getrequest_entered(struct thread *td, int type)
284 {
285 	struct ktr_request *req;
286 	struct proc *p = td->td_proc;
287 	int pm;
288 
289 	mtx_lock(&ktrace_mtx);
290 	if (!KTRCHECK(td, type)) {
291 		mtx_unlock(&ktrace_mtx);
292 		return (NULL);
293 	}
294 	req = STAILQ_FIRST(&ktr_free);
295 	if (req != NULL) {
296 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
297 		req->ktr_header.ktr_type = type;
298 		if (p->p_traceflag & KTRFAC_DROP) {
299 			req->ktr_header.ktr_type |= KTR_DROP;
300 			p->p_traceflag &= ~KTRFAC_DROP;
301 		}
302 		mtx_unlock(&ktrace_mtx);
303 		microtime(&req->ktr_header.ktr_time);
304 		req->ktr_header.ktr_pid = p->p_pid;
305 		req->ktr_header.ktr_tid = td->td_tid;
306 		bcopy(td->td_name, req->ktr_header.ktr_comm,
307 		    sizeof(req->ktr_header.ktr_comm));
308 		req->ktr_buffer = NULL;
309 		req->ktr_header.ktr_len = 0;
310 	} else {
311 		p->p_traceflag |= KTRFAC_DROP;
312 		pm = print_message;
313 		print_message = 0;
314 		mtx_unlock(&ktrace_mtx);
315 		if (pm)
316 			printf("Out of ktrace request objects.\n");
317 	}
318 	return (req);
319 }
320 
321 static struct ktr_request *
322 ktr_getrequest(int type)
323 {
324 	struct thread *td = curthread;
325 	struct ktr_request *req;
326 
327 	ktrace_enter(td);
328 	req = ktr_getrequest_entered(td, type);
329 	if (req == NULL)
330 		ktrace_exit(td);
331 
332 	return (req);
333 }
334 
335 /*
336  * Some trace generation environments don't permit direct access to VFS,
337  * such as during a context switch where sleeping is not allowed.  Under these
338  * circumstances, queue a request to the thread to be written asynchronously
339  * later.
340  */
341 static void
342 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
343 {
344 
345 	mtx_lock(&ktrace_mtx);
346 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
347 	mtx_unlock(&ktrace_mtx);
348 }
349 
350 /*
351  * Drain any pending ktrace records from the per-thread queue to disk.  This
352  * is used both internally before committing other records, and also on
353  * system call return.  We drain all the ones we can find at the time when
354  * drain is requested, but don't keep draining after that as those events
355  * may be approximately "after" the current event.
356  */
357 static void
358 ktr_drain(struct thread *td)
359 {
360 	struct ktr_request *queued_req;
361 	STAILQ_HEAD(, ktr_request) local_queue;
362 
363 	ktrace_assert(td);
364 	sx_assert(&ktrace_sx, SX_XLOCKED);
365 
366 	STAILQ_INIT(&local_queue);
367 
368 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
369 		mtx_lock(&ktrace_mtx);
370 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
371 		mtx_unlock(&ktrace_mtx);
372 
373 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
374 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
375 			ktr_writerequest(td, queued_req);
376 			ktr_freerequest(queued_req);
377 		}
378 	}
379 }
380 
381 /*
382  * Submit a trace record for immediate commit to disk -- to be used only
383  * where entering VFS is OK.  First drain any pending records that may have
384  * been cached in the thread.
385  */
386 static void
387 ktr_submitrequest(struct thread *td, struct ktr_request *req)
388 {
389 
390 	ktrace_assert(td);
391 
392 	sx_xlock(&ktrace_sx);
393 	ktr_drain(td);
394 	ktr_writerequest(td, req);
395 	ktr_freerequest(req);
396 	sx_xunlock(&ktrace_sx);
397 	ktrace_exit(td);
398 }
399 
400 static void
401 ktr_freerequest(struct ktr_request *req)
402 {
403 
404 	mtx_lock(&ktrace_mtx);
405 	ktr_freerequest_locked(req);
406 	mtx_unlock(&ktrace_mtx);
407 }
408 
409 static void
410 ktr_freerequest_locked(struct ktr_request *req)
411 {
412 
413 	mtx_assert(&ktrace_mtx, MA_OWNED);
414 	if (req->ktr_buffer != NULL)
415 		free(req->ktr_buffer, M_KTRACE);
416 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
417 }
418 
419 /*
420  * Disable tracing for a process and release all associated resources.
