1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. 6 * Copyright (c) 2005 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_ktrace.h" 40 41 #include <sys/param.h> 42 #include <sys/capsicum.h> 43 #include <sys/systm.h> 44 #include <sys/fcntl.h> 45 #include <sys/kernel.h> 46 #include <sys/kthread.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/namei.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/resourcevar.h> 55 #include <sys/unistd.h> 56 #include <sys/vnode.h> 57 #include <sys/socket.h> 58 #include <sys/stat.h> 59 #include <sys/ktrace.h> 60 #include <sys/sx.h> 61 #include <sys/sysctl.h> 62 #include <sys/sysent.h> 63 #include <sys/syslog.h> 64 #include <sys/sysproto.h> 65 66 #include <security/mac/mac_framework.h> 67 68 /* 69 * The ktrace facility allows the tracing of certain key events in user space 70 * processes, such as system calls, signal delivery, context switches, and 71 * user generated events using utrace(2). It works by streaming event 72 * records and data to a vnode associated with the process using the 73 * ktrace(2) system call. In general, records can be written directly from 74 * the context that generates the event. One important exception to this is 75 * during a context switch, where sleeping is not permitted. To handle this 76 * case, trace events are generated using in-kernel ktr_request records, and 77 * then delivered to disk at a convenient moment -- either immediately, the 78 * next traceable event, at system call return, or at process exit. 79 * 80 * When dealing with multiple threads or processes writing to the same event 81 * log, ordering guarantees are weak: specifically, if an event has multiple 82 * records (i.e., system call enter and return), they may be interlaced with 83 * records from another event. Process and thread ID information is provided 84 * in the record, and user applications can de-interlace events if required. 85 */ 86 87 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); 88 89 #ifdef KTRACE 90 91 FEATURE(ktrace, "Kernel support for system-call tracing"); 92 93 #ifndef KTRACE_REQUEST_POOL 94 #define KTRACE_REQUEST_POOL 100 95 #endif 96 97 struct ktr_request { 98 struct ktr_header ktr_header; 99 void *ktr_buffer; 100 union { 101 struct ktr_proc_ctor ktr_proc_ctor; 102 struct ktr_cap_fail ktr_cap_fail; 103 struct ktr_syscall ktr_syscall; 104 struct ktr_sysret ktr_sysret; 105 struct ktr_genio ktr_genio; 106 struct ktr_psig ktr_psig; 107 struct ktr_csw ktr_csw; 108 struct ktr_fault ktr_fault; 109 struct ktr_faultend ktr_faultend; 110 struct ktr_struct_array ktr_struct_array; 111 } ktr_data; 112 STAILQ_ENTRY(ktr_request) ktr_list; 113 }; 114 115 static int data_lengths[] = { 116 [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args), 117 [KTR_SYSRET] = sizeof(struct ktr_sysret), 118 [KTR_NAMEI] = 0, 119 [KTR_GENIO] = sizeof(struct ktr_genio), 120 [KTR_PSIG] = sizeof(struct ktr_psig), 121 [KTR_CSW] = sizeof(struct ktr_csw), 122 [KTR_USER] = 0, 123 [KTR_STRUCT] = 0, 124 [KTR_SYSCTL] = 0, 125 [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor), 126 [KTR_PROCDTOR] = 0, 127 [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail), 128 [KTR_FAULT] = sizeof(struct ktr_fault), 129 [KTR_FAULTEND] = sizeof(struct ktr_faultend), 130 [KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array), 131 }; 132 133 static STAILQ_HEAD(, ktr_request) ktr_free; 134 135 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 136 "KTRACE options"); 137 138 static u_int ktr_requestpool = KTRACE_REQUEST_POOL; 139 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); 140 141 u_int ktr_geniosize = PAGE_SIZE; 142 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize, 143 0, "Maximum size of genio event payload"); 144 145 /* 146 * Allow to not to send signal to traced process, in which context the 147 * ktr record is written. The limit is applied from the process that 148 * set up ktrace, so killing the traced process is not completely fair. 149 */ 150 int ktr_filesize_limit_signal = 0; 151 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN, 152 &ktr_filesize_limit_signal, 0, 153 "Send SIGXFSZ to the traced process when the log size limit is exceeded"); 154 155 static int print_message = 1; 156 static struct mtx ktrace_mtx; 157 static struct sx ktrace_sx; 158 159 struct ktr_io_params { 160 struct vnode *vp; 161 struct ucred *cr; 162 off_t lim; 163 u_int refs; 164 }; 165 166 static void ktrace_init(void *dummy); 167 