xref: /freebsd/sys/kern/kern_ktrace.c (revision 6f9c8e5b074419423648ffb89b83fd2f257e90b7)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/fcntl.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/namei.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/unistd.h>
52 #include <sys/vnode.h>
53 #include <sys/socket.h>
54 #include <sys/stat.h>
55 #include <sys/ktrace.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysent.h>
59 #include <sys/syslog.h>
60 #include <sys/sysproto.h>
61 
62 #include <security/mac/mac_framework.h>
63 
64 /*
65  * The ktrace facility allows the tracing of certain key events in user space
66  * processes, such as system calls, signal delivery, context switches, and
67  * user generated events using utrace(2).  It works by streaming event
68  * records and data to a vnode associated with the process using the
69  * ktrace(2) system call.  In general, records can be written directly from
70  * the context that generates the event.  One important exception to this is
71  * during a context switch, where sleeping is not permitted.  To handle this
72  * case, trace events are generated using in-kernel ktr_request records, and
73  * then delivered to disk at a convenient moment -- either immediately, the
74  * next traceable event, at system call return, or at process exit.
75  *
76  * When dealing with multiple threads or processes writing to the same event
77  * log, ordering guarantees are weak: specifically, if an event has multiple
78  * records (i.e., system call enter and return), they may be interlaced with
79  * records from another event.  Process and thread ID information is provided
80  * in the record, and user applications can de-interlace events if required.
81  */
82 
83 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84 
85 #ifdef KTRACE
86 
87 FEATURE(ktrace, "Kernel support for system-call tracing");
88 
89 #ifndef KTRACE_REQUEST_POOL
90 #define	KTRACE_REQUEST_POOL	100
91 #endif
92 
93 struct ktr_request {
94 	struct	ktr_header ktr_header;
95 	void	*ktr_buffer;
96 	union {
97 		struct	ktr_proc_ctor ktr_proc_ctor;
98 		struct	ktr_syscall ktr_syscall;
99 		struct	ktr_sysret ktr_sysret;
100 		struct	ktr_genio ktr_genio;
101 		struct	ktr_psig ktr_psig;
102 		struct	ktr_csw ktr_csw;
103 	} ktr_data;
104 	STAILQ_ENTRY(ktr_request) ktr_list;
105 };
106 
107 static int data_lengths[] = {
108 	0,					/* none */
109 	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
110 	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
111 	0,					/* KTR_NAMEI */
112 	sizeof(struct ktr_genio),		/* KTR_GENIO */
113 	sizeof(struct ktr_psig),		/* KTR_PSIG */
114 	sizeof(struct ktr_csw),			/* KTR_CSW */
115 	0,					/* KTR_USER */
116 	0,					/* KTR_STRUCT */
117 	0,					/* KTR_SYSCTL */
118 	sizeof(struct ktr_proc_ctor),		/* KTR_PROCCTOR */
119 	0,					/* KTR_PROCDTOR */
120 };
121 
122 static STAILQ_HEAD(, ktr_request) ktr_free;
123 
124 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
125 
126 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
127 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
128 
129 static u_int ktr_geniosize = PAGE_SIZE;
130 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
131 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
132     0, "Maximum size of genio event payload");
133 
134 static int print_message = 1;
135 static struct mtx ktrace_mtx;
136 static struct sx ktrace_sx;
137 
138 static void ktrace_init(void *dummy);
139 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
140 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
141 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
142 static struct ktr_request *ktr_getrequest(int type);
143 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
144 static void ktr_freeproc(struct proc *p, struct ucred **uc,
145     struct vnode **vp);
146 static void ktr_freerequest(struct ktr_request *req);
147 static void ktr_freerequest_locked(struct ktr_request *req);
148 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
149 static int ktrcanset(struct thread *,struct proc *);
150 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
151 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
152 static void ktrprocctor_entered(struct thread *, struct proc *);
153 
154 /*
155  * ktrace itself generates events, such as context switches, which we do not
156  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
157  * whether or not it is in a region where tracing of events should be
158  * suppressed.
