xref: /freebsd/sys/kern/kern_ktrace.c (revision bd66c1b43e33540205dbc1187c2f2a15c58b57ba)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #include "opt_ktrace.h"
36 
37 #include <sys/param.h>
38 #include <sys/capsicum.h>
39 #include <sys/systm.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/malloc.h>
46 #include <sys/mount.h>
47 #include <sys/namei.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/resourcevar.h>
51 #include <sys/unistd.h>
52 #include <sys/vnode.h>
53 #include <sys/socket.h>
54 #include <sys/stat.h>
55 #include <sys/ktrace.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/syslog.h>
60 #include <sys/sysproto.h>
61 
62 #include <security/mac/mac_framework.h>
63 
64 /*
65  * The ktrace facility allows the tracing of certain key events in user space
66  * processes, such as system calls, signal delivery, context switches, and
67  * user generated events using utrace(2).  It works by streaming event
68  * records and data to a vnode associated with the process using the
69  * ktrace(2) system call.  In general, records can be written directly from
70  * the context that generates the event.  One important exception to this is
71  * during a context switch, where sleeping is not permitted.  To handle this
72  * case, trace events are generated using in-kernel ktr_request records, and
73  * then delivered to disk at a convenient moment -- either immediately, the
74  * next traceable event, at system call return, or at process exit.
75  *
76  * When dealing with multiple threads or processes writing to the same event
77  * log, ordering guarantees are weak: specifically, if an event has multiple
78  * records (i.e., system call enter and return), they may be interlaced with
79  * records from another event.  Process and thread ID information is provided
80  * in the record, and user applications can de-interlace events if required.
81  */
82 
83 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84 
85 #ifdef KTRACE
86 
87 FEATURE(ktrace, "Kernel support for system-call tracing");
88 
89 #ifndef KTRACE_REQUEST_POOL
90 #define	KTRACE_REQUEST_POOL	100
91 #endif
92 
93 struct ktr_request {
94 	struct	ktr_header ktr_header;
95 	void	*ktr_buffer;
96 	union {
97 		struct	ktr_proc_ctor ktr_proc_ctor;
98 		struct	ktr_cap_fail ktr_cap_fail;
99 		struct	ktr_syscall ktr_syscall;
100 		struct	ktr_sysret ktr_sysret;
101 		struct	ktr_genio ktr_genio;
102 		struct	ktr_psig ktr_psig;
103 		struct	ktr_csw ktr_csw;
104 		struct	ktr_fault ktr_fault;
105 		struct	ktr_faultend ktr_faultend;
106 		struct  ktr_struct_array ktr_struct_array;
107 	} ktr_data;
108 	STAILQ_ENTRY(ktr_request) ktr_list;
109 };
110 
111 static const int data_lengths[] = {
112 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
113 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
114 	[KTR_NAMEI] = 0,
115 	[KTR_GENIO] = sizeof(struct ktr_genio),
116 	[KTR_PSIG] = sizeof(struct ktr_psig),
117 	[KTR_CSW] = sizeof(struct ktr_csw),
118 	[KTR_USER] = 0,
119 	[KTR_STRUCT] = 0,
120 	[KTR_SYSCTL] = 0,
121 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
122 	[KTR_PROCDTOR] = 0,
123 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
124 	[KTR_FAULT] = sizeof(struct ktr_fault),
125 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
126 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
127 };
128 
129 static STAILQ_HEAD(, ktr_request) ktr_free;
130 
131 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
132     "KTRACE options");
133 
134 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
135 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
136 
137 u_int ktr_geniosize = PAGE_SIZE;
138 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
139     0, "Maximum size of genio event payload");
140 
141 /*
142  * Allow to not to send signal to traced process, in which context the
143  * ktr record is written.  The limit is applied from the process that
144  * set up ktrace, so killing the traced process is not completely fair.
145  */
146 int ktr_filesize_limit_signal = 0;
147 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN,
148     &ktr_filesize_limit_signal, 0,
149     "Send SIGXFSZ to the traced process when the log size limit is exceeded");
150 
151 static int print_message = 1;
152 static struct mtx ktrace_mtx;
153 static struct sx ktrace_sx;
154 
155 struct ktr_io_params {
156 	struct vnode	*vp;
157 	struct ucred	*cr;
158 	off_t		lim;
159 	u_int		refs;
160 };
161 
162 static void ktrace_init(void *dummy);
163 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
164 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
165 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
166 static struct ktr_request *ktr_getrequest(int type);
167 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
168 static struct ktr_io_params *ktr_freeproc(struct proc *p);
169 static void ktr_freerequest(struct ktr_request *req);
170 static void ktr_freerequest_locked(struct ktr_request *req);
171 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
172 static int ktrcanset(struct thread *,struct proc *);
173 static int ktrsetchildren(struct thread *, struct proc *, int, int,
174     struct ktr_io_params *);
175 static int ktrops(struct thread *, struct proc *, int, int,
176     struct ktr_io_params *);
177 static void ktrprocctor_entered(struct thread *, struct proc *);
178 
179 /*
180  * ktrace itself generates events, such as context switches, which we do not
181  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
182  * whether or not it is in a region where tracing of events should be
183  * suppressed.
