xref: /freebsd/sys/kern/kern_ktrace.c (revision 7d0d268b8a67f28ccefdd0b8ce6fb38acac78d80)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 #include "opt_mac.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/namei.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/unistd.h>
53 #include <sys/vnode.h>
54 #include <sys/socket.h>
55 #include <sys/stat.h>
56 #include <sys/ktrace.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/syslog.h>
60 #include <sys/sysproto.h>
61 
62 #include <security/mac/mac_framework.h>
63 
64 /*
65  * The ktrace facility allows the tracing of certain key events in user space
66  * processes, such as system calls, signal delivery, context switches, and
67  * user generated events using utrace(2).  It works by streaming event
68  * records and data to a vnode associated with the process using the
69  * ktrace(2) system call.  In general, records can be written directly from
70  * the context that generates the event.  One important exception to this is
71  * during a context switch, where sleeping is not permitted.  To handle this
72  * case, trace events are generated using in-kernel ktr_request records, and
73  * then delivered to disk at a convenient moment -- either immediately, the
74  * next traceable event, at system call return, or at process exit.
75  *
76  * When dealing with multiple threads or processes writing to the same event
77  * log, ordering guarantees are weak: specifically, if an event has multiple
78  * records (i.e., system call enter and return), they may be interlaced with
79  * records from another event.  Process and thread ID information is provided
80  * in the record, and user applications can de-interlace events if required.
81  */
82 
83 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84 
85 #ifdef KTRACE
86 
87 #ifndef KTRACE_REQUEST_POOL
88 #define	KTRACE_REQUEST_POOL	100
89 #endif
90 
91 struct ktr_request {
92 	struct	ktr_header ktr_header;
93 	void	*ktr_buffer;
94 	union {
95 		struct	ktr_syscall ktr_syscall;
96 		struct	ktr_sysret ktr_sysret;
97 		struct	ktr_genio ktr_genio;
98 		struct	ktr_psig ktr_psig;
99 		struct	ktr_csw ktr_csw;
100 	} ktr_data;
101 	STAILQ_ENTRY(ktr_request) ktr_list;
102 };
103 
104 static int data_lengths[] = {
105 	0,					/* none */
106 	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
107 	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
108 	0,					/* KTR_NAMEI */
109 	sizeof(struct ktr_genio),		/* KTR_GENIO */
110 	sizeof(struct ktr_psig),		/* KTR_PSIG */
111 	sizeof(struct ktr_csw),			/* KTR_CSW */
112 	0,					/* KTR_USER */
113 	0,					/* KTR_STRUCT */
114 };
115 
116 static STAILQ_HEAD(, ktr_request) ktr_free;
117 
118 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
119 
120 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
121 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
122 
123 static u_int ktr_geniosize = PAGE_SIZE;
124 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
125 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
126     0, "Maximum size of genio event payload");
127 
128 static int print_message = 1;
129 struct mtx ktrace_mtx;
130 static struct sx ktrace_sx;
131 
132 static void ktrace_init(void *dummy);
133 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
134 static u_int ktrace_resize_pool(u_int newsize);
135 static struct ktr_request *ktr_getrequest(int type);
136 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
137 static void ktr_freerequest(struct ktr_request *req);
138 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
139 static int ktrcanset(struct thread *,struct proc *);
140 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
141 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
142 
143 /*
144  * ktrace itself generates events, such as context switches, which we do not
145  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
146  * whether or not it is in a region where tracing of events should be
147  * suppressed.