159  */
160 static void
161 ktrace_enter(struct thread *td)
162 {
163 
164 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
165 	td->td_pflags |= TDP_INKTRACE;
166 }
167 
168 static void
169 ktrace_exit(struct thread *td)
170 {
171 
172 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
173 	td->td_pflags &= ~TDP_INKTRACE;
174 }
175 
176 static void
177 ktrace_assert(struct thread *td)
178 {
179 
180 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
181 }
182 
183 static void
184 ktrace_init(void *dummy)
185 {
186 	struct ktr_request *req;
187 	int i;
188 
189 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
190 	sx_init(&ktrace_sx, "ktrace_sx");
191 	STAILQ_INIT(&ktr_free);
192 	for (i = 0; i < ktr_requestpool; i++) {
193 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
194 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
195 	}
196 }
197 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
198 
199 static int
200 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
201 {
202 	struct thread *td;
203 	u_int newsize, oldsize, wantsize;
204 	int error;
205 
206 	/* Handle easy read-only case first to avoid warnings from GCC. */
207 	if (!req->newptr) {
208 		oldsize = ktr_requestpool;
209 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
210 	}
211 
212 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
213 	if (error)
214 		return (error);
215 	td = curthread;
216 	ktrace_enter(td);
217 	oldsize = ktr_requestpool;
218 	newsize = ktrace_resize_pool(oldsize, wantsize);
219 	ktrace_exit(td);
220 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
221 	if (error)
222 		return (error);
223 	if (wantsize > oldsize && newsize < wantsize)
224 		return (ENOSPC);
225 	return (0);
226 }
227 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
228     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
229     "Pool buffer size for ktrace(1)");
230 
231 static u_int
232 ktrace_resize_pool(u_int oldsize, u_int newsize)
233 {
234 	STAILQ_HEAD(, ktr_request) ktr_new;
235 	struct ktr_request *req;
236 	int bound;
237 
238 	print_message = 1;
239 	bound = newsize - oldsize;
240 	if (bound == 0)
241 		return (ktr_requestpool);
242 	if (bound < 0) {
243 		mtx_lock(&ktrace_mtx);
244 		/* Shrink pool down to newsize if possible. */
245 		while (bound++ < 0) {
246 			req = STAILQ_FIRST(&ktr_free);
247 			if (req == NULL)
248 				break;
249 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
250 			ktr_requestpool--;
251 			free(req, M_KTRACE);
252 		}
253 	} else {
254 		/* Grow pool up to newsize. */
255 		STAILQ_INIT(&ktr_new);
256 		while (bound-- > 0) {
257 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
258 			    M_WAITOK);
259 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
260 		}
261 		mtx_lock(&ktrace_mtx);
262 		STAILQ_CONCAT(&ktr_free, &ktr_new);
263 		ktr_requestpool += (newsize - oldsize);
264 	}
265 	mtx_unlock(&ktrace_mtx);
266 	return (ktr_requestpool);
267 }
268 
269 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
270 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
271     (sizeof((struct thread *)NULL)->td_name));
272 
273 static struct ktr_request *
274 ktr_getrequest_entered(struct thread *td, int type)
275 {
276 	struct ktr_request *req;
277 	struct proc *p = td->td_proc;
278 	int pm;
279 
280 	mtx_lock(&ktrace_mtx);
281 	if (!KTRCHECK(td, type)) {
282 		mtx_unlock(&ktrace_mtx);
283 		return (NULL);
284 	}
285 	req = STAILQ_FIRST(&ktr_free);
286 	if (req != NULL) {
287 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
288 		req->ktr_header.ktr_type = type;
289 		if (p->p_traceflag & KTRFAC_DROP) {
290 			req->ktr_header.ktr_type |= KTR_DROP;
291 			p->p_traceflag &= ~KTRFAC_DROP;
292 		}
293 		mtx_unlock(&ktrace_mtx);
294 		microtime(&req->ktr_header.ktr_time);
295 		req->ktr_header.ktr_pid = p->p_pid;
296 		req->ktr_header.ktr_tid = td->td_tid;
297 		bcopy(td->td_name, req->ktr_header.ktr_comm,
298 		    sizeof(req->ktr_header.ktr_comm));
299 		req->ktr_buffer = NULL;
300 		req->ktr_header.ktr_len = 0;
301 	} else {
302 		p->p_traceflag |= KTRFAC_DROP;
303 		pm = print_message;
304 		print_message = 0;
305 		mtx_unlock(&ktrace_mtx);
306 		if (pm)
307 			printf("Out of ktrace request objects.\n");
308 	}
309 	return (req);
310 }
311 
312 static struct ktr_request *
313 ktr_getrequest(int type)
314 {
315 	struct thread *td = curthread;
316 	struct ktr_request *req;
317 
318 	ktrace_enter(td);
319 	req = ktr_getrequest_entered(td, type);
320 	if (req == NULL)
321 		ktrace_exit(td);
322 
323 	return (req);
324 }
325 
326 /*
327  * Some trace generation environments don't permit direct access to VFS,
328  * such as during a context switch where sleeping is not allowed.  Under these
329  * circumstances, queue a request to the thread to be written asynchronously
330  * later.
331  */
332 static void
333 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
334 {
335 
336 	mtx_lock(&ktrace_mtx);
337 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
338 	mtx_unlock(&ktrace_mtx);
339 }
340 
341 /*
342  * Drain any pending ktrace records from the per-thread queue to disk.  This
343  * is used both internally before committing other records, and also on
344  * system call return.  We drain all the ones we can find at the time when
345  * drain is requested, but don't keep draining after that as those events
346  * may be approximately "after" the current event.