184  */
185 static void
186 ktrace_enter(struct thread *td)
187 {
188 
189 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
190 	td->td_pflags |= TDP_INKTRACE;
191 }
192 
193 static void
194 ktrace_exit(struct thread *td)
195 {
196 
197 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
198 	td->td_pflags &= ~TDP_INKTRACE;
199 }
200 
201 static void
202 ktrace_assert(struct thread *td)
203 {
204 
205 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
206 }
207 
208 static void
209 ast_ktrace(struct thread *td, int tda __unused)
210 {
211 	KTRUSERRET(td);
212 }
213 
214 static void
215 ktrace_init(void *dummy)
216 {
217 	struct ktr_request *req;
218 	int i;
219 
220 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
221 	sx_init(&ktrace_sx, "ktrace_sx");
222 	STAILQ_INIT(&ktr_free);
223 	for (i = 0; i < ktr_requestpool; i++) {
224 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK |
225 		    M_ZERO);
226 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
227 	}
228 	ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace);
229 }
230 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
231 
232 static int
233 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
234 {
235 	struct thread *td;
236 	u_int newsize, oldsize, wantsize;
237 	int error;
238 
239 	/* Handle easy read-only case first to avoid warnings from GCC. */
240 	if (!req->newptr) {
241 		oldsize = ktr_requestpool;
242 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
243 	}
244 
245 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
246 	if (error)
247 		return (error);
248 	td = curthread;
249 	ktrace_enter(td);
250 	oldsize = ktr_requestpool;
251 	newsize = ktrace_resize_pool(oldsize, wantsize);
252 	ktrace_exit(td);
253 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
254 	if (error)
255 		return (error);
256 	if (wantsize > oldsize && newsize < wantsize)
257 		return (ENOSPC);
258 	return (0);
259 }
260 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
261     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
262     sysctl_kern_ktrace_request_pool, "IU",
263     "Pool buffer size for ktrace(1)");
264 
265 static u_int
266 ktrace_resize_pool(u_int oldsize, u_int newsize)
267 {
268 	STAILQ_HEAD(, ktr_request) ktr_new;
269 	struct ktr_request *req;
270 	int bound;
271 
272 	print_message = 1;
273 	bound = newsize - oldsize;
274 	if (bound == 0)
275 		return (ktr_requestpool);
276 	if (bound < 0) {
277 		mtx_lock(&ktrace_mtx);
278 		/* Shrink pool down to newsize if possible. */
279 		while (bound++ < 0) {
280 			req = STAILQ_FIRST(&ktr_free);
281 			if (req == NULL)
282 				break;
283 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
284 			ktr_requestpool--;
285 			free(req, M_KTRACE);
286 		}
287 	} else {
288 		/* Grow pool up to newsize. */
289 		STAILQ_INIT(&ktr_new);
290 		while (bound-- > 0) {
291 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
292 			    M_WAITOK | M_ZERO);
293 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
294 		}
295 		mtx_lock(&ktrace_mtx);
296 		STAILQ_CONCAT(&ktr_free, &ktr_new);
297 		ktr_requestpool += (newsize - oldsize);
298 	}
299 	mtx_unlock(&ktrace_mtx);
300 	return (ktr_requestpool);
301 }
302 
303 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
304 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
305     (sizeof((struct thread *)NULL)->td_name));
306 
307 static struct ktr_request *
308 ktr_getrequest_entered(struct thread *td, int type)
309 {
310 	struct ktr_request *req;
311 	struct proc *p = td->td_proc;
312 	int pm;
313 
314 	mtx_lock(&ktrace_mtx);
315 	if (!KTRCHECK(td, type)) {
316 		mtx_unlock(&ktrace_mtx);
317 		return (NULL);
318 	}
319 	req = STAILQ_FIRST(&ktr_free);
320 	if (req != NULL) {
321 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
322 		req->ktr_header.ktr_type = type;
323 		if (p->p_traceflag & KTRFAC_DROP) {
324 			req->ktr_header.ktr_type |= KTR_DROP;
325 			p->p_traceflag &= ~KTRFAC_DROP;
326 		}
327 		mtx_unlock(&ktrace_mtx);
328 		nanotime(&req->ktr_header.ktr_time);
329 		req->ktr_header.ktr_type |= KTR_VERSIONED;
330 		req->ktr_header.ktr_pid = p->p_pid;
331 		req->ktr_header.ktr_tid = td->td_tid;
332 		req->ktr_header.ktr_cpu = PCPU_GET(cpuid);
333 		req->ktr_header.ktr_version = KTR_VERSION1;
334 		bcopy(td->td_name, req->ktr_header.ktr_comm,
335 		    sizeof(req->ktr_header.ktr_comm));
336 		req->ktr_buffer = NULL;
337 		req->ktr_header.ktr_len = 0;
338 	} else {
339 		p->p_traceflag |= KTRFAC_DROP;
340 		pm = print_message;
341 		print_message = 0;
342 		mtx_unlock(&ktrace_mtx);
343 		if (pm)
344 			printf("Out of ktrace request objects.\n");
345 	}
346 	return (req);
347 }
348 
349 static struct ktr_request *
350 ktr_getrequest(int type)
351 {
352 	struct thread *td = curthread;
353 	struct ktr_request *req;
354 
355 	ktrace_enter(td);
356 	req = ktr_getrequest_entered(td, type);
357 	if (req == NULL)
358 		ktrace_exit(td);
359 
360 	return (req);
361 }
362 
363 /*
364  * Some trace generation environments don't permit direct access to VFS,
365  * such as during a context switch where sleeping is not allowed.  Under these
366  * circumstances, queue a request to the thread to be written asynchronously
367  * later.
368  */
369 static void
370 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
371 {
372 
373 	mtx_lock(&ktrace_mtx);
374 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
375 	mtx_unlock(&ktrace_mtx);
376 	ast_sched(td, TDA_KTRACE);
377 }
378 
379 /*
380  * Drain any pending ktrace records from the per-thread queue to disk.  This
381  * is used both internally before committing other records, and also on
382  * system call return.  We drain all the ones we can find at the time when
383  * drain is requested, but don't keep draining after that as those events
384  * may be approximately "after" the current event.