421  * The caller is responsible for releasing a reference on the returned
422  * vnode and credentials.
423  */
424 static void
425 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
426 {
427 	struct ktr_request *req;
428 
429 	PROC_LOCK_ASSERT(p, MA_OWNED);
430 	mtx_assert(&ktrace_mtx, MA_OWNED);
431 	*uc = p->p_tracecred;
432 	p->p_tracecred = NULL;
433 	if (vp != NULL)
434 		*vp = p->p_tracevp;
435 	p->p_tracevp = NULL;
436 	p->p_traceflag = 0;
437 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
438 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
439 		ktr_freerequest_locked(req);
440 	}
441 }
442 
443 void
444 ktrsyscall(int code, int narg, register_t args[])
445 {
446 	struct ktr_request *req;
447 	struct ktr_syscall *ktp;
448 	size_t buflen;
449 	char *buf = NULL;
450 
451 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
452 		return;
453 
454 	buflen = sizeof(register_t) * narg;
455 	if (buflen > 0) {
456 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
457 		bcopy(args, buf, buflen);
458 	}
459 	req = ktr_getrequest(KTR_SYSCALL);
460 	if (req == NULL) {
461 		if (buf != NULL)
462 			free(buf, M_KTRACE);
463 		return;
464 	}
465 	ktp = &req->ktr_data.ktr_syscall;
466 	ktp->ktr_code = code;
467 	ktp->ktr_narg = narg;
468 	if (buflen > 0) {
469 		req->ktr_header.ktr_len = buflen;
470 		req->ktr_buffer = buf;
471 	}
472 	ktr_submitrequest(curthread, req);
473 }
474 
475 void
476 ktrsysret(int code, int error, register_t retval)
477 {
478 	struct ktr_request *req;
479 	struct ktr_sysret *ktp;
480 
481 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
482 		return;
483 
484 	req = ktr_getrequest(KTR_SYSRET);
485 	if (req == NULL)
486 		return;
487 	ktp = &req->ktr_data.ktr_sysret;
488 	ktp->ktr_code = code;
489 	ktp->ktr_error = error;
490 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
491 	ktr_submitrequest(curthread, req);
492 }
493 
494 /*
495  * When a setuid process execs, disable tracing.
496  *
497  * XXX: We toss any pending asynchronous records.
498  */
499 void
500 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
501 {
502 
503 	PROC_LOCK_ASSERT(p, MA_OWNED);
504 	mtx_lock(&ktrace_mtx);
505 	ktr_freeproc(p, uc, vp);
506 	mtx_unlock(&ktrace_mtx);
507 }
508 
509 /*
510  * When a process exits, drain per-process asynchronous trace records
511  * and disable tracing.
512  */
513 void
514 ktrprocexit(struct thread *td)
515 {
516 	struct ktr_request *req;
517 	struct proc *p;
518 	struct ucred *cred;
519 	struct vnode *vp;
520 
521 	p = td->td_proc;
522 	if (p->p_traceflag == 0)
523 		return;
524 
525 	ktrace_enter(td);
526 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
527 	if (req != NULL)
528 		ktr_enqueuerequest(td, req);
529 	sx_xlock(&ktrace_sx);
530 	ktr_drain(td);
531 	sx_xunlock(&ktrace_sx);
532 	PROC_LOCK(p);
533 	mtx_lock(&ktrace_mtx);
534 	ktr_freeproc(p, &cred, &vp);
535 	mtx_unlock(&ktrace_mtx);
536 	PROC_UNLOCK(p);
537 	if (vp != NULL)
538 		vrele(vp);
539 	if (cred != NULL)
540 		crfree(cred);
541 	ktrace_exit(td);
542 }
543 
544 static void
545 ktrprocctor_entered(struct thread *td, struct proc *p)
546 {
547 	struct ktr_proc_ctor *ktp;
548 	struct ktr_request *req;
549 	struct thread *td2;
550 
551 	ktrace_assert(td);
552 	td2 = FIRST_THREAD_IN_PROC(p);
553 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
554 	if (req == NULL)
555 		return;
556 	ktp = &req->ktr_data.ktr_proc_ctor;
557 	ktp->sv_flags = p->p_sysent->sv_flags;
558 	ktr_enqueuerequest(td2, req);
559 }
560 
561 void
562 ktrprocctor(struct proc *p)
563 {
564 	struct thread *td = curthread;
565 
566 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
567 		return;
568 
569 	ktrace_enter(td);
570 	ktrprocctor_entered(td, p);
571 	ktrace_exit(td);
572 }
573 
574 /*
575  * When a process forks, enable tracing in the new process if needed.