347  */
348 static void
349 ktr_drain(struct thread *td)
350 {
351 	struct ktr_request *queued_req;
352 	STAILQ_HEAD(, ktr_request) local_queue;
353 
354 	ktrace_assert(td);
355 	sx_assert(&ktrace_sx, SX_XLOCKED);
356 
357 	STAILQ_INIT(&local_queue);
358 
359 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
360 		mtx_lock(&ktrace_mtx);
361 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
362 		mtx_unlock(&ktrace_mtx);
363 
364 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
365 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
366 			ktr_writerequest(td, queued_req);
367 			ktr_freerequest(queued_req);
368 		}
369 	}
370 }
371 
372 /*
373  * Submit a trace record for immediate commit to disk -- to be used only
374  * where entering VFS is OK.  First drain any pending records that may have
375  * been cached in the thread.
376  */
377 static void
378 ktr_submitrequest(struct thread *td, struct ktr_request *req)
379 {
380 
381 	ktrace_assert(td);
382 
383 	sx_xlock(&ktrace_sx);
384 	ktr_drain(td);
385 	ktr_writerequest(td, req);
386 	ktr_freerequest(req);
387 	sx_xunlock(&ktrace_sx);
388 	ktrace_exit(td);
389 }
390 
391 static void
392 ktr_freerequest(struct ktr_request *req)
393 {
394 
395 	mtx_lock(&ktrace_mtx);
396 	ktr_freerequest_locked(req);
397 	mtx_unlock(&ktrace_mtx);
398 }
399 
400 static void
401 ktr_freerequest_locked(struct ktr_request *req)
402 {
403 
404 	mtx_assert(&ktrace_mtx, MA_OWNED);
405 	if (req->ktr_buffer != NULL)
406 		free(req->ktr_buffer, M_KTRACE);
407 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
408 }
409 
410 /*
411  * Disable tracing for a process and release all associated resources.
412  * The caller is responsible for releasing a reference on the returned
413  * vnode and credentials.
414  */
415 static void
416 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
417 {
418 	struct ktr_request *req;
419 
420 	PROC_LOCK_ASSERT(p, MA_OWNED);
421 	mtx_assert(&ktrace_mtx, MA_OWNED);
422 	*uc = p->p_tracecred;
423 	p->p_tracecred = NULL;
424 	if (vp != NULL)
425 		*vp = p->p_tracevp;
426 	p->p_tracevp = NULL;
427 	p->p_traceflag = 0;
428 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
429 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
430 		ktr_freerequest_locked(req);
431 	}
432 }
433 
434 void
435 ktrsyscall(code, narg, args)
436 	int code, narg;
437 	register_t args[];
438 {
439 	struct ktr_request *req;
440 	struct ktr_syscall *ktp;
441 	size_t buflen;
442 	char *buf = NULL;
443 
444 	buflen = sizeof(register_t) * narg;
445 	if (buflen > 0) {
446 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
447 		bcopy(args, buf, buflen);
448 	}
449 	req = ktr_getrequest(KTR_SYSCALL);
450 	if (req == NULL) {
451 		if (buf != NULL)
452 			free(buf, M_KTRACE);
453 		return;
454 	}
455 	ktp = &req->ktr_data.ktr_syscall;
456 	ktp->ktr_code = code;
457 	ktp->ktr_narg = narg;
458 	if (buflen > 0) {
459 		req->ktr_header.ktr_len = buflen;
460 		req->ktr_buffer = buf;
461 	}
462 	ktr_submitrequest(curthread, req);
463 }
464 
465 void
466 ktrsysret(code, error, retval)
467 	int code, error;
468 	register_t retval;
469 {
470 	struct ktr_request *req;
471 	struct ktr_sysret *ktp;
472 
473 	req = ktr_getrequest(KTR_SYSRET);
474 	if (req == NULL)
475 		return;
476 	ktp = &req->ktr_data.ktr_sysret;
477 	ktp->ktr_code = code;
478 	ktp->ktr_error = error;
479 	ktp->ktr_retval = retval;		/* what about val2 ? */
480 	ktr_submitrequest(curthread, req);
481 }
482 
483 /*
484  * When a setuid process execs, disable tracing.
485  *
486  * XXX: We toss any pending asynchronous records.
487  */
488 void
489 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
490 {
491 
492 	PROC_LOCK_ASSERT(p, MA_OWNED);
493 	mtx_lock(&ktrace_mtx);
494 	ktr_freeproc(p, uc, vp);
495 	mtx_unlock(&ktrace_mtx);
496 }
497 
498 /*
499  * When a process exits, drain per-process asynchronous trace records
500  * and disable tracing.