148  */
149 static void
150 ktrace_enter(struct thread *td)
151 {
152 
153 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
154 	td->td_pflags |= TDP_INKTRACE;
155 }
156 
157 static void
158 ktrace_exit(struct thread *td)
159 {
160 
161 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
162 	td->td_pflags &= ~TDP_INKTRACE;
163 }
164 
165 static void
166 ktrace_assert(struct thread *td)
167 {
168 
169 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
170 }
171 
172 static void
173 ktrace_init(void *dummy)
174 {
175 	struct ktr_request *req;
176 	int i;
177 
178 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
179 	sx_init(&ktrace_sx, "ktrace_sx");
180 	STAILQ_INIT(&ktr_free);
181 	for (i = 0; i < ktr_requestpool; i++) {
182 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
183 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
184 	}
185 }
186 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
187 
188 static int
189 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
190 {
191 	struct thread *td;
192 	u_int newsize, oldsize, wantsize;
193 	int error;
194 
195 	/* Handle easy read-only case first to avoid warnings from GCC. */
196 	if (!req->newptr) {
197 		mtx_lock(&ktrace_mtx);
198 		oldsize = ktr_requestpool;
199 		mtx_unlock(&ktrace_mtx);
200 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
201 	}
202 
203 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
204 	if (error)
205 		return (error);
206 	td = curthread;
207 	ktrace_enter(td);
208 	mtx_lock(&ktrace_mtx);
209 	oldsize = ktr_requestpool;
210 	newsize = ktrace_resize_pool(wantsize);
211 	mtx_unlock(&ktrace_mtx);
212 	ktrace_exit(td);
213 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
214 	if (error)
215 		return (error);
216 	if (wantsize > oldsize && newsize < wantsize)
217 		return (ENOSPC);
218 	return (0);
219 }
220 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
221     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
222 
223 static u_int
224 ktrace_resize_pool(u_int newsize)
225 {
226 	struct ktr_request *req;
227 	int bound;
228 
229 	mtx_assert(&ktrace_mtx, MA_OWNED);
230 	print_message = 1;
231 	bound = newsize - ktr_requestpool;
232 	if (bound == 0)
233 		return (ktr_requestpool);
234 	if (bound < 0)
235 		/* Shrink pool down to newsize if possible. */
236 		while (bound++ < 0) {
237 			req = STAILQ_FIRST(&ktr_free);
238 			if (req == NULL)
239 				return (ktr_requestpool);
240 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
241 			ktr_requestpool--;
242 			mtx_unlock(&ktrace_mtx);
243 			free(req, M_KTRACE);
244 			mtx_lock(&ktrace_mtx);
245 		}
246 	else
247 		/* Grow pool up to newsize. */
248 		while (bound-- > 0) {
249 			mtx_unlock(&ktrace_mtx);
250 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
251 			    M_WAITOK);
252 			mtx_lock(&ktrace_mtx);
253 			STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
254 			ktr_requestpool++;
255 		}
256 	return (ktr_requestpool);
257 }
258 
259 static struct ktr_request *
260 ktr_getrequest(int type)
261 {
262 	struct ktr_request *req;
263 	struct thread *td = curthread;
264 	struct proc *p = td->td_proc;
265 	int pm;
266 
267 	ktrace_enter(td);	/* XXX: In caller instead? */
268 	mtx_lock(&ktrace_mtx);
269 	if (!KTRCHECK(td, type)) {
270 		mtx_unlock(&ktrace_mtx);
271 		ktrace_exit(td);
272 		return (NULL);
273 	}
274 	req = STAILQ_FIRST(&ktr_free);
275 	if (req != NULL) {
276 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
277 		req->ktr_header.ktr_type = type;
278 		if (p->p_traceflag & KTRFAC_DROP) {
279 			req->ktr_header.ktr_type |= KTR_DROP;
280 			p->p_traceflag &= ~KTRFAC_DROP;
281 		}
282 		mtx_unlock(&ktrace_mtx);
283 		microtime(&req->ktr_header.ktr_time);
284 		req->ktr_header.ktr_pid = p->p_pid;
285 		req->ktr_header.ktr_tid = td->td_tid;
286 		bcopy(td->td_name, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
287 		req->ktr_buffer = NULL;
288 		req->ktr_header.ktr_len = 0;
289 	} else {
290 		p->p_traceflag |= KTRFAC_DROP;
291 		pm = print_message;
292 		print_message = 0;
293 		mtx_unlock(&ktrace_mtx);
294 		if (pm)
295 			printf("Out of ktrace request objects.\n");
296 		ktrace_exit(td);
297 	}
298 	return (req);
299 }
300 
301 /*
302  * Some trace generation environments don't permit direct access to VFS,
303  * such as during a context switch where sleeping is not allowed.  Under these
304  * circumstances, queue a request to the thread to be written asynchronously
305  * later.