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); 168 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize); 169 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type); 170 static struct ktr_request *ktr_getrequest(int type); 171 static void ktr_submitrequest(struct thread *td, struct ktr_request *req); 172 static struct ktr_io_params *ktr_freeproc(struct proc *p); 173 static void ktr_freerequest(struct ktr_request *req); 174 static void ktr_freerequest_locked(struct ktr_request *req); 175 static void ktr_writerequest(struct thread *td, struct ktr_request *req); 176 static int ktrcanset(struct thread *,struct proc *); 177 static int ktrsetchildren(struct thread *, struct proc *, int, int, 178 struct ktr_io_params *); 179 static int ktrops(struct thread *, struct proc *, int, int, 180 struct ktr_io_params *); 181 static void ktrprocctor_entered(struct thread *, struct proc *); 182 183 /* 184 * ktrace itself generates events, such as context switches, which we do not 185 * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine 186 * whether or not it is in a region where tracing of events should be 187 * suppressed. 188 */ 189 static void 190 ktrace_enter(struct thread *td) 191 { 192 193 KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set")); 194 td->td_pflags |= TDP_INKTRACE; 195 } 196 197 static void 198 ktrace_exit(struct thread *td) 199 { 200 201 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set")); 202 td->td_pflags &= ~TDP_INKTRACE; 203 } 204 205 static void 206 ktrace_assert(struct thread *td) 207 { 208 209 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set")); 210 } 211 212 static void 213 ktrace_init(void *dummy) 214 { 215 struct ktr_request *req; 216 int i; 217 218 mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); 219 sx_init(&ktrace_sx, "ktrace_sx"); 220 STAILQ_INIT(&ktr_free); 221 for (i = 0; i < ktr_requestpool; i++) { 222 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK | 223 M_ZERO); 224 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 225 } 226 } 227 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); 228 229 static int 230 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) 231 { 232 struct thread *td; 233 u_int newsize, oldsize, wantsize; 234 int error; 235 236 /* Handle easy read-only case first to avoid warnings from GCC. */ 237 if (!req->newptr) { 238 oldsize = ktr_requestpool; 239 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int))); 240 } 241 242 error = SYSCTL_IN(req, &wantsize, sizeof(u_int)); 243 if (error) 244 return (error); 245 td = curthread; 246 ktrace_enter(td); 247 oldsize = ktr_requestpool; 248 newsize = ktrace_resize_pool(oldsize, wantsize); 249 ktrace_exit(td); 250 error = SYSCTL_OUT(req, &oldsize, sizeof(u_int)); 251 if (error) 252 return (error); 253 if (wantsize > oldsize && newsize < wantsize) 254 return (ENOSPC); 255 return (0); 256 } 257 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, 258 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0, 259 sysctl_kern_ktrace_request_pool, "IU", 260 "Pool buffer size for ktrace(1)"); 261 262 static u_int 263 ktrace_resize_pool(u_int oldsize, u_int newsize) 264 { 265 STAILQ_HEAD(, ktr_request) ktr_new; 266 struct ktr_request *req; 267 int bound; 268 269 print_message = 1; 270 bound = newsize - oldsize; 271 if (bound == 0) 272 return (ktr_requestpool); 273 if (bound < 0) { 274 mtx_lock(&ktrace_mtx); 275 /* Shrink pool down to newsize if possible. */ 276 while (bound++ < 0) { 277 req = STAILQ_FIRST(&ktr_free); 278 if (req == NULL) 279 break; 280 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 281 ktr_requestpool--; 282 free(req, M_KTRACE); 283 } 284 } else { 285 /* Grow pool up to newsize. */ 286 STAILQ_INIT(&ktr_new); 287 while (bound-- > 0) { 288 req = malloc(sizeof(struct ktr_request), M_KTRACE, 289 M_WAITOK | M_ZERO); 290 STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list); 291 } 292 mtx_lock(&ktrace_mtx); 293 STAILQ_CONCAT(&ktr_free, &ktr_new); 294 ktr_requestpool += (newsize - oldsize); 295 } 296 mtx_unlock(&ktrace_mtx); 297 return (ktr_requestpool); 298 } 299 300 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */ 301 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) == 302 (sizeof((struct thread *)NULL)->td_name)); 303 304 static struct ktr_request * 305 ktr_getrequest_entered(struct thread *td, int type) 306 { 307 struct ktr_request *req; 308 struct proc *p = td->td_proc; 309 int pm; 310 311 mtx_lock(&ktrace_mtx); 312 if (!KTRCHECK(td, type)) { 313 