501  */
502 void
503 ktrprocexit(struct thread *td)
504 {
505 	struct ktr_request *req;
506 	struct proc *p;
507 	struct ucred *cred;
508 	struct vnode *vp;
509 	int vfslocked;
510 
511 	p = td->td_proc;
512 	if (p->p_traceflag == 0)
513 		return;
514 
515 	ktrace_enter(td);
516 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
517 	if (req != NULL)
518 		ktr_enqueuerequest(td, req);
519 	sx_xlock(&ktrace_sx);
520 	ktr_drain(td);
521 	sx_xunlock(&ktrace_sx);
522 	PROC_LOCK(p);
523 	mtx_lock(&ktrace_mtx);
524 	ktr_freeproc(p, &cred, &vp);
525 	mtx_unlock(&ktrace_mtx);
526 	PROC_UNLOCK(p);
527 	if (vp != NULL) {
528 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
529 		vrele(vp);
530 		VFS_UNLOCK_GIANT(vfslocked);
531 	}
532 	if (cred != NULL)
533 		crfree(cred);
534 	ktrace_exit(td);
535 }
536 
537 static void
538 ktrprocctor_entered(struct thread *td, struct proc *p)
539 {
540 	struct ktr_proc_ctor *ktp;
541 	struct ktr_request *req;
542 	struct thread *td2;
543 
544 	ktrace_assert(td);
545 	td2 = FIRST_THREAD_IN_PROC(p);
546 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
547 	if (req == NULL)
548 		return;
549 	ktp = &req->ktr_data.ktr_proc_ctor;
550 	ktp->sv_flags = p->p_sysent->sv_flags;
551 	ktr_enqueuerequest(td2, req);
552 }
553 
554 void
555 ktrprocctor(struct proc *p)
556 {
557 	struct thread *td = curthread;
558 
559 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
560 		return;
561 
562 	ktrace_enter(td);
563 	ktrprocctor_entered(td, p);
564 	ktrace_exit(td);
565 }
566 
567 /*
568  * When a process forks, enable tracing in the new process if needed.
569  */
570 void
571 ktrprocfork(struct proc *p1, struct proc *p2)
572 {
573 
574 	PROC_LOCK(p1);
575 	mtx_lock(&ktrace_mtx);
576 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
577 	if (p1->p_traceflag & KTRFAC_INHERIT) {
578 		p2->p_traceflag = p1->p_traceflag;
579 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
580 			VREF(p2->p_tracevp);
581 			KASSERT(p1->p_tracecred != NULL,
582 			    ("ktrace vnode with no cred"));
583 			p2->p_tracecred = crhold(p1->p_tracecred);
584 		}
585 	}
586 	mtx_unlock(&ktrace_mtx);
587 	PROC_UNLOCK(p1);
588 
589 	ktrprocctor(p2);
590 }
591 
592 /*
593  * When a thread returns, drain any asynchronous records generated by the
594  * system call.
595  */
596 void
597 ktruserret(struct thread *td)
598 {
599 
600 	ktrace_enter(td);
601 	sx_xlock(&ktrace_sx);
602 	ktr_drain(td);
603 	sx_xunlock(&ktrace_sx);
604 	ktrace_exit(td);
605 }
606 
607 void
608 ktrnamei(path)
609 	char *path;
610 {
611 	struct ktr_request *req;
612 	int namelen;
613 	char *buf = NULL;
614 
615 	namelen = strlen(path);
616 	if (namelen > 0) {
617 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
618 		bcopy(path, buf, namelen);
619 	}
620 	req = ktr_getrequest(KTR_NAMEI);
621 	if (req == NULL) {
622 		if (buf != NULL)
623 			free(buf, M_KTRACE);
624 		return;
625 	}
626 	if (namelen > 0) {
627 		req->ktr_header.ktr_len = namelen;
628 		req->ktr_buffer = buf;
629 	}
630 	ktr_submitrequest(curthread, req);
631 }
632 
633 void
634 ktrsysctl(name, namelen)
635 	int *name;
636 	u_int namelen;
637 {
638 	struct ktr_request *req;
639 	u_int mib[CTL_MAXNAME + 2];
640 	char *mibname;
641 	size_t mibnamelen;
642 	int error;
643 
644 	/* Lookup name of mib. */
645 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
646 	mib[0] = 0;
647 	mib[1] = 1;
648 	bcopy(name, mib + 2, namelen * sizeof(*name));
649 	mibnamelen = 128;
650 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
651 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
652 	    NULL, 0, &mibnamelen, 0);