306  */
307 static void
308 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
309 {
310 
311 	mtx_lock(&ktrace_mtx);
312 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
313 	mtx_unlock(&ktrace_mtx);
314 	ktrace_exit(td);
315 }
316 
317 /*
318  * Drain any pending ktrace records from the per-thread queue to disk.  This
319  * is used both internally before committing other records, and also on
320  * system call return.  We drain all the ones we can find at the time when
321  * drain is requested, but don't keep draining after that as those events
322  * may me approximately "after" the current event.
323  */
324 static void
325 ktr_drain(struct thread *td)
326 {
327 	struct ktr_request *queued_req;
328 	STAILQ_HEAD(, ktr_request) local_queue;
329 
330 	ktrace_assert(td);
331 	sx_assert(&ktrace_sx, SX_XLOCKED);
332 
333 	STAILQ_INIT(&local_queue);	/* XXXRW: needed? */
334 
335 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
336 		mtx_lock(&ktrace_mtx);
337 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
338 		mtx_unlock(&ktrace_mtx);
339 
340 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
341 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
342 			ktr_writerequest(td, queued_req);
343 			ktr_freerequest(queued_req);
344 		}
345 	}
346 }
347 
348 /*
349  * Submit a trace record for immediate commit to disk -- to be used only
350  * where entering VFS is OK.  First drain any pending records that may have
351  * been cached in the thread.
352  */
353 static void
354 ktr_submitrequest(struct thread *td, struct ktr_request *req)
355 {
356 
357 	ktrace_assert(td);
358 
359 	sx_xlock(&ktrace_sx);
360 	ktr_drain(td);
361 	ktr_writerequest(td, req);
362 	ktr_freerequest(req);
363 	sx_xunlock(&ktrace_sx);
364 
365 	ktrace_exit(td);
366 }
367 
368 static void
369 ktr_freerequest(struct ktr_request *req)
370 {
371 
372 	if (req->ktr_buffer != NULL)
373 		free(req->ktr_buffer, M_KTRACE);
374 	mtx_lock(&ktrace_mtx);
375 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
376 	mtx_unlock(&ktrace_mtx);
377 }
378 
379 void
380 ktrsyscall(code, narg, args)
381 	int code, narg;
382 	register_t args[];
383 {
384 	struct ktr_request *req;
385 	struct ktr_syscall *ktp;
386 	size_t buflen;
387 	char *buf = NULL;
388 
389 	buflen = sizeof(register_t) * narg;
390 	if (buflen > 0) {
391 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
392 		bcopy(args, buf, buflen);
393 	}
394 	req = ktr_getrequest(KTR_SYSCALL);
395 	if (req == NULL) {
396 		if (buf != NULL)
397 			free(buf, M_KTRACE);
398 		return;
399 	}
400 	ktp = &req->ktr_data.ktr_syscall;
401 	ktp->ktr_code = code;
402 	ktp->ktr_narg = narg;
403 	if (buflen > 0) {
404 		req->ktr_header.ktr_len = buflen;
405 		req->ktr_buffer = buf;
406 	}
407 	ktr_submitrequest(curthread, req);
408 }
409 
410 void
411 ktrsysret(code, error, retval)
412 	int code, error;
413 	register_t retval;
414 {
415 	struct ktr_request *req;
416 	struct ktr_sysret *ktp;
417 
418 	req = ktr_getrequest(KTR_SYSRET);
419 	if (req == NULL)
420 		return;
421 	ktp = &req->ktr_data.ktr_sysret;
422 	ktp->ktr_code = code;
423 	ktp->ktr_error = error;
424 	ktp->ktr_retval = retval;		/* what about val2 ? */
425 	ktr_submitrequest(curthread, req);
426 }
427 
428 /*
429  * When a process exits, drain per-process asynchronous trace records.
