xref: /freebsd/sys/kern/kern_ktrace.c (revision 643ac419fafba89f5adda0e0ea75b538727453fb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/capsicum.h>
43 #include <sys/systm.h>
44 #include <sys/fcntl.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/namei.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/unistd.h>
56 #include <sys/vnode.h>
57 #include <sys/socket.h>
58 #include <sys/stat.h>
59 #include <sys/ktrace.h>
60 #include <sys/sx.h>
61 #include <sys/sysctl.h>
62 #include <sys/sysent.h>
63 #include <sys/syslog.h>
64 #include <sys/sysproto.h>
65 
66 #include <security/mac/mac_framework.h>
67 
68 /*
69  * The ktrace facility allows the tracing of certain key events in user space
70  * processes, such as system calls, signal delivery, context switches, and
71  * user generated events using utrace(2).  It works by streaming event
72  * records and data to a vnode associated with the process using the
73  * ktrace(2) system call.  In general, records can be written directly from
74  * the context that generates the event.  One important exception to this is
75  * during a context switch, where sleeping is not permitted.  To handle this
76  * case, trace events are generated using in-kernel ktr_request records, and
77  * then delivered to disk at a convenient moment -- either immediately, the
78  * next traceable event, at system call return, or at process exit.
79  *
80  * When dealing with multiple threads or processes writing to the same event
81  * log, ordering guarantees are weak: specifically, if an event has multiple
82  * records (i.e., system call enter and return), they may be interlaced with
83  * records from another event.  Process and thread ID information is provided
84  * in the record, and user applications can de-interlace events if required.
85  */
86 
87 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
88 
89 #ifdef KTRACE
90 
91 FEATURE(ktrace, "Kernel support for system-call tracing");
92 
93 #ifndef KTRACE_REQUEST_POOL
94 #define	KTRACE_REQUEST_POOL	100
95 #endif
96 
97 struct ktr_request {
98 	struct	ktr_header ktr_header;
99 	void	*ktr_buffer;
100 	union {
101 		struct	ktr_proc_ctor ktr_proc_ctor;
102 		struct	ktr_cap_fail ktr_cap_fail;
103 		struct	ktr_syscall ktr_syscall;
104 		struct	ktr_sysret ktr_sysret;
105 		struct	ktr_genio ktr_genio;
106 		struct	ktr_psig ktr_psig;
107 		struct	ktr_csw ktr_csw;
108 		struct	ktr_fault ktr_fault;
109 		struct	ktr_faultend ktr_faultend;
110 		struct  ktr_struct_array ktr_struct_array;
111 	} ktr_data;
112 	STAILQ_ENTRY(ktr_request) ktr_list;
113 };
114 
115 static int data_lengths[] = {
116 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
117 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
118 	[KTR_NAMEI] = 0,
119 	[KTR_GENIO] = sizeof(struct ktr_genio),
120 	[KTR_PSIG] = sizeof(struct ktr_psig),
121 	[KTR_CSW] = sizeof(struct ktr_csw),
122 	[KTR_USER] = 0,
123 	[KTR_STRUCT] = 0,
124 	[KTR_SYSCTL] = 0,
125 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
126 	[KTR_PROCDTOR] = 0,
127 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
128 	[KTR_FAULT] = sizeof(struct ktr_fault),
129 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
130 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
131 };
132 
133 static STAILQ_HEAD(, ktr_request) ktr_free;
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
136     "KTRACE options");
137 
138 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
139 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
140 
141 u_int ktr_geniosize = PAGE_SIZE;
142 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
143     0, "Maximum size of genio event payload");
144 
145 /*
146  * Allow to not to send signal to traced process, in which context the
147  * ktr record is written.  The limit is applied from the process that
148  * set up ktrace, so killing the traced process is not completely fair.