mtx_unlock(&ktrace_mtx); 314 return (NULL); 315 } 316 req = STAILQ_FIRST(&ktr_free); 317 if (req != NULL) { 318 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 319 req->ktr_header.ktr_type = type; 320 if (p->p_traceflag & KTRFAC_DROP) { 321 req->ktr_header.ktr_type |= KTR_DROP; 322 p->p_traceflag &= ~KTRFAC_DROP; 323 } 324 mtx_unlock(&ktrace_mtx); 325 nanotime(&req->ktr_header.ktr_time); 326 req->ktr_header.ktr_type |= KTR_VERSIONED; 327 req->ktr_header.ktr_pid = p->p_pid; 328 req->ktr_header.ktr_tid = td->td_tid; 329 req->ktr_header.ktr_cpu = PCPU_GET(cpuid); 330 req->ktr_header.ktr_version = KTR_VERSION1; 331 bcopy(td->td_name, req->ktr_header.ktr_comm, 332 sizeof(req->ktr_header.ktr_comm)); 333 req->ktr_buffer = NULL; 334 req->ktr_header.ktr_len = 0; 335 } else { 336 p->p_traceflag |= KTRFAC_DROP; 337 pm = print_message; 338 print_message = 0; 339 mtx_unlock(&ktrace_mtx); 340 if (pm) 341 printf("Out of ktrace request objects.\n"); 342 } 343 return (req); 344 } 345 346 static struct ktr_request * 347 ktr_getrequest(int type) 348 { 349 struct thread *td = curthread; 350 struct ktr_request *req; 351 352 ktrace_enter(td); 353 req = ktr_getrequest_entered(td, type); 354 if (req == NULL) 355 ktrace_exit(td); 356 357 return (req); 358 } 359 360 /* 361 * Some trace generation environments don't permit direct access to VFS, 362 * such as during a context switch where sleeping is not allowed. Under these 363 * circumstances, queue a request to the thread to be written asynchronously 364 * later. 365 */ 366 static void 367 ktr_enqueuerequest(struct thread *td, struct ktr_request *req) 368 { 369 370 mtx_lock(&ktrace_mtx); 371 STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list); 372 mtx_unlock(&ktrace_mtx); 373 thread_lock(td); 374 td->td_flags |= TDF_ASTPENDING; 375 thread_unlock(td); 376 } 377 378 /* 379 * Drain any pending ktrace records from the per-thread queue to disk. This 380 * is used both internally before committing other records, and also on 381 * system call return. We drain all the ones we can find at the time when 382 * drain is requested, but don't keep draining after that as those events 383 * may be approximately "after" the current event. 384 */ 385 static void 386 ktr_drain(struct thread *td) 387 { 388 struct ktr_request *queued_req; 389 STAILQ_HEAD(, ktr_request) local_queue; 390 391 ktrace_assert(td); 392 sx_assert(&ktrace_sx, SX_XLOCKED); 393 394 STAILQ_INIT(&local_queue); 395 396 if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) { 397 mtx_lock(&ktrace_mtx); 398 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr); 399 mtx_unlock(&ktrace_mtx); 400 401 while ((queued_req = STAILQ_FIRST(&local_queue))) { 402 STAILQ_REMOVE_HEAD(&local_queue, ktr_list); 403 ktr_writerequest(td, queued_req); 404 ktr_freerequest(queued_req); 405 } 406 } 407 } 408 409 /* 410 * Submit a trace record for immediate commit to disk -- to be used only 411 * where entering VFS is OK. First drain any pending records that may have 412 * been cached in the thread. 413 */ 414 static void 415 ktr_submitrequest(struct thread *td, struct ktr_request *req) 416 { 417 418 ktrace_assert(td); 419 420 sx_xlock(&ktrace_sx); 421 ktr_drain(td); 422 ktr_writerequest(td, req); 423 ktr_freerequest(req); 424 sx_xunlock(&ktrace_sx); 425 ktrace_exit(td); 426 } 427 428 static void 429 ktr_freerequest(struct ktr_request *req) 430 { 431 432 mtx_lock(&ktrace_mtx); 433 ktr_freerequest_locked(req); 434 mtx_unlock(&ktrace_mtx); 435 } 436 437 static void 438 ktr_freerequest_locked(struct ktr_request *req) 439 { 440 441 mtx_assert(&ktrace_mtx, MA_OWNED); 442 if (req->ktr_buffer != NULL) 443 free(req->ktr_buffer, M_KTRACE); 444 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 445 } 446 447 static void 448 ktr_io_params_ref(struct ktr_io_params *kiop) 449 { 450 mtx_assert(&ktrace_mtx, MA_OWNED); 451 kiop->refs++; 452 } 453 454 static struct ktr_io_params * 455 ktr_io_params_rele(struct ktr_io_params *kiop) 456 { 457 mtx_assert(&ktrace_mtx, MA_OWNED); 458 if (kiop == NULL) 459 return (NULL); 460 KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop)); 461 return (--(kiop->refs) == 0 ? kiop : NULL); 462 } 463 464 void 465 ktr_io_params_free(struct ktr_io_params *kiop) 466 { 467 if (kiop == NULL) 468 return; 469 470 MPASS(kiop->refs == 0); 471 vn_close(kiop->vp, FWRITE, kiop->cr, curthread); 472 crfree(kiop->cr); 473 free(kiop, M_KTRACE); 474 } 475 476 static struct ktr_io_params * 477 ktr_io_params_alloc(struct thread *td, struct vnode *vp) 478 { 479 struct ktr_io_params *res; 480 481 res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK); 482 res->vp = vp; 483 res->cr = crhold(td->td_ucred); 484 res->lim = lim_cur(td, RLIMIT_FSIZE); 485 res->refs = 1; 486 return (res); 487 } 488 489 /* 490 * Disable tracing for a process and release all associated resources. 