430  */
431 void
432 ktrprocexit(struct thread *td)
433 {
434 
435 	ktrace_enter(td);
436 	sx_xlock(&ktrace_sx);
437 	ktr_drain(td);
438 	sx_xunlock(&ktrace_sx);
439 	ktrace_exit(td);
440 }
441 
442 /*
443  * When a thread returns, drain any asynchronous records generated by the
444  * system call.
445  */
446 void
447 ktruserret(struct thread *td)
448 {
449 
450 	ktrace_enter(td);
451 	sx_xlock(&ktrace_sx);
452 	ktr_drain(td);
453 	sx_xunlock(&ktrace_sx);
454 	ktrace_exit(td);
455 }
456 
457 void
458 ktrnamei(path)
459 	char *path;
460 {
461 	struct ktr_request *req;
462 	int namelen;
463 	char *buf = NULL;
464 
465 	namelen = strlen(path);
466 	if (namelen > 0) {
467 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
468 		bcopy(path, buf, namelen);
469 	}
470 	req = ktr_getrequest(KTR_NAMEI);
471 	if (req == NULL) {
472 		if (buf != NULL)
473 			free(buf, M_KTRACE);
474 		return;
475 	}
476 	if (namelen > 0) {
477 		req->ktr_header.ktr_len = namelen;
478 		req->ktr_buffer = buf;
479 	}
480 	ktr_submitrequest(curthread, req);
481 }
482 
483 void
484 ktrgenio(fd, rw, uio, error)
485 	int fd;
486 	enum uio_rw rw;
487 	struct uio *uio;
488 	int error;
489 {
490 	struct ktr_request *req;
491 	struct ktr_genio *ktg;
492 	int datalen;
493 	char *buf;
494 
495 	if (error) {
496 		free(uio, M_IOV);
497 		return;
498 	}
499 	uio->uio_offset = 0;
500 	uio->uio_rw = UIO_WRITE;
501 	datalen = imin(uio->uio_resid, ktr_geniosize);
502 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
503 	error = uiomove(buf, datalen, uio);
504 	free(uio, M_IOV);
505 	if (error) {
506 		free(buf, M_KTRACE);
507 		return;
508 	}
509 	req = ktr_getrequest(KTR_GENIO);
510 	if (req == NULL) {
511 		free(buf, M_KTRACE);
512 		return;
513 	}
514 	ktg = &req->ktr_data.ktr_genio;
515 	ktg->ktr_fd = fd;
516 	ktg->ktr_rw = rw;
517 	req->ktr_header.ktr_len = datalen;
518 	req->ktr_buffer = buf;
519 	ktr_submitrequest(curthread, req);
520 }
521 
522 void
523 ktrpsig(sig, action, mask, code)
524 	int sig;
525 	sig_t action;
526 	sigset_t *mask;
527 	int code;
528 {
529 	struct ktr_request *req;
530 	struct ktr_psig	*kp;
531 
532 	req = ktr_getrequest(KTR_PSIG);
533 	if (req == NULL)
534 		return;
535 	kp = &req->ktr_data.ktr_psig;
536 	kp->signo = (char)sig;
537 	kp->action = action;
538 	kp->mask = *mask;
539 	kp->code = code;
540 	ktr_enqueuerequest(curthread, req);
541 }
542 
543 void
544 ktrcsw(out, user)
545 	int out, user;
546 {
547 	struct ktr_request *req;
548 	struct ktr_csw *kc;
549 
550 	req = ktr_getrequest(KTR_CSW);
551 	if (req == NULL)
552 		return;
553 	kc = &req->ktr_data.ktr_csw;
554 	kc->out = out;
555 	kc->user = user;
556 	ktr_enqueuerequest(curthread, req);
557 }
558 
559 void
560 ktrstruct(name, namelen, data, datalen)
561 	const char *name;
562 	size_t namelen;
563 	void *data;
564 	size_t datalen;
565 {
566 	struct ktr_request *req;
567 	char *buf = NULL;
568 	size_t buflen;
569 
570 	if (!data)
571 		datalen = 0;
572 	buflen = namelen + 1 + datalen;
573 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