653 	if (error) {
654 		free(mibname, M_KTRACE);
655 		return;
656 	}
657 	req = ktr_getrequest(KTR_SYSCTL);
658 	if (req == NULL) {
659 		free(mibname, M_KTRACE);
660 		return;
661 	}
662 	req->ktr_header.ktr_len = mibnamelen;
663 	req->ktr_buffer = mibname;
664 	ktr_submitrequest(curthread, req);
665 }
666 
667 void
668 ktrgenio(fd, rw, uio, error)
669 	int fd;
670 	enum uio_rw rw;
671 	struct uio *uio;
672 	int error;
673 {
674 	struct ktr_request *req;
675 	struct ktr_genio *ktg;
676 	int datalen;
677 	char *buf;
678 
679 	if (error) {
680 		free(uio, M_IOV);
681 		return;
682 	}
683 	uio->uio_offset = 0;
684 	uio->uio_rw = UIO_WRITE;
685 	datalen = imin(uio->uio_resid, ktr_geniosize);
686 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
687 	error = uiomove(buf, datalen, uio);
688 	free(uio, M_IOV);
689 	if (error) {
690 		free(buf, M_KTRACE);
691 		return;
692 	}
693 	req = ktr_getrequest(KTR_GENIO);
694 	if (req == NULL) {
695 		free(buf, M_KTRACE);
696 		return;
697 	}
698 	ktg = &req->ktr_data.ktr_genio;
699 	ktg->ktr_fd = fd;
700 	ktg->ktr_rw = rw;
701 	req->ktr_header.ktr_len = datalen;
702 	req->ktr_buffer = buf;
703 	ktr_submitrequest(curthread, req);
704 }
705 
706 void
707 ktrpsig(sig, action, mask, code)
708 	int sig;
709 	sig_t action;
710 	sigset_t *mask;
711 	int code;
712 {
713 	struct thread *td = curthread;
714 	struct ktr_request *req;
715 	struct ktr_psig	*kp;
716 
717 	req = ktr_getrequest(KTR_PSIG);
718 	if (req == NULL)
719 		return;
720 	kp = &req->ktr_data.ktr_psig;
721 	kp->signo = (char)sig;
722 	kp->action = action;
723 	kp->mask = *mask;
724 	kp->code = code;
725 	ktr_enqueuerequest(td, req);
726 	ktrace_exit(td);
727 }
728 
729 void
730 ktrcsw(out, user)
731 	int out, user;
732 {
733 	struct thread *td = curthread;
734 	struct ktr_request *req;
735 	struct ktr_csw *kc;
736 
737 	req = ktr_getrequest(KTR_CSW);
738 	if (req == NULL)
739 		return;
740 	kc = &req->ktr_data.ktr_csw;
741 	kc->out = out;
742 	kc->user = user;
743 	ktr_enqueuerequest(td, req);
744 	ktrace_exit(td);
745 }
746 
747 void
748 ktrstruct(name, data, datalen)
749 	const char *name;
750 	void *data;
751 	size_t datalen;
752 {
753 	struct ktr_request *req;
754 	char *buf = NULL;
755 	size_t buflen;
756 
757 	if (!data)
758 		datalen = 0;
759 	buflen = strlen(name) + 1 + datalen;
760 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
761 	strcpy(buf, name);
762 	bcopy(data, buf + strlen(name) + 1, datalen);
763 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
764 		free(buf, M_KTRACE);
765 		return;
766 	}
767 	req->ktr_buffer = buf;
768 	req->ktr_header.ktr_len = buflen;
769 	ktr_submitrequest(curthread, req);
770 }
771 #endif /* KTRACE */
772 
773 /* Interface and common routines */
774 
775 #ifndef _SYS_SYSPROTO_H_
776 struct ktrace_args {
777 	char	*fname;
778 	int	ops;
779 	int	facs;
780 	int	pid;
781 };
782 #endif
783 /* ARGSUSED */
784 int
785 ktrace(td, uap)
786 	struct thread *td;
787 	register struct ktrace_args *uap;
788 {
789 #ifdef KTRACE
790 	register struct vnode *vp = NULL;
791 	register struct proc *p;
792 	struct pgrp *pg;
793 	int facs = uap->facs & ~KTRFAC_ROOT;
794 	int ops = KTROP(uap->ops);
795 	int descend = uap->ops & KTRFLAG_DESCEND;
796 	int nfound, ret = 0;
797 	int flags, error = 0, vfslocked;
798 	struct nameidata nd;
799 	struct ucred *cred;
800 
801 	/*
802 	 * Need something to (un)trace.
803 	 */
804 	if (ops != KTROP_CLEARFILE && facs == 0)
805 		return (EINVAL);
806 
807 	ktrace_enter(td);
808 	if (ops != KTROP_CLEAR) {
809 		/*
810 		 * an operation which requires a file argument.