491 * The caller is responsible for releasing a reference on the returned 492 * vnode and credentials. 493 */ 494 static struct ktr_io_params * 495 ktr_freeproc(struct proc *p) 496 { 497 struct ktr_io_params *kiop; 498 struct ktr_request *req; 499 500 PROC_LOCK_ASSERT(p, MA_OWNED); 501 mtx_assert(&ktrace_mtx, MA_OWNED); 502 kiop = ktr_io_params_rele(p->p_ktrioparms); 503 p->p_ktrioparms = NULL; 504 p->p_traceflag = 0; 505 while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) { 506 STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list); 507 ktr_freerequest_locked(req); 508 } 509 return (kiop); 510 } 511 512 struct vnode * 513 ktr_get_tracevp(struct proc *p, bool ref) 514 { 515 struct vnode *vp; 516 517 PROC_LOCK_ASSERT(p, MA_OWNED); 518 519 if (p->p_ktrioparms != NULL) { 520 vp = p->p_ktrioparms->vp; 521 if (ref) 522 vrefact(vp); 523 } else { 524 vp = NULL; 525 } 526 return (vp); 527 } 528 529 void 530 ktrsyscall(int code, int narg, syscallarg_t args[]) 531 { 532 struct ktr_request *req; 533 struct ktr_syscall *ktp; 534 size_t buflen; 535 char *buf = NULL; 536 537 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 538 return; 539 540 buflen = sizeof(register_t) * narg; 541 if (buflen > 0) { 542 buf = malloc(buflen, M_KTRACE, M_WAITOK); 543 bcopy(args, buf, buflen); 544 } 545 req = ktr_getrequest(KTR_SYSCALL); 546 if (req == NULL) { 547 if (buf != NULL) 548 free(buf, M_KTRACE); 549 return; 550 } 551 ktp = &req->ktr_data.ktr_syscall; 552 ktp->ktr_code = code; 553 ktp->ktr_narg = narg; 554 if (buflen > 0) { 555 req->ktr_header.ktr_len = buflen; 556 req->ktr_buffer = buf; 557 } 558 ktr_submitrequest(curthread, req); 559 } 560 561 void 562 ktrsysret(int code, int error, register_t retval) 563 { 564 struct ktr_request *req; 565 struct ktr_sysret *ktp; 566 567 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 568 return; 569 570 req = ktr_getrequest(KTR_SYSRET); 571 if (req == NULL) 572 return; 573 ktp = &req->ktr_data.ktr_sysret; 574 ktp->ktr_code = code; 575 ktp->ktr_error = error; 576 ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */ 577 ktr_submitrequest(curthread, req); 578 } 579 580 /* 581 * When a setuid process execs, disable tracing. 582 * 583 * XXX: We toss any pending asynchronous records. 584 */ 585 struct ktr_io_params * 586 ktrprocexec(struct proc *p) 587 { 588 struct ktr_io_params *kiop; 589 590 PROC_LOCK_ASSERT(p, MA_OWNED); 591 592 kiop = p->p_ktrioparms; 593 if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED)) 594 return (NULL); 595 596 mtx_lock(&ktrace_mtx); 597 kiop = ktr_freeproc(p); 598 mtx_unlock(&ktrace_mtx); 599 return (kiop); 600 } 601 602 /* 603 * When a process exits, drain per-process asynchronous trace records 604 * and disable tracing. 605 */ 606 void 607 ktrprocexit(struct thread *td) 608 { 609 struct ktr_request *req; 610 struct proc *p; 611 struct ktr_io_params *kiop; 612 613 p = td->td_proc; 614 if (p->p_traceflag == 0) 615 return; 616 617 ktrace_enter(td); 618 req = ktr_getrequest_entered(td, KTR_PROCDTOR); 619 if (req != NULL) 620 ktr_enqueuerequest(td, req); 621 sx_xlock(&ktrace_sx); 622 ktr_drain(td); 623 sx_xunlock(&ktrace_sx); 624 PROC_LOCK(p); 625 mtx_lock(&ktrace_mtx); 626 kiop = ktr_freeproc(p); 627 mtx_unlock(&ktrace_mtx); 628 PROC_UNLOCK(p); 629 ktr_io_params_free(kiop); 630 ktrace_exit(td); 631 } 632 633 static void 634 ktrprocctor_entered(struct thread *td, struct proc *p) 635 { 636 struct ktr_proc_ctor *ktp; 637 struct ktr_request *req; 638 struct thread *td2; 639 640 ktrace_assert(td); 641 td2 = FIRST_THREAD_IN_PROC(p); 642 req = ktr_getrequest_entered(td2, KTR_PROCCTOR); 643 if (req == NULL) 644 return; 645 ktp = &req->ktr_data.ktr_proc_ctor; 646 ktp->sv_flags = p->p_sysent->sv_flags; 647 ktr_enqueuerequest(td2, req); 648 } 649 650 void 651 ktrprocctor(struct proc *p) 652 { 653 struct thread *td = curthread; 654 655 if ((p->p_traceflag & KTRFAC_MASK) == 0) 656 return; 657 658 ktrace_enter(td); 659 ktrprocctor_entered(td, p); 660 ktrace_exit(td); 661 } 662 663 /* 664 * When a process forks, enable tracing in the new process if needed. 