574 	bcopy(name, buf, namelen);
575 	buf[namelen] = '\0';
576 	bcopy(data, buf + namelen + 1, datalen);
577 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
578 		free(buf, M_KTRACE);
579 		return;
580 	}
581 	req->ktr_buffer = buf;
582 	req->ktr_header.ktr_len = buflen;
583 	ktr_submitrequest(curthread, req);
584 }
585 #endif /* KTRACE */
586 
587 /* Interface and common routines */
588 
589 #ifndef _SYS_SYSPROTO_H_
590 struct ktrace_args {
591 	char	*fname;
592 	int	ops;
593 	int	facs;
594 	int	pid;
595 };
596 #endif
597 /* ARGSUSED */
598 int
599 ktrace(td, uap)
600 	struct thread *td;
601 	register struct ktrace_args *uap;
602 {
603 #ifdef KTRACE
604 	register struct vnode *vp = NULL;
605 	register struct proc *p;
606 	struct pgrp *pg;
607 	int facs = uap->facs & ~KTRFAC_ROOT;
608 	int ops = KTROP(uap->ops);
609 	int descend = uap->ops & KTRFLAG_DESCEND;
610 	int nfound, ret = 0;
611 	int flags, error = 0, vfslocked;
612 	struct nameidata nd;
613 	struct ucred *cred;
614 
615 	/*
616 	 * Need something to (un)trace.
617 	 */
618 	if (ops != KTROP_CLEARFILE && facs == 0)
619 		return (EINVAL);
620 
621 	ktrace_enter(td);
622 	if (ops != KTROP_CLEAR) {
623 		/*
624 		 * an operation which requires a file argument.
625 		 */
626 		NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
627 		    uap->fname, td);
628 		flags = FREAD | FWRITE | O_NOFOLLOW;
629 		error = vn_open(&nd, &flags, 0, NULL);
630 		if (error) {
631 			ktrace_exit(td);
632 			return (error);
633 		}
634 		vfslocked = NDHASGIANT(&nd);
635 		NDFREE(&nd, NDF_ONLY_PNBUF);
636 		vp = nd.ni_vp;
637 		VOP_UNLOCK(vp, 0);
638 		if (vp->v_type != VREG) {
639 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
640 			VFS_UNLOCK_GIANT(vfslocked);
641 			ktrace_exit(td);
642 			return (EACCES);
643 		}
644 		VFS_UNLOCK_GIANT(vfslocked);
645 	}
646 	/*
647 	 * Clear all uses of the tracefile.
648 	 */
649 	if (ops == KTROP_CLEARFILE) {
650 		int vrele_count;
651 
652 		vrele_count = 0;
653 		sx_slock(&allproc_lock);
654 		FOREACH_PROC_IN_SYSTEM(p) {
655 			PROC_LOCK(p);
656 			if (p->p_tracevp == vp) {
657 				if (ktrcanset(td, p)) {
658 					mtx_lock(&ktrace_mtx);
659 					cred = p->p_tracecred;
660 					p->p_tracecred = NULL;
661 					p->p_tracevp = NULL;
662 					p->p_traceflag = 0;
663 					mtx_unlock(&ktrace_mtx);
664 					vrele_count++;
665 					crfree(cred);
666 				} else
667 					error = EPERM;
668 			}
669 			PROC_UNLOCK(p);
670 		}
671 		sx_sunlock(&allproc_lock);
672 		if (vrele_count > 0) {
673 			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
674 			while (vrele_count-- > 0)
675 				vrele(vp);
676 			VFS_UNLOCK_GIANT(vfslocked);
677 		}
678 		goto done;
679 	}
680 	/*
681 	 * do it
682 	 */
683 	sx_slock(&proctree_lock);
684 	if (uap->pid < 0) {
685 		/*
686 		 * by process group
687 		 */
688 		pg = pgfind(-uap->pid);
689 		if (pg == NULL) {
690 			sx_sunlock(&proctree_lock);
691 			error = ESRCH;
692 			goto done;
693 		}
694 		/*
695 		 * ktrops() may call vrele(). Lock pg_members
696 		 * by the proctree_lock rather than pg_mtx.