811 		 */
812 		NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
813 		    uap->fname, td);
814 		flags = FREAD | FWRITE | O_NOFOLLOW;
815 		error = vn_open(&nd, &flags, 0, NULL);
816 		if (error) {
817 			ktrace_exit(td);
818 			return (error);
819 		}
820 		vfslocked = NDHASGIANT(&nd);
821 		NDFREE(&nd, NDF_ONLY_PNBUF);
822 		vp = nd.ni_vp;
823 		VOP_UNLOCK(vp, 0);
824 		if (vp->v_type != VREG) {
825 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
826 			VFS_UNLOCK_GIANT(vfslocked);
827 			ktrace_exit(td);
828 			return (EACCES);
829 		}
830 		VFS_UNLOCK_GIANT(vfslocked);
831 	}
832 	/*
833 	 * Clear all uses of the tracefile.
834 	 */
835 	if (ops == KTROP_CLEARFILE) {
836 		int vrele_count;
837 
838 		vrele_count = 0;
839 		sx_slock(&allproc_lock);
840 		FOREACH_PROC_IN_SYSTEM(p) {
841 			PROC_LOCK(p);
842 			if (p->p_tracevp == vp) {
843 				if (ktrcanset(td, p)) {
844 					mtx_lock(&ktrace_mtx);
845 					ktr_freeproc(p, &cred, NULL);
846 					mtx_unlock(&ktrace_mtx);
847 					vrele_count++;
848 					crfree(cred);
849 				} else
850 					error = EPERM;
851 			}
852 			PROC_UNLOCK(p);
853 		}
854 		sx_sunlock(&allproc_lock);
855 		if (vrele_count > 0) {
856 			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
857 			while (vrele_count-- > 0)
858 				vrele(vp);
859 			VFS_UNLOCK_GIANT(vfslocked);
860 		}
861 		goto done;
862 	}
863 	/*
864 	 * do it
865 	 */
866 	sx_slock(&proctree_lock);
867 	if (uap->pid < 0) {
868 		/*
869 		 * by process group
870 		 */
871 		pg = pgfind(-uap->pid);
872 		if (pg == NULL) {
873 			sx_sunlock(&proctree_lock);
874 			error = ESRCH;
875 			goto done;
876 		}
877 		/*
878 		 * ktrops() may call vrele(). Lock pg_members
879 		 * by the proctree_lock rather than pg_mtx.
880 		 */
881 		PGRP_UNLOCK(pg);
882 		nfound = 0;
883 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
884 			PROC_LOCK(p);
885 			if (p->p_state == PRS_NEW ||
886 			    p_cansee(td, p) != 0) {
887 				PROC_UNLOCK(p);
888 				continue;
889 			}
890 			nfound++;
891 			if (descend)
892 				ret |= ktrsetchildren(td, p, ops, facs, vp);
893 			else
894 				ret |= ktrops(td, p, ops, facs, vp);
895 		}
896 		if (nfound == 0) {
897 			sx_sunlock(&proctree_lock);
898 			error = ESRCH;
899 			goto done;
900 		}
901 	} else {
902 		/*
903 		 * by pid
904 		 */
905 		p = pfind(uap->pid);
906 		if (p == NULL)
907 			error = ESRCH;
908 		else
909 			error = p_cansee(td, p);
910 		if (error) {
911 			if (p != NULL)
912 				PROC_UNLOCK(p);
913 			sx_sunlock(&proctree_lock);
914 			goto done;
915 		}
916 		if (descend)
917 			ret |= ktrsetchildren(td, p, ops, facs, vp);
918 		else
919 			ret |= ktrops(td, p, ops, facs, vp);
920 	}
921 	sx_sunlock(&proctree_lock);
922 	if (!ret)
923 		error = EPERM;
924 done:
925 	if (vp != NULL) {
926 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
927 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
928 		VFS_UNLOCK_GIANT(vfslocked);
929 	}
930 	ktrace_exit(td);
931 	return (error);
932 #else /* !KTRACE */
933 	return (ENOSYS);
934 #endif /* KTRACE */
935 }
936 
937 /* ARGSUSED */
938 int
939 utrace(td, uap)
940 	struct thread *td;
941 	register struct utrace_args *uap;
942 {
943 
944 #ifdef KTRACE
945 	struct ktr_request *req;
946 	void *cp;
947 	int error;
948 
949 	if (!KTRPOINT(td, KTR_USER))
950 		return (0);
951 	if (uap->len > KTR_USER_MAXLEN)
952 		return (EINVAL);
953 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
954 	error = copyin(uap->addr, cp, uap->len);
955 	if (error) {
956 		free(cp, M_KTRACE);
957 		return (error);
958 	}
959 	req = ktr_getrequest(KTR_USER);
960 	if (req == NULL) {
961 		free(cp, M_KTRACE);
962 		return (ENOMEM);