576  */
577 void
578 ktrprocfork(struct proc *p1, struct proc *p2)
579 {
580 
581 	MPASS(p2->p_tracevp == NULL);
582 	MPASS(p2->p_traceflag == 0);
583 
584 	if (p1->p_traceflag == 0)
585 		return;
586 
587 	PROC_LOCK(p1);
588 	mtx_lock(&ktrace_mtx);
589 	if (p1->p_traceflag & KTRFAC_INHERIT) {
590 		p2->p_traceflag = p1->p_traceflag;
591 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
592 			VREF(p2->p_tracevp);
593 			KASSERT(p1->p_tracecred != NULL,
594 			    ("ktrace vnode with no cred"));
595 			p2->p_tracecred = crhold(p1->p_tracecred);
596 		}
597 	}
598 	mtx_unlock(&ktrace_mtx);
599 	PROC_UNLOCK(p1);
600 
601 	ktrprocctor(p2);
602 }
603 
604 /*
605  * When a thread returns, drain any asynchronous records generated by the
606  * system call.
607  */
608 void
609 ktruserret(struct thread *td)
610 {
611 
612 	ktrace_enter(td);
613 	sx_xlock(&ktrace_sx);
614 	ktr_drain(td);
615 	sx_xunlock(&ktrace_sx);
616 	ktrace_exit(td);
617 }
618 
619 void
620 ktrnamei(path)
621 	char *path;
622 {
623 	struct ktr_request *req;
624 	int namelen;
625 	char *buf = NULL;
626 
627 	namelen = strlen(path);
628 	if (namelen > 0) {
629 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
630 		bcopy(path, buf, namelen);
631 	}
632 	req = ktr_getrequest(KTR_NAMEI);
633 	if (req == NULL) {
634 		if (buf != NULL)
635 			free(buf, M_KTRACE);
636 		return;
637 	}
638 	if (namelen > 0) {
639 		req->ktr_header.ktr_len = namelen;
640 		req->ktr_buffer = buf;
641 	}
642 	ktr_submitrequest(curthread, req);
643 }
644 
645 void
646 ktrsysctl(int *name, u_int namelen)
647 {
648 	struct ktr_request *req;
649 	u_int mib[CTL_MAXNAME + 2];
650 	char *mibname;
651 	size_t mibnamelen;
652 	int error;
653 
654 	/* Lookup name of mib. */
655 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
656 	mib[0] = 0;
657 	mib[1] = 1;
658 	bcopy(name, mib + 2, namelen * sizeof(*name));
659 	mibnamelen = 128;
660 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
661 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
662 	    NULL, 0, &mibnamelen, 0);
663 	if (error) {
664 		free(mibname, M_KTRACE);
665 		return;
666 	}
667 	req = ktr_getrequest(KTR_SYSCTL);
668 	if (req == NULL) {
669 		free(mibname, M_KTRACE);
670 		return;
671 	}
672 	req->ktr_header.ktr_len = mibnamelen;
673 	req->ktr_buffer = mibname;
674 	ktr_submitrequest(curthread, req);
675 }
676 
677 void
678 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
679 {
680 	struct ktr_request *req;
681 	struct ktr_genio *ktg;
682 	int datalen;
683 	char *buf;
684 
685 	if (error) {
686 		free(uio, M_IOV);
687 		return;
688 	}
689 	uio->uio_offset = 0;
690 	uio->uio_rw = UIO_WRITE;
691 	datalen = MIN(uio->uio_resid, ktr_geniosize);
692 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
693 	error = uiomove(buf, datalen, uio);
694 	free(uio, M_IOV);
695 	if (error) {
696 		free(buf, M_KTRACE);
697 		return;
698 	}
699 	req = ktr_getrequest(KTR_GENIO);
700 	if (req == NULL) {
701 		free(buf, M_KTRACE);
702 		return;
703 	}
704 	ktg = &req->ktr_data.ktr_genio;
705 	ktg->ktr_fd = fd;