697 		 */
698 		PGRP_UNLOCK(pg);
699 		nfound = 0;
700 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
701 			PROC_LOCK(p);
702 			if (p_cansee(td, p) != 0) {
703 				PROC_UNLOCK(p);
704 				continue;
705 			}
706 			PROC_UNLOCK(p);
707 			nfound++;
708 			if (descend)
709 				ret |= ktrsetchildren(td, p, ops, facs, vp);
710 			else
711 				ret |= ktrops(td, p, ops, facs, vp);
712 		}
713 		if (nfound == 0) {
714 			sx_sunlock(&proctree_lock);
715 			error = ESRCH;
716 			goto done;
717 		}
718 	} else {
719 		/*
720 		 * by pid
721 		 */
722 		p = pfind(uap->pid);
723 		if (p == NULL) {
724 			sx_sunlock(&proctree_lock);
725 			error = ESRCH;
726 			goto done;
727 		}
728 		error = p_cansee(td, p);
729 		/*
730 		 * The slock of the proctree lock will keep this process
731 		 * from going away, so unlocking the proc here is ok.
732 		 */
733 		PROC_UNLOCK(p);
734 		if (error) {
735 			sx_sunlock(&proctree_lock);
736 			goto done;
737 		}
738 		if (descend)
739 			ret |= ktrsetchildren(td, p, ops, facs, vp);
740 		else
741 			ret |= ktrops(td, p, ops, facs, vp);
742 	}
743 	sx_sunlock(&proctree_lock);
744 	if (!ret)
745 		error = EPERM;
746 done:
747 	if (vp != NULL) {
748 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
749 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
750 		VFS_UNLOCK_GIANT(vfslocked);
751 	}
752 	ktrace_exit(td);
753 	return (error);
754 #else /* !KTRACE */
755 	return (ENOSYS);
756 #endif /* KTRACE */
757 }
758 
759 /* ARGSUSED */
760 int
761 utrace(td, uap)
762 	struct thread *td;
763 	register struct utrace_args *uap;
764 {
765 
766 #ifdef KTRACE
767 	struct ktr_request *req;
768 	void *cp;
769 	int error;
770 
771 	if (!KTRPOINT(td, KTR_USER))
772 		return (0);
773 	if (uap->len > KTR_USER_MAXLEN)
774 		return (EINVAL);
775 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
776 	error = copyin(uap->addr, cp, uap->len);
777 	if (error) {
778 		free(cp, M_KTRACE);
779 		return (error);
780 	}
781 	req = ktr_getrequest(KTR_USER);
782 	if (req == NULL) {
783 		free(cp, M_KTRACE);
784 		return (ENOMEM);
785 	}
786 	req->ktr_buffer = cp;
787 	req->ktr_header.ktr_len = uap->len;
788 	ktr_submitrequest(td, req);
789 	return (0);
790 #else /* !KTRACE */
791 	return (ENOSYS);
792 #endif /* KTRACE */
793 }
794 
795 #ifdef KTRACE
796 static int
797 ktrops(td, p, ops, facs, vp)
798 	struct thread *td;
799 	struct proc *p;
800 	int ops, facs;
801 	struct vnode *vp;
802 {
803 	struct vnode *tracevp = NULL;
804 	struct ucred *tracecred = NULL;
805 
806 	PROC_LOCK(p);
807 	if (!ktrcanset(td, p)) {
808 		PROC_UNLOCK(p);
809 		return (0);
810 	}
811 	mtx_lock(&ktrace_mtx);
812 	if (ops == KTROP_SET) {
813 		if (p->p_tracevp != vp) {
814 			/*
