1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 #include "opt_mac.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/fcntl.h> 43 #include <sys/kernel.h> 44 #include <sys/kthread.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mac.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/namei.h> 51 #include <sys/proc.h> 52 #include <sys/unistd.h> 53 #include <sys/vnode.h> 54 #include <sys/ktrace.h> 55 #include <sys/sx.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sysproto.h> 59 60 /* 61 * The ktrace facility allows the tracing of certain key events in user space 62 * processes, such as system calls, signal delivery, context switches, and 63 * user generated events using utrace(2). It works by streaming event 64 * records and data to a vnode associated with the process using the 65 * ktrace(2) system call. In general, records can be written directly from 66 * the context that generates the event. One important exception to this is 67 * during a context switch, where sleeping is not permitted. To handle this 68 * case, trace events are generated using in-kernel ktr_request records, and 69 * then delivered to disk at a convenient moment -- either immediately, the 70 * next traceable event, at system call return, or at process exit. 71 * 72 * When dealing with multiple threads or processes writing to the same event 73 * log, ordering guarantees are weak: specifically, if an event has multiple 74 * records (i.e., system call enter and return), they may be interlaced with 75 * records from another event. Process and thread ID information is provided 76 * in the record, and user applications can de-interlace events if required. 77 */ 78 79 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); 80 81 #ifdef KTRACE 82 83 #ifndef KTRACE_REQUEST_POOL 84 #define KTRACE_REQUEST_POOL 100 85 #endif 86 87 struct ktr_request { 88 struct ktr_header ktr_header; 89 void *ktr_buffer; 90 union { 91 struct ktr_syscall ktr_syscall; 92 struct ktr_sysret ktr_sysret; 93 struct ktr_genio ktr_genio; 94 struct ktr_psig ktr_psig; 95 struct ktr_csw ktr_csw; 96 } ktr_data; 97 STAILQ_ENTRY(ktr_request) ktr_list; 98 }; 99 100 static int data_lengths[] = { 101 0, /* none */ 102 offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */ 103 sizeof(struct ktr_sysret), /* KTR_SYSRET */ 104 0, /* KTR_NAMEI */ 105 sizeof(struct ktr_genio), /* KTR_GENIO */ 106 sizeof(struct ktr_psig), /* KTR_PSIG */ 107 sizeof(struct ktr_csw), /* KTR_CSW */ 108 0 /* KTR_USER */ 109 }; 110 111 static STAILQ_HEAD(, ktr_request) ktr_free; 112 113 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options"); 114 115 static u_int ktr_requestpool = KTRACE_REQUEST_POOL; 116 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); 117 118 static u_int ktr_geniosize = PAGE_SIZE; 119 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize); 120 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize, 121 0, "Maximum size of genio event payload"); 122 123 static int print_message = 1; 124 struct mtx ktrace_mtx; 125 static struct cv ktrace_cv; 126 static struct sx ktrace_sx; 127 128 static void ktrace_init(void *dummy); 129 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); 130 static u_int ktrace_resize_pool(u_int