706 	ktg->ktr_rw = rw;
707 	req->ktr_header.ktr_len = datalen;
708 	req->ktr_buffer = buf;
709 	ktr_submitrequest(curthread, req);
710 }
711 
712 void
713 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
714 {
715 	struct thread *td = curthread;
716 	struct ktr_request *req;
717 	struct ktr_psig	*kp;
718 
719 	req = ktr_getrequest(KTR_PSIG);
720 	if (req == NULL)
721 		return;
722 	kp = &req->ktr_data.ktr_psig;
723 	kp->signo = (char)sig;
724 	kp->action = action;
725 	kp->mask = *mask;
726 	kp->code = code;
727 	ktr_enqueuerequest(td, req);
728 	ktrace_exit(td);
729 }
730 
731 void
732 ktrcsw(int out, int user, const char *wmesg)
733 {
734 	struct thread *td = curthread;
735 	struct ktr_request *req;
736 	struct ktr_csw *kc;
737 
738 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
739 		return;
740 
741 	req = ktr_getrequest(KTR_CSW);
742 	if (req == NULL)
743 		return;
744 	kc = &req->ktr_data.ktr_csw;
745 	kc->out = out;
746 	kc->user = user;
747 	if (wmesg != NULL)
748 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
749 	else
750 		bzero(kc->wmesg, sizeof(kc->wmesg));
751 	ktr_enqueuerequest(td, req);
752 	ktrace_exit(td);
753 }
754 
755 void
756 ktrstruct(const char *name, const void *data, size_t datalen)
757 {
758 	struct ktr_request *req;
759 	char *buf;
760 	size_t buflen, namelen;
761 
762 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
763 		return;
764 
765 	if (data == NULL)
766 		datalen = 0;
767 	namelen = strlen(name) + 1;
768 	buflen = namelen + datalen;
769 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
770 	strcpy(buf, name);
771 	bcopy(data, buf + namelen, datalen);
772 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
773 		free(buf, M_KTRACE);
774 		return;
775 	}
776 	req->ktr_buffer = buf;
777 	req->ktr_header.ktr_len = buflen;
778 	ktr_submitrequest(curthread, req);
779 }
780 
781 void
782 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
783     int num_items, size_t struct_size)
784 {
785 	struct ktr_request *req;
786 	struct ktr_struct_array *ksa;
787 	char *buf;
788 	size_t buflen, datalen, namelen;
789 	int max_items;
790 
791 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
792 		return;
793 
794 	/* Trim array length to genio size. */
795 	max_items = ktr_geniosize / struct_size;
796 	if (num_items > max_items) {
797 		if (max_items == 0)
798 			num_items = 1;
799 		else
800 			num_items = max_items;
801 	}
802 	datalen = num_items * struct_size;
803 
804 	if (data == NULL)
805 		datalen = 0;
806 
807 	namelen = strlen(name) + 1;
808 	buflen = namelen + datalen;
809 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
810 	strcpy(buf, name);
811 	if (seg == UIO_SYSSPACE)
812 		bcopy(data, buf + namelen, datalen);
813 	else {
814 		if (copyin(data, buf + namelen, datalen) != 0) {
815 			free(buf, M_KTRACE);
816 			return;
817 		}
818 	}
819 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
820 		free(buf, M_KTRACE);
821 		return;
822 	}
823 	ksa = &req->ktr_data.ktr_struct_array;
824 	ksa->struct_size = struct_size;
825 	req->ktr_buffer = buf;