665 */ 666 void 667 ktrprocfork(struct proc *p1, struct proc *p2) 668 { 669 670 MPASS(p2->p_ktrioparms == NULL); 671 MPASS(p2->p_traceflag == 0); 672 673 if (p1->p_traceflag == 0) 674 return; 675 676 PROC_LOCK(p1); 677 mtx_lock(&ktrace_mtx); 678 if (p1->p_traceflag & KTRFAC_INHERIT) { 679 p2->p_traceflag = p1->p_traceflag; 680 if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL) 681 p1->p_ktrioparms->refs++; 682 } 683 mtx_unlock(&ktrace_mtx); 684 PROC_UNLOCK(p1); 685 686 ktrprocctor(p2); 687 } 688 689 /* 690 * When a thread returns, drain any asynchronous records generated by the 691 * system call. 692 */ 693 void 694 ktruserret(struct thread *td) 695 { 696 697 ktrace_enter(td); 698 sx_xlock(&ktrace_sx); 699 ktr_drain(td); 700 sx_xunlock(&ktrace_sx); 701 ktrace_exit(td); 702 } 703 704 void 705 ktrnamei(const char *path) 706 { 707 struct ktr_request *req; 708 int namelen; 709 char *buf = NULL; 710 711 namelen = strlen(path); 712 if (namelen > 0) { 713 buf = malloc(namelen, M_KTRACE, M_WAITOK); 714 bcopy(path, buf, namelen); 715 } 716 req = ktr_getrequest(KTR_NAMEI); 717 if (req == NULL) { 718 if (buf != NULL) 719 free(buf, M_KTRACE); 720 return; 721 } 722 if (namelen > 0) { 723 req->ktr_header.ktr_len = namelen; 724 req->ktr_buffer = buf; 725 } 726 ktr_submitrequest(curthread, req); 727 } 728 729 void 730 ktrsysctl(int *name, u_int namelen) 731 { 732 struct ktr_request *req; 733 u_int mib[CTL_MAXNAME + 2]; 734 char *mibname; 735 size_t mibnamelen; 736 int error; 737 738 /* Lookup name of mib. */ 739 KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long")); 740 mib[0] = 0; 741 mib[1] = 1; 742 bcopy(name, mib + 2, namelen * sizeof(*name)); 743 mibnamelen = 128; 744 mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK); 745 error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen, 746 NULL, 0, &mibnamelen, 0); 747 if (error) { 748 free(mibname, M_KTRACE); 749 return; 750 } 751 req = ktr_getrequest(KTR_SYSCTL); 752 if (req == NULL) { 753 free(mibname, M_KTRACE); 754 return; 755 } 756 req->ktr_header.ktr_len = mibnamelen; 757 req->ktr_buffer = mibname; 758 ktr_submitrequest(curthread, req); 759 } 760 761 void 762 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error) 763 { 764 struct ktr_request *req; 765 struct ktr_genio *ktg; 766 int datalen; 767 char *buf; 768 769 if (error) { 770 free(uio, M_IOV); 771 return; 772 } 773 uio->uio_offset = 0; 774 uio->uio_rw = UIO_WRITE; 775 datalen = MIN(uio->uio_resid, ktr_geniosize); 776 buf = malloc(datalen, M_KTRACE, M_WAITOK); 777 error = uiomove(buf, datalen, uio); 778 free(uio, M_IOV); 779 if (error) { 780 free(buf, M_KTRACE); 781 return; 782 } 783 req = ktr_getrequest(KTR_GENIO); 784 if (req == NULL) { 785 free(buf, M_KTRACE); 786 return; 787 } 788 ktg = &req->ktr_data.ktr_genio; 789 ktg->ktr_fd = fd; 790 ktg->ktr_rw = rw; 791 req->ktr_header.ktr_len = datalen; 792 req->ktr_buffer = buf; 793 ktr_submitrequest(curthread, req); 794 } 795 796 void 797 ktrpsig(int sig, sig_t action, sigset_t *mask, int code) 798 { 799 struct thread *td = curthread; 800 struct ktr_request *req; 801 struct ktr_psig *kp; 802 803 req = ktr_getrequest(KTR_PSIG); 804 if (req == NULL) 805 return; 806 kp = &req->ktr_data.ktr_psig; 807 kp->signo = (char)sig; 808 kp->action = action; 809 kp->mask = *mask; 810 kp->code = code; 811 ktr_enqueuerequest(td, req); 812 ktrace_exit(td); 813 } 814 815 void 816 ktrcsw(int out, int user, const char *wmesg) 817 { 818 struct thread *td = curthread; 819 struct ktr_request *req; 820 struct ktr_csw *kc; 821 822 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 823 return; 824 825 req = ktr_getrequest(KTR_CSW); 826 if (req == NULL) 827 return; 828 kc = &req->ktr_data.ktr_csw; 829 kc->out = out; 830 kc->user = user; 831 if (wmesg != NULL) 832 strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg)); 833 else 834 bzero(kc->wmesg, sizeof(kc->wmesg)); 835 ktr_enqueuerequest(td, req); 836 ktrace_exit(td); 837 } 838 839 void 840 ktrstruct(const char *name, const void *data, size_t datalen) 841 { 842 struct ktr_request *req; 843 char *buf; 844 size_t buflen, namelen; 845 846 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 847 return; 848 849 if (data == NULL) 850 datalen = 0; 851 namelen = strlen(name) + 1; 852 buflen = namelen + datalen; 853 buf = malloc(buflen, M_KTRACE, M_WAITOK); 854 strcpy(buf, name); 855 bcopy(data, buf + namelen, datalen); 856 if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) { 857 free(buf, M_KTRACE); 858 return; 859 } 860 req->ktr_buffer = buf; 861 