newsize); 131 static struct ktr_request *ktr_getrequest(int type); 132 static void ktr_submitrequest(struct thread *td, struct ktr_request *req); 133 static void ktr_freerequest(struct ktr_request *req); 134 static void ktr_writerequest(struct thread *td, struct ktr_request *req); 135 static int ktrcanset(struct thread *,struct proc *); 136 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *); 137 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *); 138 139 /* 140 * ktrace itself generates events, such as context switches, which we do not 141 * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine 142 * whether or not it is in a region where tracing of events should be 143 * suppressed. 144 */ 145 static void 146 ktrace_enter(struct thread *td) 147 { 148 149 KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set")); 150 td->td_pflags |= TDP_INKTRACE; 151 } 152 153 static void 154 ktrace_exit(struct thread *td) 155 { 156 157 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set")); 158 td->td_pflags &= ~TDP_INKTRACE; 159 } 160 161 static void 162 ktrace_assert(struct thread *td) 163 { 164 165 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set")); 166 } 167 168 static void 169 ktrace_init(void *dummy) 170 { 171 struct ktr_request *req; 172 int i; 173 174 mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); 175 sx_init(&ktrace_sx, "ktrace_sx"); 176 cv_init(&ktrace_cv, "ktrace"); 177 STAILQ_INIT(&ktr_free); 178 for (i = 0; i < ktr_requestpool; i++) { 179 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); 180 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 181 } 182 } 183 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); 184 185 static int 186 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) 187 { 188 struct thread *td; 189 u_int newsize, oldsize, wantsize; 190 int error; 191 192 /* Handle easy read-only case first to avoid warnings from GCC. */ 193 if (!req->newptr) { 194 mtx_lock(&ktrace_mtx); 195 oldsize = ktr_requestpool; 196 mtx_unlock(&ktrace_mtx); 197 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int))); 198 } 199 200 error = SYSCTL_IN(req, &wantsize, sizeof(u_int)); 201 if (error) 202 return (error); 203 td = curthread; 204 ktrace_enter(td); 205 mtx_lock(&ktrace_mtx); 206 oldsize = ktr_requestpool; 207 newsize = ktrace_resize_pool(wantsize); 208 mtx_unlock(&ktrace_mtx); 209 ktrace_exit(td); 210 error = SYSCTL_OUT(req, &oldsize, sizeof(u_int)); 211 if (error) 212 return (error); 213 if (wantsize > oldsize && newsize < wantsize) 214 return (ENOSPC); 215 return (0); 216 } 217 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW, 218 &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", ""); 219 220 static u_int 221 ktrace_resize_pool(u_int newsize) 222 { 223 struct ktr_request *req; 224 int bound; 225 226 mtx_assert(&ktrace_mtx, MA_OWNED); 227 print_message = 1; 228 bound = newsize - ktr_requestpool; 229 if (bound == 0) 230 return (ktr_requestpool); 231 if (bound < 0) 232 /* Shrink pool down to newsize if possible. */ 233 while (bound++ < 0) { 234 req = STAILQ_FIRST(&ktr_free); 235 if (req == NULL) 236 return (ktr_requestpool); 237 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 238 ktr_requestpool--; 