815 			 * if trace file already in use, relinquish below
816 			 */
817 			tracevp = p->p_tracevp;
818 			VREF(vp);
819 			p->p_tracevp = vp;
820 		}
821 		if (p->p_tracecred != td->td_ucred) {
822 			tracecred = p->p_tracecred;
823 			p->p_tracecred = crhold(td->td_ucred);
824 		}
825 		p->p_traceflag |= facs;
826 		if (priv_check(td, PRIV_KTRACE) == 0)
827 			p->p_traceflag |= KTRFAC_ROOT;
828 	} else {
829 		/* KTROP_CLEAR */
830 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
831 			/* no more tracing */
832 			p->p_traceflag = 0;
833 			tracevp = p->p_tracevp;
834 			p->p_tracevp = NULL;
835 			tracecred = p->p_tracecred;
836 			p->p_tracecred = NULL;
837 		}
838 	}
839 	mtx_unlock(&ktrace_mtx);
840 	PROC_UNLOCK(p);
841 	if (tracevp != NULL) {
842 		int vfslocked;
843 
844 		vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
845 		vrele(tracevp);
846 		VFS_UNLOCK_GIANT(vfslocked);
847 	}
848 	if (tracecred != NULL)
849 		crfree(tracecred);
850 
851 	return (1);
852 }
853 
854 static int
855 ktrsetchildren(td, top, ops, facs, vp)
856 	struct thread *td;
857 	struct proc *top;
858 	int ops, facs;
859 	struct vnode *vp;
860 {
861 	register struct proc *p;
862 	register int ret = 0;
863 
864 	p = top;
865 	sx_assert(&proctree_lock, SX_LOCKED);
866 	for (;;) {
867 		ret |= ktrops(td, p, ops, facs, vp);
868 		/*
869 		 * If this process has children, descend to them next,
870 		 * otherwise do any siblings, and if done with this level,
871 		 * follow back up the tree (but not past top).
872 		 */
873 		if (!LIST_EMPTY(&p->p_children))
874 			p = LIST_FIRST(&p->p_children);
875 		else for (;;) {
876 			if (p == top)
877 				return (ret);
878 			if (LIST_NEXT(p, p_sibling)) {
879 				p = LIST_NEXT(p, p_sibling);
880 				break;
881 			}
882 			p = p->p_pptr;
883 		}
884 	}
885 	/*NOTREACHED*/
886 }
887 
888 static void
889 ktr_writerequest(struct thread *td, struct ktr_request *req)
890 {
891 	struct ktr_header *kth;
892 	struct vnode *vp;
893 	struct proc *p;
894 	struct ucred *cred;
895 	struct uio auio;
896 	struct iovec aiov[3];
897 	struct mount *mp;
898 	int datalen, buflen, vrele_count;
899 	int error, vfslocked;
900 
901 	/*
902 	 * We hold the vnode and credential for use in I/O in case ktrace is
903 	 * disabled on the process as we write out the request.
904 	 *
905 	 * XXXRW: This is not ideal: we could end up performing a write after
906 	 * the vnode has been closed.
907 	 */
908 	mtx_lock(&ktrace_mtx);
909 	vp = td->td_proc->p_tracevp;
910 	cred = td->td_proc->p_tracecred;
911 
912 	/*
913 	 * If vp is NULL, the vp has been cleared out from under this
914 	 * request, so just drop it.  Make sure the credential and vnode are
915 	 * in sync: we should have both or neither.