385  */
386 static void
387 ktr_drain(struct thread *td)
388 {
389 	struct ktr_request *queued_req;
390 	STAILQ_HEAD(, ktr_request) local_queue;
391 
392 	ktrace_assert(td);
393 	sx_assert(&ktrace_sx, SX_XLOCKED);
394 
395 	STAILQ_INIT(&local_queue);
396 
397 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
398 		mtx_lock(&ktrace_mtx);
399 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
400 		mtx_unlock(&ktrace_mtx);
401 
402 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
403 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
404 			ktr_writerequest(td, queued_req);
405 			ktr_freerequest(queued_req);
406 		}
407 	}
408 }
409 
410 /*
411  * Submit a trace record for immediate commit to disk -- to be used only
412  * where entering VFS is OK.  First drain any pending records that may have
413  * been cached in the thread.
414  */
415 static void
416 ktr_submitrequest(struct thread *td, struct ktr_request *req)
417 {
418 
419 	ktrace_assert(td);
420 
421 	sx_xlock(&ktrace_sx);
422 	ktr_drain(td);
423 	ktr_writerequest(td, req);
424 	ktr_freerequest(req);
425 	sx_xunlock(&ktrace_sx);
426 	ktrace_exit(td);
427 }
428 
429 static void
430 ktr_freerequest(struct ktr_request *req)
431 {
432 
433 	mtx_lock(&ktrace_mtx);
434 	ktr_freerequest_locked(req);
435 	mtx_unlock(&ktrace_mtx);
436 }
437 
438 static void
439 ktr_freerequest_locked(struct ktr_request *req)
440 {
441 
442 	mtx_assert(&ktrace_mtx, MA_OWNED);
443 	if (req->ktr_buffer != NULL)
444 		free(req->ktr_buffer, M_KTRACE);
445 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
446 }
447 
448 static void
449 ktr_io_params_ref(struct ktr_io_params *kiop)
450 {
451 	mtx_assert(&ktrace_mtx, MA_OWNED);
452 	kiop->refs++;
453 }
454 
455 static struct ktr_io_params *
456 ktr_io_params_rele(struct ktr_io_params *kiop)
457 {
458 	mtx_assert(&ktrace_mtx, MA_OWNED);
459 	if (kiop == NULL)
460 		return (NULL);
461 	KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
462 	return (--(kiop->refs) == 0 ? kiop : NULL);
463 }
464 
465 void
466 ktr_io_params_free(struct ktr_io_params *kiop)
467 {
468 	if (kiop == NULL)
469 		return;
470 
471 	MPASS(kiop->refs == 0);
472 	vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
473 	crfree(kiop->cr);
474 	free(kiop, M_KTRACE);
475 }
476 
477 static struct ktr_io_params *
478 ktr_io_params_alloc(struct thread *td, struct vnode *vp)
479 {
480 	struct ktr_io_params *res;
481 
482 	res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
483 	res->vp = vp;
484 	res->cr = crhold(td->td_ucred);
485 	res->lim = lim_cur(td, RLIMIT_FSIZE);
486 	res->refs = 1;
487 	return (res);
488 }
489 
490 /*
491  * Disable tracing for a process and release all associated resources.
492  * The caller is responsible for releasing a reference on the returned
493  * vnode and credentials.
494  */
495 static struct ktr_io_params *
496 ktr_freeproc(struct proc *p)
497 {
498 	struct ktr_io_params *kiop;
499 	struct ktr_request *req;
500 
501 	PROC_LOCK_ASSERT(p, MA_OWNED);
502 	mtx_assert(&ktrace_mtx, MA_OWNED);
503 	kiop = ktr_io_params_rele(p->p_ktrioparms);
504 	p->p_ktrioparms = NULL;
505 	p->p_traceflag = 0;
506 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
507 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
508 		ktr_freerequest_locked(req);
509 	}
510 	return (kiop);
511 }
512 
513 struct vnode *
514 ktr_get_tracevp(struct proc *p, bool ref)
515 {
516 	struct vnode *vp;
517 
518 	PROC_LOCK_ASSERT(p, MA_OWNED);
519 
520 	if (p->p_ktrioparms != NULL) {
521 		vp = p->p_ktrioparms->vp;
522 		if (ref)
523 			vrefact(vp);
524 	} else {
525 		vp = NULL;
526 	}
527 	return (vp);
528 }
529 
530 void
531 ktrsyscall(int code, int narg, syscallarg_t args[])
532 {
533 	struct ktr_request *req;
534 	struct ktr_syscall *ktp;
535 	size_t buflen;
536 	char *buf = NULL;
537 
538 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
539 		return;
540 
541 	buflen = sizeof(register_t) * narg;
542 	if (buflen > 0) {
543 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
544 		bcopy(args, buf, buflen);
545 	}
546 	req = ktr_getrequest(KTR_SYSCALL);
547 	if (req == NULL) {
548 		if (buf != NULL)
549 			free(buf, M_KTRACE);
550 		return;
551 	}
552 	ktp = &req->ktr_data.ktr_syscall;
553 	ktp->ktr_code = code;
554 	ktp->ktr_narg = narg;
555 	if (buflen > 0) {
556 		req->ktr_header.ktr_len = buflen;
557 		req->ktr_buffer = buf;
558 	}
559 	ktr_submitrequest(curthread, req);
560 }
561 
562 void
563 ktrsysret(int code, int error, register_t retval)
564 {
565 	struct ktr_request *req;
566 	struct ktr_sysret *ktp;
567 
568 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
569 		return;
570 
571 	req = ktr_getrequest(KTR_SYSRET);
572 	if (req == NULL)
573 		return;
574 	ktp = &req->ktr_data.ktr_sysret;
575 	ktp->ktr_code = code;
576 	ktp->ktr_error = error;
577 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
578 	ktr_submitrequest(curthread, req);
579 }
580 
581 /*
582  * When a setuid process execs, disable tracing.