239 mtx_unlock(&ktrace_mtx); 240 free(req, M_KTRACE); 241 mtx_lock(&ktrace_mtx); 242 } 243 else 244 /* Grow pool up to newsize. */ 245 while (bound-- > 0) { 246 mtx_unlock(&ktrace_mtx); 247 req = malloc(sizeof(struct ktr_request), M_KTRACE, 248 M_WAITOK); 249 mtx_lock(&ktrace_mtx); 250 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 251 ktr_requestpool++; 252 } 253 return (ktr_requestpool); 254 } 255 256 static struct ktr_request * 257 ktr_getrequest(int type) 258 { 259 struct ktr_request *req; 260 struct thread *td = curthread; 261 struct proc *p = td->td_proc; 262 int pm; 263 264 ktrace_enter(td); /* XXX: In caller instead? */ 265 mtx_lock(&ktrace_mtx); 266 if (!KTRCHECK(td, type)) { 267 mtx_unlock(&ktrace_mtx); 268 ktrace_exit(td); 269 return (NULL); 270 } 271 req = STAILQ_FIRST(&ktr_free); 272 if (req != NULL) { 273 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 274 req->ktr_header.ktr_type = type; 275 if (p->p_traceflag & KTRFAC_DROP) { 276 req->ktr_header.ktr_type |= KTR_DROP; 277 p->p_traceflag &= ~KTRFAC_DROP; 278 } 279 mtx_unlock(&ktrace_mtx); 280 microtime(&req->ktr_header.ktr_time); 281 req->ktr_header.ktr_pid = p->p_pid; 282 req->ktr_header.ktr_tid = td->td_tid; 283 bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1); 284 req->ktr_buffer = NULL; 285 req->ktr_header.ktr_len = 0; 286 } else { 287 p->p_traceflag |= KTRFAC_DROP; 288 pm = print_message; 289 print_message = 0; 290 mtx_unlock(&ktrace_mtx); 291 if (pm) 292 printf("Out of ktrace request objects.\n"); 293 ktrace_exit(td); 294 } 295 return (req); 296 } 297 298 /* 299 * Some trace generation environments don't permit direct access to VFS, 300 * such as during a context switch where sleeping is not allowed. Under these 301 * circumstances, queue a request to the thread to be written asynchronously 302 * later. 303 */ 304 static void 305 ktr_enqueuerequest(struct thread *td, struct ktr_request *req) 306 { 307 308 mtx_lock(&ktrace_mtx); 309 STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list); 310 mtx_unlock(&ktrace_mtx); 311 ktrace_exit(td); 312 } 313 314 /* 315 * Drain any pending ktrace records from the per-thread queue to disk. This 316 * is used both internally before committing other records, and also on 317 * system call return. We drain all the ones we can find at the time when 318 * drain is requested, but don't keep draining after that as those events 319 * may me approximately "after" the current event. 320 */ 321 static void 322 ktr_drain(struct thread *td) 323 { 324 struct ktr_request *queued_req; 325 STAILQ_HEAD(, ktr_request) local_queue; 326 327 ktrace_assert(td); 328 sx_assert(&ktrace_sx, SX_XLOCKED); 329 330 STAILQ_INIT(&local_queue); /* XXXRW: needed? */ 331 332 if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) { 333 mtx_lock(&ktrace_mtx); 334 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr); 335 mtx_unlock(&ktrace_mtx); 336 337 while ((queued_req = STAILQ_FIRST(&local_queue))) { 338 STAILQ_REMOVE_HEAD(&local_queue, ktr_list); 339 ktr_writerequest(td, queued_req); 340 ktr_freerequest(queued_req); 341 } 342 } 343 } 344 345 /* 346 * Submit a trace record for immediate commit to disk -- to be used only 347 * where entering VFS is OK. First drain any pending records that may have 348 * been cached in the thread. 