826 	req->ktr_header.ktr_len = buflen;
827 	ktr_submitrequest(curthread, req);
828 }
829 
830 void
831 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed,
832     const cap_rights_t *held)
833 {
834 	struct thread *td = curthread;
835 	struct ktr_request *req;
836 	struct ktr_cap_fail *kcf;
837 
838 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
839 		return;
840 
841 	req = ktr_getrequest(KTR_CAPFAIL);
842 	if (req == NULL)
843 		return;
844 	kcf = &req->ktr_data.ktr_cap_fail;
845 	kcf->cap_type = type;
846 	if (needed != NULL)
847 		kcf->cap_needed = *needed;
848 	else
849 		cap_rights_init(&kcf->cap_needed);
850 	if (held != NULL)
851 		kcf->cap_held = *held;
852 	else
853 		cap_rights_init(&kcf->cap_held);
854 	ktr_enqueuerequest(td, req);
855 	ktrace_exit(td);
856 }
857 
858 void
859 ktrfault(vm_offset_t vaddr, int type)
860 {
861 	struct thread *td = curthread;
862 	struct ktr_request *req;
863 	struct ktr_fault *kf;
864 
865 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
866 		return;
867 
868 	req = ktr_getrequest(KTR_FAULT);
869 	if (req == NULL)
870 		return;
871 	kf = &req->ktr_data.ktr_fault;
872 	kf->vaddr = vaddr;
873 	kf->type = type;
874 	ktr_enqueuerequest(td, req);
875 	ktrace_exit(td);
876 }
877 
878 void
879 ktrfaultend(int result)
880 {
881 	struct thread *td = curthread;
882 	struct ktr_request *req;
883 	struct ktr_faultend *kf;
884 
885 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
886 		return;
887 
888 	req = ktr_getrequest(KTR_FAULTEND);
889 	if (req == NULL)
890 		return;
891 	kf = &req->ktr_data.ktr_faultend;
892 	kf->result = result;
893 	ktr_enqueuerequest(td, req);
894 	ktrace_exit(td);
895 }
896 #endif /* KTRACE */
897 
898 /* Interface and common routines */
899 
900 #ifndef _SYS_SYSPROTO_H_
901 struct ktrace_args {
902 	char	*fname;
903 	int	ops;
904 	int	facs;
905 	int	pid;
906 };
907 #endif
908 /* ARGSUSED */
909 int
910 sys_ktrace(struct thread *td, struct ktrace_args *uap)
911 {
912 #ifdef KTRACE
913 	struct vnode *vp = NULL;
914 	struct proc *p;
915 	struct pgrp *pg;
916 	int facs = uap->facs & ~KTRFAC_ROOT;
917 	int ops = KTROP(uap->ops);
918 	int descend = uap->ops & KTRFLAG_DESCEND;
919 	int nfound, ret = 0;
920 	int flags, error = 0;
921 	struct nameidata nd;
922 	struct ucred *cred;
923 
924 	/*
925 	 * Need something to (un)trace.
926 	 */
927 	if (ops != KTROP_CLEARFILE && facs == 0)
928 		return (EINVAL);
929 
930 	ktrace_enter(td);
931 	if (ops != KTROP_CLEAR) {
932 		/*
933 		 * an operation which requires a file argument.
934 		 */
935 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
936 		flags = FREAD | FWRITE | O_NOFOLLOW;
937 		error = vn_open(&nd, &flags, 0, NULL);
938 		if (error) {
939 			ktrace_exit(td);
940 			return (error);
941 		}
942 		NDFREE(&nd, NDF_ONLY_PNBUF);
943 		vp = nd.ni_vp;
944 		VOP_UNLOCK(vp, 0);
945 		if (vp->v_type != VREG) {
946 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
947 			ktrace_exit(td);
948 			return (EACCES);
949 		}
950 	}
951 	/*
952 	 * Clear all uses of the tracefile.