149  */
150 int ktr_filesize_limit_signal = 0;
151 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN,
152     &ktr_filesize_limit_signal, 0,
153     "Send SIGXFSZ to the traced process when the log size limit is exceeded");
154 
155 static int print_message = 1;
156 static struct mtx ktrace_mtx;
157 static struct sx ktrace_sx;
158 
159 struct ktr_io_params {
160 	struct vnode	*vp;
161 	struct ucred	*cr;
162 	off_t		lim;
163 	u_int		refs;
164 };
165 
166 static void ktrace_init(void *dummy);
167 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
168 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
169 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
170 static struct ktr_request *ktr_getrequest(int type);
171 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
172 static struct ktr_io_params *ktr_freeproc(struct proc *p);
173 static void ktr_freerequest(struct ktr_request *req);
174 static void ktr_freerequest_locked(struct ktr_request *req);
175 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
176 static int ktrcanset(struct thread *,struct proc *);
177 static int ktrsetchildren(struct thread *, struct proc *, int, int,
178     struct ktr_io_params *);
179 static int ktrops(struct thread *, struct proc *, int, int,
180     struct ktr_io_params *);
181 static void ktrprocctor_entered(struct thread *, struct proc *);
182 
183 /*
184  * ktrace itself generates events, such as context switches, which we do not
185  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
186  * whether or not it is in a region where tracing of events should be
187  * suppressed.
188  */
189 static void
190 ktrace_enter(struct thread *td)
191 {
192 
193 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
194 	td->td_pflags |= TDP_INKTRACE;
195 }
196 
197 static void
198 ktrace_exit(struct thread *td)
199 {
200 
201 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
202 	td->td_pflags &= ~TDP_INKTRACE;
203 }
204 
205 static void
206 ktrace_assert(struct thread *td)
207 {
208 
209 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
210 }
211 
212 static void
213 ktrace_init(void *dummy)
214 {
215 	struct ktr_request *req;
216 	int i;
217 
218 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
219 	sx_init(&ktrace_sx, "ktrace_sx");
220 	STAILQ_INIT(&ktr_free);
221 	for (i = 0; i < ktr_requestpool; i++) {
222 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK |
223 		    M_ZERO);
224 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
225 	}
226 }
227 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
228 
229 static int
230 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
231 {
232 	struct thread *td;
233 	u_int newsize, oldsize, wantsize;
234 	int error;
235 
236 	/* Handle easy read-only case first to avoid warnings from GCC. */
237 	if (!req->newptr) {
238 		oldsize = ktr_requestpool;
239 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
240 	}
241 
242 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
243 	if (error)
244 		return (error);
245 	td = curthread;
246 	ktrace_enter(td);
247 	oldsize = ktr_requestpool;
248 	newsize = ktrace_resize_pool(oldsize, wantsize);
249 	ktrace_exit(td);
250 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
251 	if (error)
252 		return (error);
253 	if (wantsize > oldsize && newsize < wantsize)
254 		return (ENOSPC);
255 	return (0);
256 }
257 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
258     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
259     sysctl_kern_ktrace_request_pool, "IU",
260     "Pool buffer size for ktrace(1)");
261 
262 static u_int
263 ktrace_resize_pool(u_int oldsize, u_int newsize)
264 {
265 	STAILQ_HEAD(, ktr_request) ktr_new;
266 	struct ktr_request *req;
267 	int bound;
268 
269 	print_message = 1;
270 	bound = newsize - oldsize;
271 	if (bound == 0)
272 		return (ktr_requestpool);
273 	if (bound < 0) {
274 		mtx_lock(&ktrace_mtx);
275 		/* Shrink pool down to newsize if possible. */
276 		while (bound++ < 0) {
277 			req = STAILQ_FIRST(&ktr_free);