349 */ 350 static void 351 ktr_submitrequest(struct thread *td, struct ktr_request *req) 352 { 353 354 ktrace_assert(td); 355 356 sx_xlock(&ktrace_sx); 357 ktr_drain(td); 358 ktr_writerequest(td, req); 359 ktr_freerequest(req); 360 sx_xunlock(&ktrace_sx); 361 362 ktrace_exit(td); 363 } 364 365 static void 366 ktr_freerequest(struct ktr_request *req) 367 { 368 369 if (req->ktr_buffer != NULL) 370 free(req->ktr_buffer, M_KTRACE); 371 mtx_lock(&ktrace_mtx); 372 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 373 mtx_unlock(&ktrace_mtx); 374 } 375 376 /* 377 * MPSAFE 378 */ 379 void 380 ktrsyscall(code, narg, args) 381 int code, narg; 382 register_t args[]; 383 { 384 struct ktr_request *req; 385 struct ktr_syscall *ktp; 386 size_t buflen; 387 char *buf = NULL; 388 389 buflen = sizeof(register_t) * narg; 390 if (buflen > 0) { 391 buf = malloc(buflen, M_KTRACE, M_WAITOK); 392 bcopy(args, buf, buflen); 393 } 394 req = ktr_getrequest(KTR_SYSCALL); 395 if (req == NULL) { 396 if (buf != NULL) 397 free(buf, M_KTRACE); 398 return; 399 } 400 ktp = &req->ktr_data.ktr_syscall; 401 ktp->ktr_code = code; 402 ktp->ktr_narg = narg; 403 if (buflen > 0) { 404 req->ktr_header.ktr_len = buflen; 405 req->ktr_buffer = buf; 406 } 407 ktr_submitrequest(curthread, req); 408 } 409 410 /* 411 * MPSAFE 412 */ 413 void 414 ktrsysret(code, error, retval) 415 int code, error; 416 register_t retval; 417 { 418 struct ktr_request *req; 419 struct ktr_sysret *ktp; 420 421 req = ktr_getrequest(KTR_SYSRET); 422 if (req == NULL) 423 return; 424 ktp = &req->ktr_data.ktr_sysret; 425 ktp->ktr_code = code; 426 ktp->ktr_error = error; 427 ktp->ktr_retval = retval; /* what about val2 ? */ 428 ktr_submitrequest(curthread, req); 429 } 430 431 /* 432 * When a process exits, drain per-process asynchronous trace records. 433 */ 434 void 435 ktrprocexit(struct thread *td) 436 { 437 438 ktrace_enter(td); 439 sx_xlock(&ktrace_sx); 440 ktr_drain(td); 441 sx_xunlock(&ktrace_sx); 442 ktrace_exit(td); 443 } 444 445 /* 446 * When a thread returns, drain any asynchronous records generated by the 447 * system call. 448 */ 449 void 450 ktruserret(struct thread *td) 451 { 452 453 ktrace_enter(td); 454 sx_xlock(&ktrace_sx); 455 ktr_drain(td); 456 sx_xunlock(&ktrace_sx); 457 ktrace_exit(td); 458 } 459 460 void 461 ktrnamei(path) 462 char *path; 463 { 464 struct ktr_request *req; 465 int namelen; 466 char *buf = NULL; 467 468 namelen = strlen(path); 469 if (namelen > 0) { 470 buf = malloc(namelen, M_KTRACE, M_WAITOK); 471 bcopy(path, buf, namelen); 472 } 473 req = ktr_getrequest(KTR_NAMEI); 474 if (req == NULL) { 475 if (buf != NULL) 476 free(buf, M_KTRACE); 477 return; 478 } 479 if (namelen > 0) { 480 req->ktr_header.ktr_len = namelen; 481 req->ktr_buffer = buf; 482 } 483 ktr_submitrequest(curthread, req); 484 } 485 486 /* 487 * Since the uio may not stay valid, we can not hand off this request to 488 * the thread and need to process it synchronously. However, we wish to 489 * keep the relative order of records in a trace file correct, so we 490 * do put this request on the queue (if it isn't empty) and then block. 