583  *
584  * XXX: We toss any pending asynchronous records.
585  */
586 struct ktr_io_params *
587 ktrprocexec(struct proc *p)
588 {
589 	struct ktr_io_params *kiop;
590 
591 	PROC_LOCK_ASSERT(p, MA_OWNED);
592 
593 	kiop = p->p_ktrioparms;
594 	if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED) == 0)
595 		return (NULL);
596 
597 	mtx_lock(&ktrace_mtx);
598 	kiop = ktr_freeproc(p);
599 	mtx_unlock(&ktrace_mtx);
600 	return (kiop);
601 }
602 
603 /*
604  * When a process exits, drain per-process asynchronous trace records
605  * and disable tracing.
606  */
607 void
608 ktrprocexit(struct thread *td)
609 {
610 	struct ktr_request *req;
611 	struct proc *p;
612 	struct ktr_io_params *kiop;
613 
614 	p = td->td_proc;
615 	if (p->p_traceflag == 0)
616 		return;
617 
618 	ktrace_enter(td);
619 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
620 	if (req != NULL)
621 		ktr_enqueuerequest(td, req);
622 	sx_xlock(&ktrace_sx);
623 	ktr_drain(td);
624 	sx_xunlock(&ktrace_sx);
625 	PROC_LOCK(p);
626 	mtx_lock(&ktrace_mtx);
627 	kiop = ktr_freeproc(p);
628 	mtx_unlock(&ktrace_mtx);
629 	PROC_UNLOCK(p);
630 	ktr_io_params_free(kiop);
631 	ktrace_exit(td);
632 }
633 
634 static void
635 ktrprocctor_entered(struct thread *td, struct proc *p)
636 {
637 	struct ktr_proc_ctor *ktp;
638 	struct ktr_request *req;
639 	struct thread *td2;
640 
641 	ktrace_assert(td);
642 	td2 = FIRST_THREAD_IN_PROC(p);
643 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
644 	if (req == NULL)
645 		return;
646 	ktp = &req->ktr_data.ktr_proc_ctor;
647 	ktp->sv_flags = p->p_sysent->sv_flags;
648 	ktr_enqueuerequest(td2, req);
649 }
650 
651 void
652 ktrprocctor(struct proc *p)
653 {
654 	struct thread *td = curthread;
655 
656 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
657 		return;
658 
659 	ktrace_enter(td);
660 	ktrprocctor_entered(td, p);
661 	ktrace_exit(td);
662 }
663 
664 /*
665  * When a process forks, enable tracing in the new process if needed.
666  */
667 void
668 ktrprocfork(struct proc *p1, struct proc *p2)
669 {
670 
671 	MPASS(p2->p_ktrioparms == NULL);
672 	MPASS(p2->p_traceflag == 0);
673 
674 	if (p1->p_traceflag == 0)
675 		return;
676 
677 	PROC_LOCK(p1);
678 	mtx_lock(&ktrace_mtx);
679 	if (p1->p_traceflag & KTRFAC_INHERIT) {
680 		p2->p_traceflag = p1->p_traceflag;
681 		if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
682 			p1->p_ktrioparms->refs++;
683 	}
684 	mtx_unlock(&ktrace_mtx);
685 	PROC_UNLOCK(p1);
686 
687 	ktrprocctor(p2);
688 }
689 
690 /*
691  * When a thread returns, drain any asynchronous records generated by the
692  * system call.
693  */
694 void
695 ktruserret(struct thread *td)
696 {
697 
698 	ktrace_enter(td);
699 	sx_xlock(&ktrace_sx);
700 	ktr_drain(td);
701 	sx_xunlock(&ktrace_sx);
702 	ktrace_exit(td);
703 }
704 
705 void
706 ktrnamei(const char *path)
707 {
708 	struct ktr_request *req;
709 	int namelen;
710 	char *buf = NULL;
711 
712 	namelen = strlen(path);
713 	if (namelen > 0) {
714 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
715 		bcopy(path, buf, namelen);
716 	}
717 	req = ktr_getrequest(KTR_NAMEI);
718 	if (req == NULL) {
719 		if (buf != NULL)
720 			free(buf, M_KTRACE);
721 		return;
722 	}
723 	if (namelen > 0) {
724 		req->ktr_header.ktr_len = namelen;
725 		req->ktr_buffer = buf;
726 	}
727 	ktr_submitrequest(curthread, req);
728 }
729 
730 void
731 ktrsysctl(int *name, u_int namelen)
732 {
733 	struct ktr_request *req;
734 	u_int mib[CTL_MAXNAME + 2];
735 	char *mibname;
736 	size_t mibnamelen;
737 	int error;
738 
739 	/* Lookup name of mib. */
740 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
741 	mib[0] = 0;
742 	mib[1] = 1;
743 	bcopy(name, mib + 2, namelen * sizeof(*name));
744 	mibnamelen = 128;
745 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
746 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
747 	    NULL, 0, &mibnamelen, 0);
748 	if (error) {
749 		free(mibname, M_KTRACE);
750 		return;
751 	}
752 	req = ktr_getrequest(KTR_SYSCTL);
753 	if (req == NULL) {
754 		free(mibname, M_KTRACE);
755 		return;
756 	}
757 	req->ktr_header.ktr_len = mibnamelen;
758 	req->ktr_buffer = mibname;
759 	ktr_submitrequest(curthread, req);
760 }
761 
762 void
763 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
764 {
765 	struct ktr_request *req;
766 	struct ktr_genio *ktg;
767 	int datalen;