req->ktr_header.ktr_len = buflen; 862 ktr_submitrequest(curthread, req); 863 } 864 865 void 866 ktrstruct_error(const char *name, const void *data, size_t datalen, int error) 867 { 868 869 if (error == 0) 870 ktrstruct(name, data, datalen); 871 } 872 873 void 874 ktrstructarray(const char *name, enum uio_seg seg, const void *data, 875 int num_items, size_t struct_size) 876 { 877 struct ktr_request *req; 878 struct ktr_struct_array *ksa; 879 char *buf; 880 size_t buflen, datalen, namelen; 881 int max_items; 882 883 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 884 return; 885 if (num_items < 0) 886 return; 887 888 /* Trim array length to genio size. */ 889 max_items = ktr_geniosize / struct_size; 890 if (num_items > max_items) { 891 if (max_items == 0) 892 num_items = 1; 893 else 894 num_items = max_items; 895 } 896 datalen = num_items * struct_size; 897 898 if (data == NULL) 899 datalen = 0; 900 901 namelen = strlen(name) + 1; 902 buflen = namelen + datalen; 903 buf = malloc(buflen, M_KTRACE, M_WAITOK); 904 strcpy(buf, name); 905 if (seg == UIO_SYSSPACE) 906 bcopy(data, buf + namelen, datalen); 907 else { 908 if (copyin(data, buf + namelen, datalen) != 0) { 909 free(buf, M_KTRACE); 910 return; 911 } 912 } 913 if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) { 914 free(buf, M_KTRACE); 915 return; 916 } 917 ksa = &req->ktr_data.ktr_struct_array; 918 ksa->struct_size = struct_size; 919 req->ktr_buffer = buf; 920 req->ktr_header.ktr_len = buflen; 921 ktr_submitrequest(curthread, req); 922 } 923 924 void 925 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed, 926 const cap_rights_t *held) 927 { 928 struct thread *td = curthread; 929 struct ktr_request *req; 930 struct ktr_cap_fail *kcf; 931 932 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 933 return; 934 935 req = ktr_getrequest(KTR_CAPFAIL); 936 if (req == NULL) 937 return; 938 kcf = &req->ktr_data.ktr_cap_fail; 939 kcf->cap_type = type; 940 if (needed != NULL) 941 kcf->cap_needed = *needed; 942 else 943 cap_rights_init(&kcf->cap_needed); 944 if (held != NULL) 945 kcf->cap_held = *held; 946 else 947 cap_rights_init(&kcf->cap_held); 948 ktr_enqueuerequest(td, req); 949 ktrace_exit(td); 950 } 951 952 void 953 ktrfault(vm_offset_t vaddr, int type) 954 { 955 struct thread *td = curthread; 956 struct ktr_request *req; 957 struct ktr_fault *kf; 958 959 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 960 return; 961 962 req = ktr_getrequest(KTR_FAULT); 963 if (req == NULL) 964 return; 965 kf = &req->ktr_data.ktr_fault; 966 kf->vaddr = vaddr; 967 kf->type = type; 968 ktr_enqueuerequest(td, req); 969 ktrace_exit(td); 970 } 971 972 void 973 ktrfaultend(int result) 974 { 975 struct thread *td = curthread; 976 struct ktr_request *req; 977 struct ktr_faultend *kf; 978 979 if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) 980 return; 981 982 req = ktr_getrequest(KTR_FAULTEND); 983 if (req == NULL) 984 return; 985 kf = &req->ktr_data.ktr_faultend; 986 kf->result = result; 987 ktr_enqueuerequest(td, req); 988 ktrace_exit(td); 989 } 990 #endif /* KTRACE */ 991 992 /* Interface and common routines */ 993 994 #ifndef _SYS_SYSPROTO_H_ 995 struct ktrace_args { 996 char *fname; 997 int ops; 998 int facs; 999 int pid; 1000 }; 1001 #endif 1002 /* ARGSUSED */ 1003 int 1004 sys_ktrace(struct thread *td, struct ktrace_args *uap) 1005 { 1006 #ifdef KTRACE 1007 struct vnode *vp = NULL; 1008 struct proc *p; 1009 struct pgrp *pg; 1010 int facs = uap->facs & ~KTRFAC_ROOT; 1011 int ops = KTROP(uap->ops); 1012 int descend = uap->ops & KTRFLAG_DESCEND; 1013 int ret = 0; 1014 int flags, error = 0; 1015 struct nameidata nd; 1016 struct ktr_io_params *kiop, *old_kiop; 1017 1018 /* 1019 * Need something to (un)trace. 1020 */ 1021 if (ops != KTROP_CLEARFILE && facs == 0) 1022 return (EINVAL); 1023 1024 kiop = NULL; 1025 if (ops != KTROP_CLEAR) { 1026 /* 1027 * an operation which requires a file argument. 1028 */ 1029 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname); 1030 flags = FREAD | FWRITE | O_NOFOLLOW; 1031 error = vn_open(&nd, &flags, 0, NULL); 1032 if (error) 1033 return (error); 1034 NDFREE_PNBUF(&nd); 1035 vp = nd.ni_vp; 1036 VOP_UNLOCK(vp); 1037 if (vp->v_type != VREG) { 1038 (void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td); 1039 return (EACCES); 1040 } 1041 kiop = ktr_io_params_alloc(td, vp); 1042 } 1043 1044 /* 1045 * Clear all uses of the tracefile. 