278 			if (req == NULL)
279 				break;
280 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
281 			ktr_requestpool--;
282 			free(req, M_KTRACE);
283 		}
284 	} else {
285 		/* Grow pool up to newsize. */
286 		STAILQ_INIT(&ktr_new);
287 		while (bound-- > 0) {
288 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
289 			    M_WAITOK | M_ZERO);
290 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
291 		}
292 		mtx_lock(&ktrace_mtx);
293 		STAILQ_CONCAT(&ktr_free, &ktr_new);
294 		ktr_requestpool += (newsize - oldsize);
295 	}
296 	mtx_unlock(&ktrace_mtx);
297 	return (ktr_requestpool);
298 }
299 
300 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
301 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
302     (sizeof((struct thread *)NULL)->td_name));
303 
304 static struct ktr_request *
305 ktr_getrequest_entered(struct thread *td, int type)
306 {
307 	struct ktr_request *req;
308 	struct proc *p = td->td_proc;
309 	int pm;
310 
311 	mtx_lock(&ktrace_mtx);
312 	if (!KTRCHECK(td, type)) {
313 		mtx_unlock(&ktrace_mtx);
314 		return (NULL);
315 	}
316 	req = STAILQ_FIRST(&ktr_free);
317 	if (req != NULL) {
318 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
319 		req->ktr_header.ktr_type = type;
320 		if (p->p_traceflag & KTRFAC_DROP) {
321 			req->ktr_header.ktr_type |= KTR_DROP;
322 			p->p_traceflag &= ~KTRFAC_DROP;
323 		}
324 		mtx_unlock(&ktrace_mtx);
325 		microtime(&req->ktr_header.ktr_time);
326 		req->ktr_header.ktr_pid = p->p_pid;
327 		req->ktr_header.ktr_tid = td->td_tid;
328 		bcopy(td->td_name, req->ktr_header.ktr_comm,
329 		    sizeof(req->ktr_header.ktr_comm));
330 		req->ktr_buffer = NULL;
331 		req->ktr_header.ktr_len = 0;
332 	} else {
333 		p->p_traceflag |= KTRFAC_DROP;
334 		pm = print_message;
335 		print_message = 0;
336 		mtx_unlock(&ktrace_mtx);
337 		if (pm)
338 			printf("Out of ktrace request objects.\n");
339 	}
340 	return (req);
341 }
342 
343 static struct ktr_request *
344 ktr_getrequest(int type)
345 {
346 	struct thread *td = curthread;
347 	struct ktr_request *req;
348 
349 	ktrace_enter(td);
350 	req = ktr_getrequest_entered(td, type);
351 	if (req == NULL)
352 		ktrace_exit(td);
353 
354 	return (req);
355 }
356 
357 /*
358  * Some trace generation environments don't permit direct access to VFS,
359  * such as during a context switch where sleeping is not allowed.  Under these
360  * circumstances, queue a request to the thread to be written asynchronously
361  * later.
362  */
363 static void
364 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
365 {
366 
367 	mtx_lock(&ktrace_mtx);
368 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
369 	mtx_unlock(&ktrace_mtx);
370 	thread_lock(td);
371 	td->td_flags |= TDF_ASTPENDING;
372 	thread_unlock(td);
373 }
374 
375 /*
376  * Drain any pending ktrace records from the per-thread queue to disk.  This
377  * is used both internally before committing other records, and also on
378  * system call return.  We drain all the ones we can find at the time when
379  * drain is requested, but don't keep draining after that as those events
380  * may be approximately "after" the current event.
381  */
382 static void
383 ktr_drain(struct thread *td)
384 {
385 	struct ktr_request *queued_req;
386 	STAILQ_HEAD(, ktr_request) local_queue;
387 
388 	ktrace_assert(td);
389 	sx_assert(&ktrace_sx, SX_XLOCKED);
390 
391 	STAILQ_INIT(&local_queue);
392 
393 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
394 		mtx_lock(&ktrace_mtx);
395 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
396 		mtx_unlock(&ktrace_mtx);
397 
398 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
399 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
400 			ktr_writerequest(td, queued_req);
401 			ktr_freerequest(queued_req);
402 		}
403 	}
404 }
405 
406 /*
407  * Submit a trace record for immediate commit to disk -- to be used only
408  * where entering VFS is OK.  First drain any pending records that may have
409  * been cached in the thread.