491 * The ktrace thread waks us back up when it is time for this event to 492 * be posted and blocks until we have completed writing out the event 493 * and woken it back up. 494 */ 495 void 496 ktrgenio(fd, rw, uio, error) 497 int fd; 498 enum uio_rw rw; 499 struct uio *uio; 500 int error; 501 { 502 struct ktr_request *req; 503 struct ktr_genio *ktg; 504 int datalen; 505 char *buf; 506 507 if (error) { 508 free(uio, M_IOV); 509 return; 510 } 511 uio->uio_offset = 0; 512 uio->uio_rw = UIO_WRITE; 513 datalen = imin(uio->uio_resid, ktr_geniosize); 514 buf = malloc(datalen, M_KTRACE, M_WAITOK); 515 error = uiomove(buf, datalen, uio); 516 free(uio, M_IOV); 517 if (error) { 518 free(buf, M_KTRACE); 519 return; 520 } 521 req = ktr_getrequest(KTR_GENIO); 522 if (req == NULL) { 523 free(buf, M_KTRACE); 524 return; 525 } 526 ktg = &req->ktr_data.ktr_genio; 527 ktg->ktr_fd = fd; 528 ktg->ktr_rw = rw; 529 req->ktr_header.ktr_len = datalen; 530 req->ktr_buffer = buf; 531 ktr_submitrequest(curthread, req); 532 } 533 534 void 535 ktrpsig(sig, action, mask, code) 536 int sig; 537 sig_t action; 538 sigset_t *mask; 539 int code; 540 { 541 struct ktr_request *req; 542 struct ktr_psig *kp; 543 544 req = ktr_getrequest(KTR_PSIG); 545 if (req == NULL) 546 return; 547 kp = &req->ktr_data.ktr_psig; 548 kp->signo = (char)sig; 549 kp->action = action; 550 kp->mask = *mask; 551 kp->code = code; 552 ktr_enqueuerequest(curthread, req); 553 } 554 555 void 556 ktrcsw(out, user) 557 int out, user; 558 { 559 struct ktr_request *req; 560 struct ktr_csw *kc; 561 562 req = ktr_getrequest(KTR_CSW); 563 if (req == NULL) 564 return; 565 kc = &req->ktr_data.ktr_csw; 566 kc->out = out; 567 kc->user = user; 568 ktr_enqueuerequest(curthread, req); 569 } 570 #endif /* KTRACE */ 571 572 /* Interface and common routines */ 573 574 /* 575 * ktrace system call 576 * 577 * MPSAFE 578 */ 579 #ifndef _SYS_SYSPROTO_H_ 580 struct ktrace_args { 581 char *fname; 582 int ops; 583 int facs; 584 int pid; 585 }; 586 #endif 587 /* ARGSUSED */ 588 int 589 ktrace(td, uap) 590 struct thread *td; 591 register struct ktrace_args *uap; 592 { 593 #ifdef KTRACE 594 register struct vnode *vp = NULL; 595 register struct proc *p; 596 struct pgrp *pg; 597 int facs = uap->facs & ~KTRFAC_ROOT; 598 int ops = KTROP(uap->ops); 599 int descend = uap->ops & KTRFLAG_DESCEND; 600 int nfound, ret = 0; 601 int flags, error = 0; 602 struct nameidata nd; 603 struct ucred *cred; 604 605 /* 606 * Need something to (un)trace. 607 */ 608 if (ops != KTROP_CLEARFILE && facs == 0) 609 return (EINVAL); 610 611 ktrace_enter(td); 612 if (ops != KTROP_CLEAR) { 613 /* 614 * an operation which requires a file argument. 615 */ 616 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td); 617 flags = FREAD | FWRITE | O_NOFOLLOW; 618 mtx_lock(&Giant); 619 error = vn_open(&nd, &flags, 0, -1); 620 if (error) { 621 mtx_unlock(&Giant); 622 ktrace_exit(td); 623 return (error); 624 } 625 NDFREE(&nd, NDF_ONLY_PNBUF); 626 vp = nd.ni_vp; 627 VOP_UNLOCK(vp, 0, td); 628 if (vp->v_type != VREG) { 629 (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td); 630 mtx_unlock(&Giant); 631 ktrace_exit(td); 632 return (EACCES); 633 } 634 mtx_unlock(&Giant); 635 } 636 /* 637 * Clear all uses of the tracefile. 