963 	}
964 	req->ktr_buffer = cp;
965 	req->ktr_header.ktr_len = uap->len;
966 	ktr_submitrequest(td, req);
967 	return (0);
968 #else /* !KTRACE */
969 	return (ENOSYS);
970 #endif /* KTRACE */
971 }
972 
973 #ifdef KTRACE
974 static int
975 ktrops(td, p, ops, facs, vp)
976 	struct thread *td;
977 	struct proc *p;
978 	int ops, facs;
979 	struct vnode *vp;
980 {
981 	struct vnode *tracevp = NULL;
982 	struct ucred *tracecred = NULL;
983 
984 	PROC_LOCK_ASSERT(p, MA_OWNED);
985 	if (!ktrcanset(td, p)) {
986 		PROC_UNLOCK(p);
987 		return (0);
988 	}
989 	if (p->p_flag & P_WEXIT) {
990 		/* If the process is exiting, just ignore it. */
991 		PROC_UNLOCK(p);
992 		return (1);
993 	}
994 	mtx_lock(&ktrace_mtx);
995 	if (ops == KTROP_SET) {
996 		if (p->p_tracevp != vp) {
997 			/*
998 			 * if trace file already in use, relinquish below
999 			 */
1000 			tracevp = p->p_tracevp;
1001 			VREF(vp);
1002 			p->p_tracevp = vp;
1003 		}
1004 		if (p->p_tracecred != td->td_ucred) {
1005 			tracecred = p->p_tracecred;
1006 			p->p_tracecred = crhold(td->td_ucred);
1007 		}
1008 		p->p_traceflag |= facs;
1009 		if (priv_check(td, PRIV_KTRACE) == 0)
1010 			p->p_traceflag |= KTRFAC_ROOT;
1011 	} else {
1012 		/* KTROP_CLEAR */
1013 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1014 			/* no more tracing */
1015 			ktr_freeproc(p, &tracecred, &tracevp);
1016 	}
1017 	mtx_unlock(&ktrace_mtx);
1018 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1019 		ktrprocctor_entered(td, p);
1020 	PROC_UNLOCK(p);
1021 	if (tracevp != NULL) {
1022 		int vfslocked;
1023 
1024 		vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
1025 		vrele(tracevp);
1026 		VFS_UNLOCK_GIANT(vfslocked);
1027 	}
1028 	if (tracecred != NULL)
1029 		crfree(tracecred);
1030 
1031 	return (1);
1032 }
1033 
1034 static int
1035 ktrsetchildren(td, top, ops, facs, vp)
1036 	struct thread *td;
1037 	struct proc *top;
1038 	int ops, facs;
1039 	struct vnode *vp;
1040 {
1041 	register struct proc *p;
1042 	register int ret = 0;
1043 
1044 	p = top;
1045 	PROC_LOCK_ASSERT(p, MA_OWNED);
1046 	sx_assert(&proctree_lock, SX_LOCKED);
1047 	for (;;) {
1048 		ret |= ktrops(td, p, ops, facs, vp);
1049 		/*
1050 		 * If this process has children, descend to them next,
1051 		 * otherwise do any siblings, and if done with this level,
1052 		 * follow back up the tree (but not past top).
1053 		 */
1054 		if (!LIST_EMPTY(&p->p_children))
1055 			p = LIST_FIRST(&p->p_children);
1056 		else for (;;) {
1057 			if (p == top)
1058 				return (ret);
1059 			if (LIST_NEXT(p, p_sibling)) {
1060 				p = LIST_NEXT(p, p_sibling);
1061 				break;
1062 			}
1063 			p = p->p_pptr;
1064 		}
1065 		PROC_LOCK(p);
1066 	}
1067 	/*NOTREACHED*/
1068 }
1069 
1070 static void
1071 ktr_writerequest(struct thread *td, struct ktr_request *req)
1072 {
1073 	struct ktr_header *kth;
1074 	struct vnode *vp;
1075 	struct proc *p;
1076 	struct ucred *cred;
1077 	struct uio auio;
1078 	struct iovec aiov[3];
1079 	struct mount *mp;
1080 	int datalen, buflen, vrele_count;
1081 	int error, vfslocked;
1082 
1083 	/*
1084 	 * We hold the vnode and credential for use in I/O in case ktrace is
1085 	 * disabled on the process as we write out the request.
1086 	 *
1087 	 * XXXRW: This is not ideal: we could end up performing a write after
1088 	 * the vnode has been closed.
1089 	 */
1090 	mtx_lock(&ktrace_mtx);
1091 	vp = td->td_proc->p_tracevp;
1092 	cred = td->td_proc->p_tracecred;
1093 
1094 	/*
1095 	 * If vp is NULL, the vp has been cleared out from under this
1096 	 * request, so just drop it.  Make sure the credential and vnode are
1097 	 * in sync: we should have both or neither.