410  */
411 static void
412 ktr_submitrequest(struct thread *td, struct ktr_request *req)
413 {
414 
415 	ktrace_assert(td);
416 
417 	sx_xlock(&ktrace_sx);
418 	ktr_drain(td);
419 	ktr_writerequest(td, req);
420 	ktr_freerequest(req);
421 	sx_xunlock(&ktrace_sx);
422 	ktrace_exit(td);
423 }
424 
425 static void
426 ktr_freerequest(struct ktr_request *req)
427 {
428 
429 	mtx_lock(&ktrace_mtx);
430 	ktr_freerequest_locked(req);
431 	mtx_unlock(&ktrace_mtx);
432 }
433 
434 static void
435 ktr_freerequest_locked(struct ktr_request *req)
436 {
437 
438 	mtx_assert(&ktrace_mtx, MA_OWNED);
439 	if (req->ktr_buffer != NULL)
440 		free(req->ktr_buffer, M_KTRACE);
441 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
442 }
443 
444 static void
445 ktr_io_params_ref(struct ktr_io_params *kiop)
446 {
447 	mtx_assert(&ktrace_mtx, MA_OWNED);
448 	kiop->refs++;
449 }
450 
451 static struct ktr_io_params *
452 ktr_io_params_rele(struct ktr_io_params *kiop)
453 {
454 	mtx_assert(&ktrace_mtx, MA_OWNED);
455 	if (kiop == NULL)
456 		return (NULL);
457 	KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
458 	return (--(kiop->refs) == 0 ? kiop : NULL);
459 }
460 
461 void
462 ktr_io_params_free(struct ktr_io_params *kiop)
463 {
464 	if (kiop == NULL)
465 		return;
466 
467 	MPASS(kiop->refs == 0);
468 	vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
469 	crfree(kiop->cr);
470 	free(kiop, M_KTRACE);
471 }
472 
473 static struct ktr_io_params *
474 ktr_io_params_alloc(struct thread *td, struct vnode *vp)
475 {
476 	struct ktr_io_params *res;
477 
478 	res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
479 	res->vp = vp;
480 	res->cr = crhold(td->td_ucred);
481 	res->lim = lim_cur(td, RLIMIT_FSIZE);
482 	res->refs = 1;
483 	return (res);
484 }
485 
486 /*
487  * Disable tracing for a process and release all associated resources.
488  * The caller is responsible for releasing a reference on the returned
489  * vnode and credentials.
490  */
491 static struct ktr_io_params *
492 ktr_freeproc(struct proc *p)
493 {
494 	struct ktr_io_params *kiop;
495 	struct ktr_request *req;
496 
497 	PROC_LOCK_ASSERT(p, MA_OWNED);
498 	mtx_assert(&ktrace_mtx, MA_OWNED);
499 	kiop = ktr_io_params_rele(p->p_ktrioparms);
500 	p->p_ktrioparms = NULL;
501 	p->p_traceflag = 0;
502 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
503 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
504 		ktr_freerequest_locked(req);
505 	}
506 	return (kiop);
507 }
508 
509 struct vnode *
510 ktr_get_tracevp(struct proc *p, bool ref)
511 {
512 	struct vnode *vp;
513 
514 	PROC_LOCK_ASSERT(p, MA_OWNED);
515 
516 	if (p->p_ktrioparms != NULL) {
517 		vp = p->p_ktrioparms->vp;
518 		if (ref)
519 			vrefact(vp);
520 	} else {
521 		vp = NULL;
522 	}
523 	return (vp);
524 }
525 
526 void
527 ktrsyscall(int code, int narg, syscallarg_t args[])
528 {
529 	struct ktr_request *req;
530 	struct ktr_syscall *ktp;
531 	size_t buflen;
532 	char *buf = NULL;
533 
534 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
535 		return;
536 