768 	char *buf;
769 
770 	if (error != 0 && (rw == UIO_READ || error == EFAULT)) {
771 		freeuio(uio);
772 		return;
773 	}
774 	uio->uio_offset = 0;
775 	uio->uio_rw = UIO_WRITE;
776 	datalen = MIN(uio->uio_resid, ktr_geniosize);
777 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
778 	error = uiomove(buf, datalen, uio);
779 	freeuio(uio);
780 	if (error) {
781 		free(buf, M_KTRACE);
782 		return;
783 	}
784 	req = ktr_getrequest(KTR_GENIO);
785 	if (req == NULL) {
786 		free(buf, M_KTRACE);
787 		return;
788 	}
789 	ktg = &req->ktr_data.ktr_genio;
790 	ktg->ktr_fd = fd;
791 	ktg->ktr_rw = rw;
792 	req->ktr_header.ktr_len = datalen;
793 	req->ktr_buffer = buf;
794 	ktr_submitrequest(curthread, req);
795 }
796 
797 void
798 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
799 {
800 	struct thread *td = curthread;
801 	struct ktr_request *req;
802 	struct ktr_psig	*kp;
803 
804 	req = ktr_getrequest(KTR_PSIG);
805 	if (req == NULL)
806 		return;
807 	kp = &req->ktr_data.ktr_psig;
808 	kp->signo = (char)sig;
809 	kp->action = action;
810 	kp->mask = *mask;
811 	kp->code = code;
812 	ktr_enqueuerequest(td, req);
813 	ktrace_exit(td);
814 }
815 
816 void
817 ktrcsw(int out, int user, const char *wmesg)
818 {
819 	struct thread *td = curthread;
820 	struct ktr_request *req;
821 	struct ktr_csw *kc;
822 
823 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
824 		return;
825 
826 	req = ktr_getrequest(KTR_CSW);
827 	if (req == NULL)
828 		return;
829 	kc = &req->ktr_data.ktr_csw;
830 	kc->out = out;
831 	kc->user = user;
832 	if (wmesg != NULL)
833 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
834 	else
835 		bzero(kc->wmesg, sizeof(kc->wmesg));
836 	ktr_enqueuerequest(td, req);
837 	ktrace_exit(td);
838 }
839 
840 void
841 ktrstruct(const char *name, const void *data, size_t datalen)
842 {
843 	struct ktr_request *req;
844 	char *buf;
845 	size_t buflen, namelen;
846 
847 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
848 		return;
849 
850 	if (data == NULL)
851 		datalen = 0;
852 	namelen = strlen(name) + 1;
853 	buflen = namelen + datalen;
854 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
855 	strcpy(buf, name);
856 	bcopy(data, buf + namelen, datalen);
857 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
858 		free(buf, M_KTRACE);
859 		return;
860 	}
861 	req->ktr_buffer = buf;
862 	req->ktr_header.ktr_len = buflen;
863 	ktr_submitrequest(curthread, req);
864 }
865 
866 void
867 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
868 {
869 
870 	if (error == 0)
871 		ktrstruct(name, data, datalen);
872 }
873 
874 void
875 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
876     int num_items, size_t struct_size)
877 {
878 	struct ktr_request *req;
879 	struct ktr_struct_array *ksa;
880 	char *buf;
881 	size_t buflen, datalen, namelen;
882 	int max_items;
883 
884 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
885 		return;
886 	if (num_items < 0)
887 		return;
888 
889 	/* Trim array length to genio size. */
890 	max_items = ktr_geniosize / struct_size;
891 	if (num_items > max_items) {
892 		if (max_items == 0)
893 			num_items = 1;
894 		else
895 			num_items = max_items;
896 	}
897 	datalen = num_items * struct_size;
898 
899 	if (data == NULL)
900 		datalen = 0;
901 
902 	namelen = strlen(name) + 1;
903 	buflen = namelen + datalen;
904 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
905 	strcpy(buf, name);
906 	if (seg == UIO_SYSSPACE)
907 		bcopy(data, buf + namelen, datalen);
908 	else {
909 		if (copyin(data, buf + namelen, datalen) != 0) {
910 			free(buf, M_KTRACE);
911 			return;
912 		}
913 	}
914 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
915 		free(buf, M_KTRACE);
916 		return;
917 	}
918 	ksa = &req->ktr_data.ktr_struct_array;
919 	ksa->struct_size = struct_size;
920 	req->ktr_buffer = buf;
921 	req->ktr_header.ktr_len = buflen;
922 	ktr_submitrequest(curthread, req);
923 }
924 
925 void
926 ktrcapfail(enum ktr_cap_violation type, const void *data)
927 {
928 	struct thread *td = curthread;
929 	struct ktr_request *req;
930 	struct ktr_cap_fail *kcf;
931 	union ktr_cap_data *kcd;
932 
933 	if (__predict_false(td->td_pflags & TDP_INKTRACE))
934 		return;
935 	if (type != CAPFAIL_SYSCALL &&
936 	    (td->td_sa.callp->sy_flags & SYF_CAPENABLED) == 0)
937 		return;
938 
939 	req = ktr_getrequest(KTR_CAPFAIL);