638 */ 639 if (ops == KTROP_CLEARFILE) { 640 sx_slock(&allproc_lock); 641 LIST_FOREACH(p, &allproc, p_list) { 642 PROC_LOCK(p); 643 if (p->p_tracevp == vp) { 644 if (ktrcanset(td, p)) { 645 mtx_lock(&ktrace_mtx); 646 cred = p->p_tracecred; 647 p->p_tracecred = NULL; 648 p->p_tracevp = NULL; 649 p->p_traceflag = 0; 650 mtx_unlock(&ktrace_mtx); 651 PROC_UNLOCK(p); 652 mtx_lock(&Giant); 653 (void) vn_close(vp, FREAD|FWRITE, 654 cred, td); 655 mtx_unlock(&Giant); 656 crfree(cred); 657 } else { 658 PROC_UNLOCK(p); 659 error = EPERM; 660 } 661 } else 662 PROC_UNLOCK(p); 663 } 664 sx_sunlock(&allproc_lock); 665 goto done; 666 } 667 /* 668 * do it 669 */ 670 sx_slock(&proctree_lock); 671 if (uap->pid < 0) { 672 /* 673 * by process group 674 */ 675 pg = pgfind(-uap->pid); 676 if (pg == NULL) { 677 sx_sunlock(&proctree_lock); 678 error = ESRCH; 679 goto done; 680 } 681 /* 682 * ktrops() may call vrele(). Lock pg_members 683 * by the proctree_lock rather than pg_mtx. 684 */ 685 PGRP_UNLOCK(pg); 686 nfound = 0; 687 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 688 PROC_LOCK(p); 689 if (p_cansee(td, p) != 0) { 690 PROC_UNLOCK(p); 691 continue; 692 } 693 PROC_UNLOCK(p); 694 nfound++; 695 if (descend) 696 ret |= ktrsetchildren(td, p, ops, facs, vp); 697 else 698 ret |= ktrops(td, p, ops, facs, vp); 699 } 700 if (nfound == 0) { 701 sx_sunlock(&proctree_lock); 702 error = ESRCH; 703 goto done; 704 } 705 } else { 706 /* 707 * by pid 708 */ 709 p = pfind(uap->pid); 710 if (p == NULL) { 711 sx_sunlock(&proctree_lock); 712 error = ESRCH; 713 goto done; 714 } 715 error = p_cansee(td, p); 716 /* 717 * The slock of the proctree lock will keep this process 718 * from going away, so unlocking the proc here is ok. 719 */ 720 PROC_UNLOCK(p); 721 if (error) { 722 sx_sunlock(&proctree_lock); 723 goto done; 724 } 725 if (descend) 726 ret |= ktrsetchildren(td, p, ops, facs, vp); 727 else 728 ret |= ktrops(td, p, ops, facs, vp); 729 } 730 sx_sunlock(&proctree_lock); 731 if (!ret) 732 error = EPERM; 733 done: 734 if (vp != NULL) { 735 mtx_lock(&Giant); 736 (void) vn_close(vp, FWRITE, td->td_ucred, td); 737 mtx_unlock(&Giant); 738 } 739 ktrace_exit(td); 740 return (error); 741 #else /* !KTRACE */ 742 return (ENOSYS); 743 #endif /* KTRACE */ 744 } 745 746 /* 747 * utrace system call 748 * 749 * MPSAFE 750 */ 751 /* ARGSUSED */ 752 int 753 utrace(td, uap) 754 struct thread *td; 755 register struct utrace_args *uap; 756 { 757 758 #ifdef KTRACE 759 struct ktr_request *req; 760 void *cp; 761 int error; 762 763 if (!KTRPOINT(td, KTR_USER)) 764 return (0); 765 if (uap->len > KTR_USER_MAXLEN) 766 return (EINVAL); 767 cp = malloc(uap->len, M_KTRACE, M_WAITOK); 768 error = copyin(uap->addr, cp, uap->len); 769 if (error) { 770 free(cp, M_KTRACE); 771 return (error); 772 } 773 req = ktr_getrequest(KTR_USER); 774 if (req == NULL) { 775 free(cp, M_KTRACE); 776 return (ENOMEM); 777 } 778 req->ktr_buffer = cp; 779 req->ktr_header.ktr_len = uap->len; 780 ktr_submitrequest(td, req); 781 return (0); 782 #else /* !KTRACE */ 783 return (ENOSYS); 784 #endif /* KTRACE */ 785 } 786 787 #ifdef KTRACE 788 static int 789 ktrops(td, p, ops, facs, vp) 790 struct thread *td; 791 struct proc *p; 792 int ops, facs; 793 struct vnode *vp; 794 { 795 