537 	buflen = sizeof(register_t) * narg;
538 	if (buflen > 0) {
539 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
540 		bcopy(args, buf, buflen);
541 	}
542 	req = ktr_getrequest(KTR_SYSCALL);
543 	if (req == NULL) {
544 		if (buf != NULL)
545 			free(buf, M_KTRACE);
546 		return;
547 	}
548 	ktp = &req->ktr_data.ktr_syscall;
549 	ktp->ktr_code = code;
550 	ktp->ktr_narg = narg;
551 	if (buflen > 0) {
552 		req->ktr_header.ktr_len = buflen;
553 		req->ktr_buffer = buf;
554 	}
555 	ktr_submitrequest(curthread, req);
556 }
557 
558 void
559 ktrsysret(int code, int error, register_t retval)
560 {
561 	struct ktr_request *req;
562 	struct ktr_sysret *ktp;
563 
564 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
565 		return;
566 
567 	req = ktr_getrequest(KTR_SYSRET);
568 	if (req == NULL)
569 		return;
570 	ktp = &req->ktr_data.ktr_sysret;
571 	ktp->ktr_code = code;
572 	ktp->ktr_error = error;
573 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
574 	ktr_submitrequest(curthread, req);
575 }
576 
577 /*
578  * When a setuid process execs, disable tracing.
579  *
580  * XXX: We toss any pending asynchronous records.
581  */
582 struct ktr_io_params *
583 ktrprocexec(struct proc *p)
584 {
585 	struct ktr_io_params *kiop;
586 
587 	PROC_LOCK_ASSERT(p, MA_OWNED);
588 
589 	kiop = p->p_ktrioparms;
590 	if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED))
591 		return (NULL);
592 
593 	mtx_lock(&ktrace_mtx);
594 	kiop = ktr_freeproc(p);
595 	mtx_unlock(&ktrace_mtx);
596 	return (kiop);
597 }
598 
599 /*
600  * When a process exits, drain per-process asynchronous trace records
601  * and disable tracing.
602  */
603 void
604 ktrprocexit(struct thread *td)
605 {
606 	struct ktr_request *req;
607 	struct proc *p;
608 	struct ktr_io_params *kiop;
609 
610 	p = td->td_proc;
611 	if (p->p_traceflag == 0)
612 		return;
613 
614 	ktrace_enter(td);
615 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
616 	if (req != NULL)
617 		ktr_enqueuerequest(td, req);
618 	sx_xlock(&ktrace_sx);
619 	ktr_drain(td);
620 	sx_xunlock(&ktrace_sx);
621 	PROC_LOCK(p);
622 	mtx_lock(&ktrace_mtx);
623 	kiop = ktr_freeproc(p);
624 	mtx_unlock(&ktrace_mtx);
625 	PROC_UNLOCK(p);
626 	ktr_io_params_free(kiop);
627 	ktrace_exit(td);
628 }
629 
630 static void
631 ktrprocctor_entered(struct thread *td, struct proc *p)
632 {
633 	struct ktr_proc_ctor *ktp;
634 	struct ktr_request *req;
635 	struct thread *td2;
636 
637 	ktrace_assert(td);
638 	td2 = FIRST_THREAD_IN_PROC(p);
639 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
640 	if (req == NULL)
641 		return;
642 	ktp = &req->ktr_data.ktr_proc_ctor;
643 	ktp->sv_flags = p->p_sysent->sv_flags;
644 	ktr_enqueuerequest(td2, req);
645 }
646 
647 void
648 ktrprocctor(struct proc *p)
649 {
650 	struct thread *td = curthread;
651 
652 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
653 		return;
654 
655 	ktrace_enter(td);
656 	ktrprocctor_entered(td, p);
657 	ktrace_exit(td);
658 }
659 
660 /*
661  * When a process forks, enable tracing in the new process if needed.