1046 */ 1047 ktrace_enter(td); 1048 if (ops == KTROP_CLEARFILE) { 1049 restart: 1050 sx_slock(&allproc_lock); 1051 FOREACH_PROC_IN_SYSTEM(p) { 1052 old_kiop = NULL; 1053 PROC_LOCK(p); 1054 if (p->p_ktrioparms != NULL && 1055 p->p_ktrioparms->vp == vp) { 1056 if (ktrcanset(td, p)) { 1057 mtx_lock(&ktrace_mtx); 1058 old_kiop = ktr_freeproc(p); 1059 mtx_unlock(&ktrace_mtx); 1060 } else 1061 error = EPERM; 1062 } 1063 PROC_UNLOCK(p); 1064 if (old_kiop != NULL) { 1065 sx_sunlock(&allproc_lock); 1066 ktr_io_params_free(old_kiop); 1067 goto restart; 1068 } 1069 } 1070 sx_sunlock(&allproc_lock); 1071 goto done; 1072 } 1073 /* 1074 * do it 1075 */ 1076 sx_slock(&proctree_lock); 1077 if (uap->pid < 0) { 1078 /* 1079 * by process group 1080 */ 1081 pg = pgfind(-uap->pid); 1082 if (pg == NULL) { 1083 sx_sunlock(&proctree_lock); 1084 error = ESRCH; 1085 goto done; 1086 } 1087 1088 /* 1089 * ktrops() may call vrele(). Lock pg_members 1090 * by the proctree_lock rather than pg_mtx. 1091 */ 1092 PGRP_UNLOCK(pg); 1093 if (LIST_EMPTY(&pg->pg_members)) { 1094 sx_sunlock(&proctree_lock); 1095 error = ESRCH; 1096 goto done; 1097 } 1098 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1099 PROC_LOCK(p); 1100 if (descend) 1101 ret |= ktrsetchildren(td, p, ops, facs, kiop); 1102 else 1103 ret |= ktrops(td, p, ops, facs, kiop); 1104 } 1105 } else { 1106 /* 1107 * by pid 1108 */ 1109 p = pfind(uap->pid); 1110 if (p == NULL) { 1111 error = ESRCH; 1112 sx_sunlock(&proctree_lock); 1113 goto done; 1114 } 1115 if (descend) 1116 ret |= ktrsetchildren(td, p, ops, facs, kiop); 1117 else 1118 ret |= ktrops(td, p, ops, facs, kiop); 1119 } 1120 sx_sunlock(&proctree_lock); 1121 if (!ret) 1122 error = EPERM; 1123 done: 1124 if (kiop != NULL) { 1125 mtx_lock(&ktrace_mtx); 1126 kiop = ktr_io_params_rele(kiop); 1127 mtx_unlock(&ktrace_mtx); 1128 ktr_io_params_free(kiop); 1129 } 1130 ktrace_exit(td); 1131 return (error); 1132 #else /* !KTRACE */ 1133 return (ENOSYS); 1134 #endif /* KTRACE */ 1135 } 1136 1137 /* ARGSUSED */ 1138 int 1139 sys_utrace(struct thread *td, struct utrace_args *uap) 1140 { 1141 1142 #ifdef KTRACE 1143 struct ktr_request *req; 1144 void *cp; 1145 int error; 1146 1147 if (!KTRPOINT(td, KTR_USER)) 1148 return (0); 1149 if (uap->len > KTR_USER_MAXLEN) 1150 return (EINVAL); 1151 cp = malloc(uap->len, M_KTRACE, M_WAITOK); 1152 error = copyin(uap->addr, cp, uap->len); 1153 if (error) { 1154 free(cp, M_KTRACE); 1155 return (error); 1156 } 1157 req = ktr_getrequest(KTR_USER); 1158 if (req == NULL) { 1159 free(cp, M_KTRACE); 1160 return (ENOMEM); 1161 } 1162 req->ktr_buffer = cp; 1163 req->ktr_header.ktr_len = uap->len; 1164 ktr_submitrequest(td, req); 1165 return (0); 1166 #else /* !KTRACE */ 1167 return (ENOSYS); 1168 #endif /* KTRACE */ 1169 } 1170 1171 #ifdef KTRACE 1172 static int 1173 ktrops(struct thread *td, struct proc *p, int ops, int facs, 1174 struct ktr_io_params *new_kiop) 1175 { 1176 struct ktr_io_params *old_kiop; 1177 1178 PROC_LOCK_ASSERT(p, MA_OWNED); 1179 if (!ktrcanset(td, p)) { 1180 PROC_UNLOCK(p); 1181 return (0); 1182 } 1183 if ((ops == KTROP_SET && p->p_state == PRS_NEW) || 1184 p_cansee(td, p) != 0) { 1185 /* 1186 * Disallow setting trace points if the process is being born. 1187 * This avoids races with trace point inheritance in 1188 * ktrprocfork(). 1189 */ 1190 PROC_UNLOCK(p); 1191 return (0); 1192 } 1193 if ((p->p_flag & P_WEXIT) != 0) { 1194 /* 1195 * There's nothing to do if the process is exiting, but avoid 1196 * signaling an error. 1197 */ 1198 PROC_UNLOCK(p); 1199 return (1); 1200 } 1201 old_kiop = NULL; 1202 mtx_lock(&ktrace_mtx); 1203 if (ops == KTROP_SET) { 1204 if (p->p_ktrioparms != NULL && 1205 p->p_ktrioparms->vp != new_kiop->vp) { 1206 /* if trace file already in use, relinquish below */ 1207 old_kiop = ktr_io_params_rele(p->p_ktrioparms); 1208 p->p_ktrioparms = NULL; 1209 } 1210 if (p->p_ktrioparms == NULL) { 1211 p->p_ktrioparms = new_kiop; 1212 ktr_io_params_ref(new_kiop); 1213 } 1214 p->p_traceflag |= facs; 1215 if (priv_check(td, PRIV_KTRACE) == 0) 1216 p->p_traceflag |= KTRFAC_ROOT; 1217 } else { 1218 /* KTROP_CLEAR */ 1219 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) 1220 /* no more tracing */ 1221 old_kiop = ktr_freeproc(p); 1222 } 1223 mtx_unlock(&ktrace_mtx); 1224 if ((p->p_traceflag & KTRFAC_MASK) != 0) 1225 ktrprocctor_entered(td, p); 1226 PROC_UNLOCK(p); 1227 ktr_io_params_free(old_kiop); 1228 1229 return (1); 1230 } 1231 1232 static int 1233 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs, 1234 struct ktr_io_params *new_kiop) 1235 { 1236 struct proc *p; 1237 int ret = 0; 1238 1239 p = top; 1240 PROC_LOCK_ASSERT(p, MA_OWNED); 1241 sx_assert(&proctree_lock, SX_LOCKED); 1242 for (;;) { 1243 ret |= ktrops(td, p, ops, facs, new_kiop); 1244 /* 1245 * If this process has children, descend to them next, 1246 * otherwise do any siblings, and if done with this level, 1247 * follow back up the tree (but not past top). 