struct vnode *tracevp = NULL; 796 struct ucred *tracecred = NULL; 797 798 PROC_LOCK(p); 799 if (!ktrcanset(td, p)) { 800 PROC_UNLOCK(p); 801 return (0); 802 } 803 mtx_lock(&ktrace_mtx); 804 if (ops == KTROP_SET) { 805 if (p->p_tracevp != vp) { 806 /* 807 * if trace file already in use, relinquish below 808 */ 809 tracevp = p->p_tracevp; 810 VREF(vp); 811 p->p_tracevp = vp; 812 } 813 if (p->p_tracecred != td->td_ucred) { 814 tracecred = p->p_tracecred; 815 p->p_tracecred = crhold(td->td_ucred); 816 } 817 p->p_traceflag |= facs; 818 if (td->td_ucred->cr_uid == 0) 819 p->p_traceflag |= KTRFAC_ROOT; 820 } else { 821 /* KTROP_CLEAR */ 822 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) { 823 /* no more tracing */ 824 p->p_traceflag = 0; 825 tracevp = p->p_tracevp; 826 p->p_tracevp = NULL; 827 tracecred = p->p_tracecred; 828 p->p_tracecred = NULL; 829 } 830 } 831 mtx_unlock(&ktrace_mtx); 832 PROC_UNLOCK(p); 833 if (tracevp != NULL) { 834 int vfslocked; 835 836 vfslocked = VFS_LOCK_GIANT(tracevp->v_mount); 837 vrele(tracevp); 838 VFS_UNLOCK_GIANT(vfslocked); 839 } 840 if (tracecred != NULL) 841 crfree(tracecred); 842 843 return (1); 844 } 845 846 static int 847 ktrsetchildren(td, top, ops, facs, vp) 848 struct thread *td; 849 struct proc *top; 850 int ops, facs; 851 struct vnode *vp; 852 { 853 register struct proc *p; 854 register int ret = 0; 855 856 p = top; 857 sx_assert(&proctree_lock, SX_LOCKED); 858 for (;;) { 859 ret |= ktrops(td, p, ops, facs, vp); 860 /* 861 * If this process has children, descend to them next, 862 * otherwise do any siblings, and if done with this level, 863 * follow back up the tree (but not past top). 864 */ 865 if (!LIST_EMPTY(&p->p_children)) 866 p = LIST_FIRST(&p->p_children); 867 else for (;;) { 868 if (p == top) 869 return (ret); 870 if (LIST_NEXT(p, p_sibling)) { 871 p = LIST_NEXT(p, p_sibling); 872 break; 873 } 874 p = p->p_pptr; 875 } 876 } 877 /*NOTREACHED*/ 878 } 879 880 static void 881 ktr_writerequest(struct thread *td, struct ktr_request *req) 882 { 883 struct ktr_header *kth; 884 struct vnode *vp; 885 struct proc *p; 886 struct ucred *cred; 887 struct uio auio; 888 struct iovec aiov[3]; 889 struct mount *mp; 890 int datalen, buflen, vrele_count; 891 int error; 892 893 /* 894 * We hold the vnode and credential for use in I/O in case ktrace is 895 * disabled on the process as we write out the request. 896 * 897 * XXXRW: This is not ideal: we could end up performing a write after 898 * the vnode has been closed. 899 */ 900 mtx_lock(&ktrace_mtx); 901 vp = td->td_proc->p_tracevp; 902 if (vp != NULL) 903 VREF(vp); 904 cred = td->td_proc->p_tracecred; 905 if (cred != NULL) 906 crhold(cred); 907 mtx_unlock(&ktrace_mtx); 908 909 /* 910 * If vp is NULL, the vp has been cleared out from under this 911 * request, so just drop it. Make sure the credential and vnode are 912 * in sync: we should have both or neither. 