662  */
663 void
664 ktrprocfork(struct proc *p1, struct proc *p2)
665 {
666 
667 	MPASS(p2->p_ktrioparms == NULL);
668 	MPASS(p2->p_traceflag == 0);
669 
670 	if (p1->p_traceflag == 0)
671 		return;
672 
673 	PROC_LOCK(p1);
674 	mtx_lock(&ktrace_mtx);
675 	if (p1->p_traceflag & KTRFAC_INHERIT) {
676 		p2->p_traceflag = p1->p_traceflag;
677 		if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
678 			p1->p_ktrioparms->refs++;
679 	}
680 	mtx_unlock(&ktrace_mtx);
681 	PROC_UNLOCK(p1);
682 
683 	ktrprocctor(p2);
684 }
685 
686 /*
687  * When a thread returns, drain any asynchronous records generated by the
688  * system call.
689  */
690 void
691 ktruserret(struct thread *td)
692 {
693 
694 	ktrace_enter(td);
695 	sx_xlock(&ktrace_sx);
696 	ktr_drain(td);
697 	sx_xunlock(&ktrace_sx);
698 	ktrace_exit(td);
699 }
700 
701 void
702 ktrnamei(const char *path)
703 {
704 	struct ktr_request *req;
705 	int namelen;
706 	char *buf = NULL;
707 
708 	namelen = strlen(path);
709 	if (namelen > 0) {
710 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
711 		bcopy(path, buf, namelen);
712 	}
713 	req = ktr_getrequest(KTR_NAMEI);
714 	if (req == NULL) {
715 		if (buf != NULL)
716 			free(buf, M_KTRACE);
717 		return;
718 	}
719 	if (namelen > 0) {
720 		req->ktr_header.ktr_len = namelen;
721 		req->ktr_buffer = buf;
722 	}
723 	ktr_submitrequest(curthread, req);
724 }
725 
726 void
727 ktrsysctl(int *name, u_int namelen)
728 {
729 	struct ktr_request *req;
730 	u_int mib[CTL_MAXNAME + 2];
731 	char *mibname;
732 	size_t mibnamelen;
733 	int error;
734 
735 	/* Lookup name of mib. */
736 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
737 	mib[0] = 0;
738 	mib[1] = 1;
739 	bcopy(name, mib + 2, namelen * sizeof(*name));
740 	mibnamelen = 128;
741 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
742 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
743 	    NULL, 0, &mibnamelen, 0);
744 	if (error) {
745 		free(mibname, M_KTRACE);
746 		return;
747 	}
748 	req = ktr_getrequest(KTR_SYSCTL);
749 	if (req == NULL) {
750 		free(mibname, M_KTRACE);
751 		return;
752 	}
753 	req->ktr_header.ktr_len = mibnamelen;
754 	req->ktr_buffer = mibname;
755 	ktr_submitrequest(curthread, req);
756 }
757 
758 void
759 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
760 {
761 	struct ktr_request *req;
762 	struct ktr_genio *ktg;
763 	int datalen;
764 	char *buf;
765 
766 	if (error) {
767 		free(uio, M_IOV);
768 		return;
769 	}
770 	uio->uio_offset = 0;
771 	uio->uio_rw = UIO_WRITE;
772 	datalen = MIN(uio->uio_resid, ktr_geniosize);
773 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
774 	error = uiomove(buf, datalen, uio);
775 	free(uio, M_IOV);
776 	if (error) {
777 		free(buf, M_KTRACE);
778 		return;
779 	}
780 	req = ktr_getrequest(KTR_GENIO);
781 	if (req == NULL) {
782 		free(buf, M_KTRACE);
783 		return;
784 	}
785 	ktg = &req->ktr_data.ktr_genio;
786 	ktg->ktr_fd = fd;
787 	ktg->ktr_rw = rw;
788 	req->ktr_header.ktr_len = datalen;
789 	req->ktr_buffer = buf;
790 	ktr_submitrequest(curthread, req);
791 }
792 
793 void
794 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
795 {
796 	struct thread *td = curthread;
797 	struct ktr_request *req;
798 	struct ktr_psig	*kp;
799 