953 	 */
954 	if (ops == KTROP_CLEARFILE) {
955 		int vrele_count;
956 
957 		vrele_count = 0;
958 		sx_slock(&allproc_lock);
959 		FOREACH_PROC_IN_SYSTEM(p) {
960 			PROC_LOCK(p);
961 			if (p->p_tracevp == vp) {
962 				if (ktrcanset(td, p)) {
963 					mtx_lock(&ktrace_mtx);
964 					ktr_freeproc(p, &cred, NULL);
965 					mtx_unlock(&ktrace_mtx);
966 					vrele_count++;
967 					crfree(cred);
968 				} else
969 					error = EPERM;
970 			}
971 			PROC_UNLOCK(p);
972 		}
973 		sx_sunlock(&allproc_lock);
974 		if (vrele_count > 0) {
975 			while (vrele_count-- > 0)
976 				vrele(vp);
977 		}
978 		goto done;
979 	}
980 	/*
981 	 * do it
982 	 */
983 	sx_slock(&proctree_lock);
984 	if (uap->pid < 0) {
985 		/*
986 		 * by process group
987 		 */
988 		pg = pgfind(-uap->pid);
989 		if (pg == NULL) {
990 			sx_sunlock(&proctree_lock);
991 			error = ESRCH;
992 			goto done;
993 		}
994 		/*
995 		 * ktrops() may call vrele(). Lock pg_members
996 		 * by the proctree_lock rather than pg_mtx.
997 		 */
998 		PGRP_UNLOCK(pg);
999 		nfound = 0;
1000 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1001 			PROC_LOCK(p);
1002 			if (p->p_state == PRS_NEW ||
1003 			    p_cansee(td, p) != 0) {
1004 				PROC_UNLOCK(p);
1005 				continue;
1006 			}
1007 			nfound++;
1008 			if (descend)
1009 				ret |= ktrsetchildren(td, p, ops, facs, vp);
1010 			else
1011 				ret |= ktrops(td, p, ops, facs, vp);
1012 		}
1013 		if (nfound == 0) {
1014 			sx_sunlock(&proctree_lock);
1015 			error = ESRCH;
1016 			goto done;
1017 		}
1018 	} else {
1019 		/*
1020 		 * by pid
1021 		 */
1022 		p = pfind(uap->pid);
1023 		if (p == NULL)
1024 			error = ESRCH;
1025 		else
1026 			error = p_cansee(td, p);
1027 		if (error) {
1028 			if (p != NULL)
1029 				PROC_UNLOCK(p);
1030 			sx_sunlock(&proctree_lock);
1031 			goto done;
1032 		}
1033 		if (descend)
1034 			ret |= ktrsetchildren(td, p, ops, facs, vp);
1035 		else
1036 			ret |= ktrops(td, p, ops, facs, vp);
1037 	}
1038 	sx_sunlock(&proctree_lock);
1039 	if (!ret)
1040 		error = EPERM;
1041 done:
1042 	if (vp != NULL)
1043 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
1044 	ktrace_exit(td);
1045 	return (error);
1046 #else /* !KTRACE */
1047 	return (ENOSYS);
1048 #endif /* KTRACE */
1049 }
1050 
1051 /* ARGSUSED */
1052 int
1053 sys_utrace(struct thread *td, struct utrace_args *uap)
1054 {
1055 
1056 #ifdef KTRACE
1057 	struct ktr_request *req;
1058 	void *cp;
1059 	int error;
1060 
1061 	if (!KTRPOINT(td, KTR_USER))
1062 		return (0);
1063 	if (uap->len > KTR_USER_MAXLEN)
1064 		return (EINVAL);
1065 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1066 	error = copyin(uap->addr, cp, uap->len);
1067 	if (error) {
1068 		free(cp, M_KTRACE);
1069 		return (error);
1070 	}
1071 	req = ktr_getrequest(KTR_USER);
1072 	if (req == NULL) {
1073 		free(cp, M_KTRACE);
1074 		return (ENOMEM);
1075 	}
1076 	req->ktr_buffer = cp;
1077 	req->ktr_header.ktr_len = uap->len;
1078 	ktr_submitrequest(td, req);
1079 	return (0);
1080 #else /* !KTRACE */
1081 	return (ENOSYS);
1082 #endif /* KTRACE */
1083 }
1084 
1085 #ifdef KTRACE
1086 static int