940 	if (req == NULL)
941 		return;
942 	kcf = &req->ktr_data.ktr_cap_fail;
943 	kcf->cap_type = type;
944 	kcf->cap_code = td->td_sa.code;
945 	kcf->cap_svflags = td->td_proc->p_sysent->sv_flags;
946 	if (data != NULL) {
947 		kcd = &kcf->cap_data;
948 		switch (type) {
949 		case CAPFAIL_NOTCAPABLE:
950 		case CAPFAIL_INCREASE:
951 			kcd->cap_needed = *(const cap_rights_t *)data;
952 			kcd->cap_held = *((const cap_rights_t *)data + 1);
953 			break;
954 		case CAPFAIL_SYSCALL:
955 		case CAPFAIL_SIGNAL:
956 		case CAPFAIL_PROTO:
957 			kcd->cap_int = *(const int *)data;
958 			break;
959 		case CAPFAIL_SOCKADDR:
960 			kcd->cap_sockaddr = *(const struct sockaddr *)data;
961 			break;
962 		case CAPFAIL_NAMEI:
963 			strlcpy(kcd->cap_path, data, MAXPATHLEN);
964 			break;
965 		case CAPFAIL_CPUSET:
966 		default:
967 			break;
968 		}
969 	}
970 	ktr_enqueuerequest(td, req);
971 	ktrace_exit(td);
972 }
973 
974 void
975 ktrfault(vm_offset_t vaddr, int type)
976 {
977 	struct thread *td = curthread;
978 	struct ktr_request *req;
979 	struct ktr_fault *kf;
980 
981 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
982 		return;
983 
984 	req = ktr_getrequest(KTR_FAULT);
985 	if (req == NULL)
986 		return;
987 	kf = &req->ktr_data.ktr_fault;
988 	kf->vaddr = vaddr;
989 	kf->type = type;
990 	ktr_enqueuerequest(td, req);
991 	ktrace_exit(td);
992 }
993 
994 void
995 ktrfaultend(int result)
996 {
997 	struct thread *td = curthread;
998 	struct ktr_request *req;
999 	struct ktr_faultend *kf;
1000 
1001 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
1002 		return;
1003 
1004 	req = ktr_getrequest(KTR_FAULTEND);
1005 	if (req == NULL)
1006 		return;
1007 	kf = &req->ktr_data.ktr_faultend;
1008 	kf->result = result;
1009 	ktr_enqueuerequest(td, req);
1010 	ktrace_exit(td);
1011 }
1012 #endif /* KTRACE */
1013 
1014 /* Interface and common routines */
1015 
1016 #ifndef _SYS_SYSPROTO_H_
1017 struct ktrace_args {
1018 	char	*fname;
1019 	int	ops;
1020 	int	facs;
1021 	int	pid;
1022 };
1023 #endif
1024 /* ARGSUSED */
1025 int
1026 sys_ktrace(struct thread *td, struct ktrace_args *uap)
1027 {
1028 #ifdef KTRACE
1029 	struct vnode *vp = NULL;
1030 	struct proc *p;
1031 	struct pgrp *pg;
1032 	int facs = uap->facs & ~KTRFAC_ROOT;
1033 	int ops = KTROP(uap->ops);
1034 	int descend = uap->ops & KTRFLAG_DESCEND;
1035 	int ret = 0;
1036 	int flags, error = 0;
1037 	struct nameidata nd;
1038 	struct ktr_io_params *kiop, *old_kiop;
1039 
1040 	/*
1041 	 * Need something to (un)trace.
1042 	 */
1043 	if (ops != KTROP_CLEARFILE && facs == 0)
1044 		return (EINVAL);
1045 
1046 	kiop = NULL;
1047 	if (ops != KTROP_CLEAR) {
1048 		/*
1049 		 * an operation which requires a file argument.
1050 		 */
1051 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname);
1052 		flags = FREAD | FWRITE | O_NOFOLLOW;
1053 		error = vn_open(&nd, &flags, 0, NULL);
1054 		if (error)
1055 			return (error);
1056 		NDFREE_PNBUF(&nd);
1057 		vp = nd.ni_vp;
1058 		VOP_UNLOCK(vp);
1059 		if (vp->v_type != VREG) {
1060 			(void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
1061 			return (EACCES);
1062 		}
1063 		kiop = ktr_io_params_alloc(td, vp);
1064 	}
1065 
1066 	/*
1067 	 * Clear all uses of the tracefile.
1068 	 */
1069 	ktrace_enter(td);
1070 	if (ops == KTROP_CLEARFILE) {
1071 restart:
1072 		sx_slock(&allproc_lock);
1073 		FOREACH_PROC_IN_SYSTEM(p) {
1074 			old_kiop = NULL;
1075 			PROC_LOCK(p);
1076 			if (p->p_ktrioparms != NULL &&
1077 			    p->p_ktrioparms->vp == vp) {
1078 				if (ktrcanset(td, p)) {
1079 					mtx_lock(&ktrace_mtx);
1080 					old_kiop = ktr_freeproc(p);
1081 					mtx_unlock(&ktrace_mtx);
1082 				} else
1083 					error = EPERM;
1084 			}
1085 			PROC_UNLOCK(p);
1086 			if (old_kiop != NULL) {
1087 				sx_sunlock(&allproc_lock);
1088 				ktr_io_params_free(old_kiop);
1089 				goto restart;
1090 			}
1091 		}
1092 		sx_sunlock(&allproc_lock);
1093 		goto done;
1094 	}
1095 	/*
1096 	 * do it
1097 	 */
1098 	sx_slock(&proctree_lock);
1099 	if (uap->pid < 0) {
1100 		/*
1101 		 * by process group
1102 		 */
1103 		pg = pgfind(-uap->pid);
1104 		if (pg == NULL) {
1105 			sx_sunlock(&proctree_lock);
1106 			error = ESRCH;
1107 			goto done;
1108 		}
1109 
1110 		/*
1111 		 * ktrops() may call vrele(). Lock pg_members
1112 		 * by the proctree_lock rather than pg_mtx.