913 */ 914 if (vp == NULL) { 915 KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL")); 916 return; 917 } 918 KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL")); 919 920 kth = &req->ktr_header; 921 datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP]; 922 buflen = kth->ktr_len; 923 auio.uio_iov = &aiov[0]; 924 auio.uio_offset = 0; 925 auio.uio_segflg = UIO_SYSSPACE; 926 auio.uio_rw = UIO_WRITE; 927 aiov[0].iov_base = (caddr_t)kth; 928 aiov[0].iov_len = sizeof(struct ktr_header); 929 auio.uio_resid = sizeof(struct ktr_header); 930 auio.uio_iovcnt = 1; 931 auio.uio_td = td; 932 if (datalen != 0) { 933 aiov[1].iov_base = (caddr_t)&req->ktr_data; 934 aiov[1].iov_len = datalen; 935 auio.uio_resid += datalen; 936 auio.uio_iovcnt++; 937 kth->ktr_len += datalen; 938 } 939 if (buflen != 0) { 940 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write")); 941 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer; 942 aiov[auio.uio_iovcnt].iov_len = buflen; 943 auio.uio_resid += buflen; 944 auio.uio_iovcnt++; 945 } 946 947 mtx_lock(&Giant); 948 vn_start_write(vp, &mp, V_WAIT); 949 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 950 (void)VOP_LEASE(vp, td, cred, LEASE_WRITE); 951 #ifdef MAC 952 error = mac_check_vnode_write(cred, NOCRED, vp); 953 if (error == 0) 954 #endif 955 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); 956 VOP_UNLOCK(vp, 0, td); 957 vn_finished_write(mp); 958 vrele(vp); 959 mtx_unlock(&Giant); 960 if (!error) 961 return; 962 /* 963 * If error encountered, give up tracing on this vnode. We defer 964 * all the vrele()'s on the vnode until after we are finished walking 965 * the various lists to avoid needlessly holding locks. 966 */ 967 log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n", 968 error); 969 vrele_count = 0; 970 /* 971 * First, clear this vnode from being used by any processes in the 972 * system. 973 * XXX - If one process gets an EPERM writing to the vnode, should 974 * we really do this? Other processes might have suitable 975 * credentials for the operation. 976 */ 977 cred = NULL; 978 sx_slock(&allproc_lock); 979 LIST_FOREACH(p, &allproc, p_list) { 980 PROC_LOCK(p); 981 if (p->p_tracevp == vp) { 982 mtx_lock(&ktrace_mtx); 983 p->p_tracevp = NULL; 984 p->p_traceflag = 0; 985 cred = p->p_tracecred; 986 p->p_tracecred = NULL; 987 mtx_unlock(&ktrace_mtx); 988 vrele_count++; 989 } 990 PROC_UNLOCK(p); 991 if (cred != NULL) { 992 crfree(cred); 993 cred = NULL; 994 } 995 } 996 sx_sunlock(&allproc_lock); 997 998 /* 999 * We can't clear any pending requests in threads that have cached 1000 * them but not yet committed them, as those are per-thread. The 1001 * thread will have to clear it itself on system call return. 1002 */ 1003 mtx_lock(&Giant); 1004 while (vrele_count-- > 0) 1005 vrele(vp); 1006 mtx_unlock(&Giant); 1007 } 1008 1009 /* 1010 * Return true if caller has permission to set the ktracing state 1011 * of target. Essentially, the target can't possess any 1012 * more permissions than the caller. KTRFAC_ROOT signifies that 1013 * root previously set the tracing status on the target process, and 1014 * so, only root may further change it. 1015 */ 1016 static int 1017 ktrcanset(td, targetp) 1018 struct thread *td; 1019 struct proc *targetp; 1020 { 1021 1022 PROC_LOCK_ASSERT(targetp, MA_OWNED); 1023 if (targetp->p_traceflag & KTRFAC_ROOT && 1024 suser_cred(td->td_ucred, SUSER_ALLOWJAIL)) 1025 return (0); 1026 1027 if (p_candebug(td, targetp) != 0) 1028 return (0); 1029 1030 return (1); 1031 } 1032 1033 #endif /* KTRACE */ 1034