916 	 */
917 	if (vp == NULL) {
918 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
919 		mtx_unlock(&ktrace_mtx);
920 		return;
921 	}
922 	VREF(vp);
923 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
924 	crhold(cred);
925 	mtx_unlock(&ktrace_mtx);
926 
927 	kth = &req->ktr_header;
928 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
929 	buflen = kth->ktr_len;
930 	auio.uio_iov = &aiov[0];
931 	auio.uio_offset = 0;
932 	auio.uio_segflg = UIO_SYSSPACE;
933 	auio.uio_rw = UIO_WRITE;
934 	aiov[0].iov_base = (caddr_t)kth;
935 	aiov[0].iov_len = sizeof(struct ktr_header);
936 	auio.uio_resid = sizeof(struct ktr_header);
937 	auio.uio_iovcnt = 1;
938 	auio.uio_td = td;
939 	if (datalen != 0) {
940 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
941 		aiov[1].iov_len = datalen;
942 		auio.uio_resid += datalen;
943 		auio.uio_iovcnt++;
944 		kth->ktr_len += datalen;
945 	}
946 	if (buflen != 0) {
947 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
948 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
949 		aiov[auio.uio_iovcnt].iov_len = buflen;
950 		auio.uio_resid += buflen;
951 		auio.uio_iovcnt++;
952 	}
953 
954 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
955 	vn_start_write(vp, &mp, V_WAIT);
956 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
957 	(void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
958 #ifdef MAC
959 	error = mac_vnode_check_write(cred, NOCRED, vp);
960 	if (error == 0)
961 #endif
962 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
963 	VOP_UNLOCK(vp, 0);
964 	vn_finished_write(mp);
965 	crfree(cred);
966 	if (!error) {
967 		vrele(vp);
968 		VFS_UNLOCK_GIANT(vfslocked);
969 		return;
970 	}
971 	VFS_UNLOCK_GIANT(vfslocked);
972 
973 	/*
974 	 * If error encountered, give up tracing on this vnode.  We defer
975 	 * all the vrele()'s on the vnode until after we are finished walking
976 	 * the various lists to avoid needlessly holding locks.
977 	 * NB: at this point we still hold the vnode reference that must
978 	 * not go away as we need the valid vnode to compare with. Thus let
979 	 * vrele_count start at 1 and the reference will be freed
980 	 * by the loop at the end after our last use of vp.
981 	 */
982 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
983 	    error);
984 	vrele_count = 1;
985 	/*
986 	 * First, clear this vnode from being used by any processes in the
987 	 * system.
988 	 * XXX - If one process gets an EPERM writing to the vnode, should
989 	 * we really do this?  Other processes might have suitable
990 	 * credentials for the operation.
991 	 */
992 	cred = NULL;
993 	sx_slock(&allproc_lock);
994 	FOREACH_PROC_IN_SYSTEM(p) {
995 		PROC_LOCK(p);
996 		if (p->p_tracevp == vp) {
997 			mtx_lock(&ktrace_mtx);
998 			p->p_tracevp = NULL;
999 			p->p_traceflag = 0;
1000 			cred = p->p_tracecred;
1001 			p->p_tracecred = NULL;
1002 			mtx_unlock(&ktrace_mtx);
1003 			vrele_count++;
1004 		}
1005 		PROC_UNLOCK(p);
1006 		if (cred != NULL) {
1007 			crfree(cred);
1008 			cred = NULL;
1009 		}
1010 	}
1011 	sx_sunlock(&allproc_lock);
1012 
1013 	/*
1014 	 * We can't clear any pending requests in threads that have cached
1015 	 * them but not yet committed them, as those are per-thread.  The
1016 	 * thread will have to clear it itself on system call return.
1017 	 */
1018 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1019 	while (vrele_count-- > 0)
1020 		vrele(vp);
1021 	VFS_UNLOCK_GIANT(vfslocked);
1022 }
1023 
1024 /*
1025  * Return true if caller has permission to set the ktracing state
1026  * of target.  Essentially, the target can't possess any
1027  * more permissions than the caller.  KTRFAC_ROOT signifies that
1028  * root previously set the tracing status on the target process, and
1029  * so, only root may further change it.
1030  */
1031 static int
1032 ktrcanset(td, targetp)
1033 	struct thread *td;
1034 	struct proc *targetp;
1035 {
1036 
1037 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1038 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1039 	    priv_check(td, PRIV_KTRACE))
1040 		return (0);
1041 
1042 	if (p_candebug(td, targetp) != 0)
1043 		return (0);
1044 
1045 	return (1);
1046 }
1047 
1048 #endif /* KTRACE */
1049