1113 		 */
1114 		PGRP_UNLOCK(pg);
1115 		if (LIST_EMPTY(&pg->pg_members)) {
1116 			sx_sunlock(&proctree_lock);
1117 			error = ESRCH;
1118 			goto done;
1119 		}
1120 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1121 			PROC_LOCK(p);
1122 			if (descend)
1123 				ret |= ktrsetchildren(td, p, ops, facs, kiop);
1124 			else
1125 				ret |= ktrops(td, p, ops, facs, kiop);
1126 		}
1127 	} else {
1128 		/*
1129 		 * by pid
1130 		 */
1131 		p = pfind(uap->pid);
1132 		if (p == NULL) {
1133 			error = ESRCH;
1134 			sx_sunlock(&proctree_lock);
1135 			goto done;
1136 		}
1137 		if (descend)
1138 			ret |= ktrsetchildren(td, p, ops, facs, kiop);
1139 		else
1140 			ret |= ktrops(td, p, ops, facs, kiop);
1141 	}
1142 	sx_sunlock(&proctree_lock);
1143 	if (!ret)
1144 		error = EPERM;
1145 done:
1146 	if (kiop != NULL) {
1147 		mtx_lock(&ktrace_mtx);
1148 		kiop = ktr_io_params_rele(kiop);
1149 		mtx_unlock(&ktrace_mtx);
1150 		ktr_io_params_free(kiop);
1151 	}
1152 	ktrace_exit(td);
1153 	return (error);
1154 #else /* !KTRACE */
1155 	return (ENOSYS);
1156 #endif /* KTRACE */
1157 }
1158 
1159 /* ARGSUSED */
1160 int
1161 sys_utrace(struct thread *td, struct utrace_args *uap)
1162 {
1163 
1164 #ifdef KTRACE
1165 	struct ktr_request *req;
1166 	void *cp;
1167 	int error;
1168 
1169 	if (!KTRPOINT(td, KTR_USER))
1170 		return (0);
1171 	if (uap->len > KTR_USER_MAXLEN)
1172 		return (EINVAL);
1173 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1174 	error = copyin(uap->addr, cp, uap->len);
1175 	if (error) {
1176 		free(cp, M_KTRACE);
1177 		return (error);
1178 	}
1179 	req = ktr_getrequest(KTR_USER);
1180 	if (req == NULL) {
1181 		free(cp, M_KTRACE);
1182 		return (ENOMEM);
1183 	}
1184 	req->ktr_buffer = cp;
1185 	req->ktr_header.ktr_len = uap->len;
1186 	ktr_submitrequest(td, req);
1187 	return (0);
1188 #else /* !KTRACE */
1189 	return (ENOSYS);
1190 #endif /* KTRACE */
1191 }
1192 
1193 #ifdef KTRACE
1194 static int
1195 ktrops(struct thread *td, struct proc *p, int ops, int facs,
1196     struct ktr_io_params *new_kiop)
1197 {
1198 	struct ktr_io_params *old_kiop;
1199 
1200 	PROC_LOCK_ASSERT(p, MA_OWNED);
1201 	if (!ktrcanset(td, p)) {
1202 		PROC_UNLOCK(p);
1203 		return (0);
1204 	}
1205 	if ((ops == KTROP_SET && p->p_state == PRS_NEW) ||
1206 	    p_cansee(td, p) != 0) {
1207 		/*
1208 		 * Disallow setting trace points if the process is being born.
1209 		 * This avoids races with trace point inheritance in
1210 		 * ktrprocfork().
1211 		 */
1212 		PROC_UNLOCK(p);
1213 		return (0);
1214 	}
1215 	if ((p->p_flag & P_WEXIT) != 0) {
1216 		/*
1217 		 * There's nothing to do if the process is exiting, but avoid
1218 		 * signaling an error.
1219 		 */
1220 		PROC_UNLOCK(p);
1221 		return (1);
1222 	}
1223 	old_kiop = NULL;
1224 	mtx_lock(&ktrace_mtx);
1225 	if (ops == KTROP_SET) {
1226 		if (p->p_ktrioparms != NULL &&
1227 		    p->p_ktrioparms->vp != new_kiop->vp) {
1228 			/* if trace file already in use, relinquish below */
1229 			old_kiop = ktr_io_params_rele(p->p_ktrioparms);
1230 			p->p_ktrioparms = NULL;
1231 		}
1232 		if (p->p_ktrioparms == NULL) {
1233 			p->p_ktrioparms = new_kiop;
1234 			ktr_io_params_ref(new_kiop);
1235 		}
1236 		p->p_traceflag |= facs;
1237 		if (priv_check(td, PRIV_KTRACE) == 0)
1238 			p->p_traceflag |= KTRFAC_ROOT;
1239 	} else {
1240 		/* KTROP_CLEAR */
1241 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1242 			/* no more tracing */
1243 			old_kiop = ktr_freeproc(p);
1244 	}
1245 	mtx_unlock(&ktrace_mtx);
1246 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1247 		ktrprocctor_entered(td, p);
1248 	PROC_UNLOCK(p);
1249 	ktr_io_params_free(old_kiop);
1250 
1251 	return (1);
1252 }
1253 
1254 static int
1255 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1256     struct ktr_io_params *new_kiop)
1257 {
1258 	struct proc *p;
1259 	int ret = 0;
1260 
1261 	p = top;
1262 	PROC_LOCK_ASSERT(p, MA_OWNED);
1263 	sx_assert(&proctree_lock, SX_LOCKED);
1264 	for (;;) {
1265 		ret |= ktrops(td, p, ops, facs, new_kiop);
1266 		/*
1267 		 * If this process has children, descend to them next,
1268 		 * otherwise do any siblings, and if done with this level,
1269 		 * follow back up the tree (but not past top).