1248 */ 1249 if (!LIST_EMPTY(&p->p_children)) 1250 p = LIST_FIRST(&p->p_children); 1251 else for (;;) { 1252 if (p == top) 1253 return (ret); 1254 if (LIST_NEXT(p, p_sibling)) { 1255 p = LIST_NEXT(p, p_sibling); 1256 break; 1257 } 1258 p = p->p_pptr; 1259 } 1260 PROC_LOCK(p); 1261 } 1262 /*NOTREACHED*/ 1263 } 1264 1265 static void 1266 ktr_writerequest(struct thread *td, struct ktr_request *req) 1267 { 1268 struct ktr_io_params *kiop, *kiop1; 1269 struct ktr_header *kth; 1270 struct vnode *vp; 1271 struct proc *p; 1272 struct ucred *cred; 1273 struct uio auio; 1274 struct iovec aiov[3]; 1275 struct mount *mp; 1276 off_t lim; 1277 int datalen, buflen; 1278 int error; 1279 1280 p = td->td_proc; 1281 1282 /* 1283 * We reference the kiop for use in I/O in case ktrace is 1284 * disabled on the process as we write out the request. 1285 */ 1286 mtx_lock(&ktrace_mtx); 1287 kiop = p->p_ktrioparms; 1288 1289 /* 1290 * If kiop is NULL, it has been cleared out from under this 1291 * request, so just drop it. 1292 */ 1293 if (kiop == NULL) { 1294 mtx_unlock(&ktrace_mtx); 1295 return; 1296 } 1297 1298 ktr_io_params_ref(kiop); 1299 vp = kiop->vp; 1300 cred = kiop->cr; 1301 lim = kiop->lim; 1302 1303 KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL")); 1304 mtx_unlock(&ktrace_mtx); 1305 1306 kth = &req->ktr_header; 1307 KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths), 1308 ("data_lengths array overflow")); 1309 datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE]; 1310 buflen = kth->ktr_len; 1311 auio.uio_iov = &aiov[0]; 1312 auio.uio_offset = 0; 1313 auio.uio_segflg = UIO_SYSSPACE; 1314 auio.uio_rw = UIO_WRITE; 1315 aiov[0].iov_base = (caddr_t)kth; 1316 aiov[0].iov_len = sizeof(struct ktr_header); 1317 auio.uio_resid = sizeof(struct ktr_header); 1318 auio.uio_iovcnt = 1; 1319 auio.uio_td = td; 1320 if (datalen != 0) { 1321 aiov[1].iov_base = (caddr_t)&req->ktr_data; 1322 aiov[1].iov_len = datalen; 1323 auio.uio_resid += datalen; 1324 auio.uio_iovcnt++; 1325 kth->ktr_len += datalen; 1326 } 1327 if (buflen != 0) { 1328 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write")); 1329 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer; 1330 aiov[auio.uio_iovcnt].iov_len = buflen; 1331 auio.uio_resid += buflen; 1332 auio.uio_iovcnt++; 1333 } 1334 1335 vn_start_write(vp, &mp, V_WAIT); 1336 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1337 td->td_ktr_io_lim = lim; 1338 #ifdef MAC 1339 error = mac_vnode_check_write(cred, NOCRED, vp); 1340 if (error == 0) 1341 #endif 1342 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); 1343 VOP_UNLOCK(vp); 1344 vn_finished_write(mp); 1345 if (error == 0) { 1346 mtx_lock(&ktrace_mtx); 1347 kiop = ktr_io_params_rele(kiop); 1348 mtx_unlock(&ktrace_mtx); 1349 ktr_io_params_free(kiop); 1350 return; 1351 } 1352 1353 /* 1354 * If error encountered, give up tracing on this vnode on this 1355 * process. Other processes might still be suitable for 1356 * writes to this vnode. 1357 */ 1358 log(LOG_NOTICE, 1359 "ktrace write failed, errno %d, tracing stopped for pid %d\n", 1360 error, p->p_pid); 1361 1362 kiop1 = NULL; 1363 PROC_LOCK(p); 1364 mtx_lock(&ktrace_mtx); 1365 if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp) 1366 kiop1 = ktr_freeproc(p); 1367 kiop = ktr_io_params_rele(kiop); 1368 mtx_unlock(&ktrace_mtx); 1369 PROC_UNLOCK(p); 1370 ktr_io_params_free(kiop1); 1371 ktr_io_params_free(kiop); 1372 } 1373 1374 /* 1375 * Return true if caller has permission to set the ktracing state 1376 * of target. Essentially, the target can't possess any 1377 * more permissions than the caller. KTRFAC_ROOT signifies that 1378 * root previously set the tracing status on the target process, and 1379 * so, only root may further change it. 1380 */ 1381 static int 1382 ktrcanset(struct thread *td, struct proc *targetp) 1383 { 1384 1385 PROC_LOCK_ASSERT(targetp, MA_OWNED); 1386 if (targetp->p_traceflag & KTRFAC_ROOT && 1387 priv_check(td, PRIV_KTRACE)) 1388 return (0); 1389 1390 if (p_candebug(td, targetp) != 0) 1391 return (0); 1392 1393 return (1); 1394 } 1395 1396 #endif /* KTRACE */ 1397