1087 ktrops(struct thread *td, struct proc *p, int ops, int facs, struct vnode *vp)
1088 {
1089 	struct vnode *tracevp = NULL;
1090 	struct ucred *tracecred = NULL;
1091 
1092 	PROC_LOCK_ASSERT(p, MA_OWNED);
1093 	if (!ktrcanset(td, p)) {
1094 		PROC_UNLOCK(p);
1095 		return (0);
1096 	}
1097 	if (p->p_flag & P_WEXIT) {
1098 		/* If the process is exiting, just ignore it. */
1099 		PROC_UNLOCK(p);
1100 		return (1);
1101 	}
1102 	mtx_lock(&ktrace_mtx);
1103 	if (ops == KTROP_SET) {
1104 		if (p->p_tracevp != vp) {
1105 			/*
1106 			 * if trace file already in use, relinquish below
1107 			 */
1108 			tracevp = p->p_tracevp;
1109 			VREF(vp);
1110 			p->p_tracevp = vp;
1111 		}
1112 		if (p->p_tracecred != td->td_ucred) {
1113 			tracecred = p->p_tracecred;
1114 			p->p_tracecred = crhold(td->td_ucred);
1115 		}
1116 		p->p_traceflag |= facs;
1117 		if (priv_check(td, PRIV_KTRACE) == 0)
1118 			p->p_traceflag |= KTRFAC_ROOT;
1119 	} else {
1120 		/* KTROP_CLEAR */
1121 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1122 			/* no more tracing */
1123 			ktr_freeproc(p, &tracecred, &tracevp);
1124 	}
1125 	mtx_unlock(&ktrace_mtx);
1126 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1127 		ktrprocctor_entered(td, p);
1128 	PROC_UNLOCK(p);
1129 	if (tracevp != NULL)
1130 		vrele(tracevp);
1131 	if (tracecred != NULL)
1132 		crfree(tracecred);
1133 
1134 	return (1);
1135 }
1136 
1137 static int
1138 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1139     struct vnode *vp)
1140 {
1141 	struct proc *p;
1142 	int ret = 0;
1143 
1144 	p = top;
1145 	PROC_LOCK_ASSERT(p, MA_OWNED);
1146 	sx_assert(&proctree_lock, SX_LOCKED);
1147 	for (;;) {
1148 		ret |= ktrops(td, p, ops, facs, vp);
1149 		/*
1150 		 * If this process has children, descend to them next,
1151 		 * otherwise do any siblings, and if done with this level,
1152 		 * follow back up the tree (but not past top).
1153 		 */
1154 		if (!LIST_EMPTY(&p->p_children))
1155 			p = LIST_FIRST(&p->p_children);
1156 		else for (;;) {
1157 			if (p == top)
1158 				return (ret);
1159 			if (LIST_NEXT(p, p_sibling)) {
1160 				p = LIST_NEXT(p, p_sibling);
1161 				break;
1162 			}
1163 			p = p->p_pptr;
1164 		}
1165 		PROC_LOCK(p);
1166 	}
1167 	/*NOTREACHED*/
1168 }
1169 
1170 static void
1171 ktr_writerequest(struct thread *td, struct ktr_request *req)
1172 {
1173 	struct ktr_header *kth;
1174 	struct vnode *vp;
1175 	struct proc *p;
1176 	struct ucred *cred;
1177 	struct uio auio;
1178 	struct iovec aiov[3];
1179 	struct mount *mp;
1180 	int datalen, buflen, vrele_count;
1181 	int error;
1182 
1183 	/*
1184 	 * We hold the vnode and credential for use in I/O in case ktrace is
1185 	 * disabled on the process as we write out the request.
1186 	 *
1187 	 * XXXRW: This is not ideal: we could end up performing a write after
1188 	 * the vnode has been closed.
1189 	 */
1190 	mtx_lock(&ktrace_mtx);
1191 	vp = td->td_proc->p_tracevp;
1192 	cred = td->td_proc->p_tracecred;
1193 
1194 	/*
1195 	 * If vp is NULL, the vp has been cleared out from under this
1196 	 * request, so just drop it.  Make sure the credential and vnode are
1197 	 * in sync: we should have both or neither.