1270 		 */
1271 		if (!LIST_EMPTY(&p->p_children))
1272 			p = LIST_FIRST(&p->p_children);
1273 		else for (;;) {
1274 			if (p == top)
1275 				return (ret);
1276 			if (LIST_NEXT(p, p_sibling)) {
1277 				p = LIST_NEXT(p, p_sibling);
1278 				break;
1279 			}
1280 			p = p->p_pptr;
1281 		}
1282 		PROC_LOCK(p);
1283 	}
1284 	/*NOTREACHED*/
1285 }
1286 
1287 static void
1288 ktr_writerequest(struct thread *td, struct ktr_request *req)
1289 {
1290 	struct ktr_io_params *kiop, *kiop1;
1291 	struct ktr_header *kth;
1292 	struct vnode *vp;
1293 	struct proc *p;
1294 	struct ucred *cred;
1295 	struct uio auio;
1296 	struct iovec aiov[3];
1297 	struct mount *mp;
1298 	off_t lim;
1299 	int datalen, buflen;
1300 	int error;
1301 
1302 	p = td->td_proc;
1303 
1304 	/*
1305 	 * We reference the kiop for use in I/O in case ktrace is
1306 	 * disabled on the process as we write out the request.
1307 	 */
1308 	mtx_lock(&ktrace_mtx);
1309 	kiop = p->p_ktrioparms;
1310 
1311 	/*
1312 	 * If kiop is NULL, it has been cleared out from under this
1313 	 * request, so just drop it.
1314 	 */
1315 	if (kiop == NULL) {
1316 		mtx_unlock(&ktrace_mtx);
1317 		return;
1318 	}
1319 
1320 	ktr_io_params_ref(kiop);
1321 	vp = kiop->vp;
1322 	cred = kiop->cr;
1323 	lim = kiop->lim;
1324 
1325 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1326 	mtx_unlock(&ktrace_mtx);
1327 
1328 	kth = &req->ktr_header;
1329 	KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths),
1330 	    ("data_lengths array overflow"));
1331 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE];
1332 	buflen = kth->ktr_len;
1333 	auio.uio_iov = &aiov[0];
1334 	auio.uio_offset = 0;
1335 	auio.uio_segflg = UIO_SYSSPACE;
1336 	auio.uio_rw = UIO_WRITE;
1337 	aiov[0].iov_base = (caddr_t)kth;
1338 	aiov[0].iov_len = sizeof(struct ktr_header);
1339 	auio.uio_resid = sizeof(struct ktr_header);
1340 	auio.uio_iovcnt = 1;
1341 	auio.uio_td = td;
1342 	if (datalen != 0) {
1343 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1344 		aiov[1].iov_len = datalen;
1345 		auio.uio_resid += datalen;
1346 		auio.uio_iovcnt++;
1347 		kth->ktr_len += datalen;
1348 	}
1349 	if (buflen != 0) {
1350 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1351 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1352 		aiov[auio.uio_iovcnt].iov_len = buflen;
1353 		auio.uio_resid += buflen;
1354 		auio.uio_iovcnt++;
1355 	}
1356 
1357 	vn_start_write(vp, &mp, V_WAIT);
1358 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1359 	td->td_ktr_io_lim = lim;
1360 #ifdef MAC
1361 	error = mac_vnode_check_write(cred, NOCRED, vp);
1362 	if (error == 0)
1363 #endif
1364 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1365 	VOP_UNLOCK(vp);
1366 	vn_finished_write(mp);
1367 	if (error == 0) {
1368 		mtx_lock(&ktrace_mtx);
1369 		kiop = ktr_io_params_rele(kiop);
1370 		mtx_unlock(&ktrace_mtx);
1371 		ktr_io_params_free(kiop);
1372 		return;
1373 	}
1374 
1375 	/*
1376 	 * If error encountered, give up tracing on this vnode on this
1377 	 * process.  Other processes might still be suitable for
1378 	 * writes to this vnode.
1379 	 */
1380 	log(LOG_NOTICE,
1381 	    "ktrace write failed, errno %d, tracing stopped for pid %d\n",
1382 	    error, p->p_pid);
1383 
1384 	kiop1 = NULL;
1385 	PROC_LOCK(p);
1386 	mtx_lock(&ktrace_mtx);
1387 	if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
1388 		kiop1 = ktr_freeproc(p);
1389 	kiop = ktr_io_params_rele(kiop);
1390 	mtx_unlock(&ktrace_mtx);
1391 	PROC_UNLOCK(p);
1392 	ktr_io_params_free(kiop1);
1393 	ktr_io_params_free(kiop);
1394 }
1395 
1396 /*
1397  * Return true if caller has permission to set the ktracing state
1398  * of target.  Essentially, the target can't possess any
1399  * more permissions than the caller.  KTRFAC_ROOT signifies that
1400  * root previously set the tracing status on the target process, and
1401  * so, only root may further change it.
1402  */
1403 static int
1404 ktrcanset(struct thread *td, struct proc *targetp)
1405 {
1406 
1407 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1408 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1409 	    priv_check(td, PRIV_KTRACE))
1410 		return (0);
1411 
1412 	if (p_candebug(td, targetp) != 0)
1413 		return (0);
1414 
1415 	return (1);
1416 }
1417 
1418 #endif /* KTRACE */
1419