1098 	 */
1099 	if (vp == NULL) {
1100 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1101 		mtx_unlock(&ktrace_mtx);
1102 		return;
1103 	}
1104 	VREF(vp);
1105 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1106 	crhold(cred);
1107 	mtx_unlock(&ktrace_mtx);
1108 
1109 	kth = &req->ktr_header;
1110 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
1111 	    sizeof(data_lengths) / sizeof(data_lengths[0]),
1112 	    ("data_lengths array overflow"));
1113 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1114 	buflen = kth->ktr_len;
1115 	auio.uio_iov = &aiov[0];
1116 	auio.uio_offset = 0;
1117 	auio.uio_segflg = UIO_SYSSPACE;
1118 	auio.uio_rw = UIO_WRITE;
1119 	aiov[0].iov_base = (caddr_t)kth;
1120 	aiov[0].iov_len = sizeof(struct ktr_header);
1121 	auio.uio_resid = sizeof(struct ktr_header);
1122 	auio.uio_iovcnt = 1;
1123 	auio.uio_td = td;
1124 	if (datalen != 0) {
1125 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1126 		aiov[1].iov_len = datalen;
1127 		auio.uio_resid += datalen;
1128 		auio.uio_iovcnt++;
1129 		kth->ktr_len += datalen;
1130 	}
1131 	if (buflen != 0) {
1132 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1133 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1134 		aiov[auio.uio_iovcnt].iov_len = buflen;
1135 		auio.uio_resid += buflen;
1136 		auio.uio_iovcnt++;
1137 	}
1138 
1139 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1140 	vn_start_write(vp, &mp, V_WAIT);
1141 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1142 #ifdef MAC
1143 	error = mac_vnode_check_write(cred, NOCRED, vp);
1144 	if (error == 0)
1145 #endif
1146 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1147 	VOP_UNLOCK(vp, 0);
1148 	vn_finished_write(mp);
1149 	crfree(cred);
1150 	if (!error) {
1151 		vrele(vp);
1152 		VFS_UNLOCK_GIANT(vfslocked);
1153 		return;
1154 	}
1155 	VFS_UNLOCK_GIANT(vfslocked);
1156 
1157 	/*
1158 	 * If error encountered, give up tracing on this vnode.  We defer
1159 	 * all the vrele()'s on the vnode until after we are finished walking
1160 	 * the various lists to avoid needlessly holding locks.
1161 	 * NB: at this point we still hold the vnode reference that must
1162 	 * not go away as we need the valid vnode to compare with. Thus let
1163 	 * vrele_count start at 1 and the reference will be freed
1164 	 * by the loop at the end after our last use of vp.
1165 	 */
1166 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1167 	    error);
1168 	vrele_count = 1;
1169 	/*
1170 	 * First, clear this vnode from being used by any processes in the
1171 	 * system.
1172 	 * XXX - If one process gets an EPERM writing to the vnode, should
1173 	 * we really do this?  Other processes might have suitable
1174 	 * credentials for the operation.
1175 	 */
1176 	cred = NULL;
1177 	sx_slock(&allproc_lock);
1178 	FOREACH_PROC_IN_SYSTEM(p) {
1179 		PROC_LOCK(p);
1180 		if (p->p_tracevp == vp) {
1181 			mtx_lock(&ktrace_mtx);
1182 			ktr_freeproc(p, &cred, NULL);
1183 			mtx_unlock(&ktrace_mtx);
1184 			vrele_count++;
1185 		}
1186 		PROC_UNLOCK(p);
1187 		if (cred != NULL) {
1188 			crfree(cred);
1189 			cred = NULL;
1190 		}
1191 	}
1192 	sx_sunlock(&allproc_lock);
1193 
1194 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1195 	while (vrele_count-- > 0)
1196 		vrele(vp);
1197 	VFS_UNLOCK_GIANT(vfslocked);
1198 }
1199 
1200 /*
1201  * Return true if caller has permission to set the ktracing state
1202  * of target.  Essentially, the target can't possess any
1203  * more permissions than the caller.  KTRFAC_ROOT signifies that
1204  * root previously set the tracing status on the target process, and
1205  * so, only root may further change it.
1206  */
1207 static int
1208 ktrcanset(td, targetp)
1209 	struct thread *td;
1210 	struct proc *targetp;
1211 {
1212 
1213 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1214 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1215 	    priv_check(td, PRIV_KTRACE))
1216 		return (0);
1217 
1218 	if (p_candebug(td, targetp) != 0)
1219 		return (0);
1220 
1221 	return (1);
1222 }
1223 
1224 #endif /* KTRACE */
1225