1198 	 */
1199 	if (vp == NULL) {
1200 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1201 		mtx_unlock(&ktrace_mtx);
1202 		return;
1203 	}
1204 	VREF(vp);
1205 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1206 	crhold(cred);
1207 	mtx_unlock(&ktrace_mtx);
1208 
1209 	kth = &req->ktr_header;
1210 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths),
1211 	    ("data_lengths array overflow"));
1212 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1213 	buflen = kth->ktr_len;
1214 	auio.uio_iov = &aiov[0];
1215 	auio.uio_offset = 0;
1216 	auio.uio_segflg = UIO_SYSSPACE;
1217 	auio.uio_rw = UIO_WRITE;
1218 	aiov[0].iov_base = (caddr_t)kth;
1219 	aiov[0].iov_len = sizeof(struct ktr_header);
1220 	auio.uio_resid = sizeof(struct ktr_header);
1221 	auio.uio_iovcnt = 1;
1222 	auio.uio_td = td;
1223 	if (datalen != 0) {
1224 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1225 		aiov[1].iov_len = datalen;
1226 		auio.uio_resid += datalen;
1227 		auio.uio_iovcnt++;
1228 		kth->ktr_len += datalen;
1229 	}
1230 	if (buflen != 0) {
1231 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1232 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1233 		aiov[auio.uio_iovcnt].iov_len = buflen;
1234 		auio.uio_resid += buflen;
1235 		auio.uio_iovcnt++;
1236 	}
1237 
1238 	vn_start_write(vp, &mp, V_WAIT);
1239 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1240 #ifdef MAC
1241 	error = mac_vnode_check_write(cred, NOCRED, vp);
1242 	if (error == 0)
1243 #endif
1244 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1245 	VOP_UNLOCK(vp, 0);
1246 	vn_finished_write(mp);
1247 	crfree(cred);
1248 	if (!error) {
1249 		vrele(vp);
1250 		return;
1251 	}
1252 
1253 	/*
1254 	 * If error encountered, give up tracing on this vnode.  We defer
1255 	 * all the vrele()'s on the vnode until after we are finished walking
1256 	 * the various lists to avoid needlessly holding locks.
1257 	 * NB: at this point we still hold the vnode reference that must
1258 	 * not go away as we need the valid vnode to compare with. Thus let
1259 	 * vrele_count start at 1 and the reference will be freed
1260 	 * by the loop at the end after our last use of vp.
1261 	 */
1262 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1263 	    error);
1264 	vrele_count = 1;
1265 	/*
1266 	 * First, clear this vnode from being used by any processes in the
1267 	 * system.
1268 	 * XXX - If one process gets an EPERM writing to the vnode, should
1269 	 * we really do this?  Other processes might have suitable
1270 	 * credentials for the operation.
1271 	 */
1272 	cred = NULL;
1273 	sx_slock(&allproc_lock);
1274 	FOREACH_PROC_IN_SYSTEM(p) {
1275 		PROC_LOCK(p);
1276 		if (p->p_tracevp == vp) {
1277 			mtx_lock(&ktrace_mtx);
1278 			ktr_freeproc(p, &cred, NULL);
1279 			mtx_unlock(&ktrace_mtx);
1280 			vrele_count++;
1281 		}
1282 		PROC_UNLOCK(p);
1283 		if (cred != NULL) {
1284 			crfree(cred);
1285 			cred = NULL;
1286 		}
1287 	}
1288 	sx_sunlock(&allproc_lock);
1289 
1290 	while (vrele_count-- > 0)
1291 		vrele(vp);
1292 }
1293 
1294 /*
1295  * Return true if caller has permission to set the ktracing state
1296  * of target.  Essentially, the target can't possess any
1297  * more permissions than the caller.  KTRFAC_ROOT signifies that
1298  * root previously set the tracing status on the target process, and
1299  * so, only root may further change it.
1300  */
1301 static int
1302 ktrcanset(struct thread *td, struct proc *targetp)
1303 {
1304 
1305 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1306 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1307 	    priv_check(td, PRIV_KTRACE))
1308 		return (0);
1309 
1310 	if (p_candebug(td, targetp) != 0)
1311 		return (0);
1312 
1313 	return (1);
1314 }
1315 
1316 #endif /* KTRACE */
1317