800 	req = ktr_getrequest(KTR_PSIG);
801 	if (req == NULL)
802 		return;
803 	kp = &req->ktr_data.ktr_psig;
804 	kp->signo = (char)sig;
805 	kp->action = action;
806 	kp->mask = *mask;
807 	kp->code = code;
808 	ktr_enqueuerequest(td, req);
809 	ktrace_exit(td);
810 }
811 
812 void
813 ktrcsw(int out, int user, const char *wmesg)
814 {
815 	struct thread *td = curthread;
816 	struct ktr_request *req;
817 	struct ktr_csw *kc;
818 
819 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
820 		return;
821 
822 	req = ktr_getrequest(KTR_CSW);
823 	if (req == NULL)
824 		return;
825 	kc = &req->ktr_data.ktr_csw;
826 	kc->out = out;
827 	kc->user = user;
828 	if (wmesg != NULL)
829 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
830 	else
831 		bzero(kc->wmesg, sizeof(kc->wmesg));
832 	ktr_enqueuerequest(td, req);
833 	ktrace_exit(td);
834 }
835 
836 void
837 ktrstruct(const char *name, const void *data, size_t datalen)
838 {
839 	struct ktr_request *req;
840 	char *buf;
841 	size_t buflen, namelen;
842 
843 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
844 		return;
845 
846 	if (data == NULL)
847 		datalen = 0;
848 	namelen = strlen(name) + 1;
849 	buflen = namelen + datalen;
850 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
851 	strcpy(buf, name);
852 	bcopy(data, buf + namelen, datalen);
853 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
854 		free(buf, M_KTRACE);
855 		return;
856 	}
857 	req->ktr_buffer = buf;
858 	req->ktr_header.ktr_len = buflen;
859 	ktr_submitrequest(curthread, req);
860 }
861 
862 void
863 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
864 {
865 
866 	if (error == 0)
867 		ktrstruct(name, data, datalen);
868 }
869 
870 void
871 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
872     int num_items, size_t struct_size)
873 {
874 	struct ktr_request *req;
875 	struct ktr_struct_array *ksa;
876 	char *buf;
877 	size_t buflen, datalen, namelen;
878 	int max_items;
879 
880 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
881 		return;
882 	if (num_items < 0)
883 		return;
884 
885 	/* Trim array length to genio size. */
886 	max_items = ktr_geniosize / struct_size;
887 	if (num_items > max_items) {
888 		if (max_items == 0)
889 			num_items = 1;
890 		else
891 			num_items = max_items;
892 	}
893 	datalen = num_items * struct_size;
894 
895 	if (data == NULL)
896 		datalen = 0;
897 
898 	namelen = strlen(name) + 1;
899 	buflen = namelen + datalen;
900 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
901 	strcpy(buf, name);
902 	if (seg == UIO_SYSSPACE)
903 		bcopy(data, buf + namelen, datalen);
904 	else {
905 		if (copyin(data, buf + namelen, datalen) != 0) {
906 			free(buf, M_KTRACE);
907 			return;
908 		}
909 	}
910 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
911 		free(buf, M_KTRACE);
912 		return;
913 	}
914 	ksa = &req->ktr_data.ktr_struct_array;
915 	ksa->struct_size = struct_size;
916 	req->ktr_buffer = buf;
917 	req->ktr_header.ktr_len = buflen;
918 	ktr_submitrequest(curthread, req);
919 }
920 
921 void
922 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed,
923     const cap_rights_t *held)
924 {
925 	struct thread *td = curthread;
926 	struct ktr_request *req;
927 	struct ktr_cap_fail *kcf;
928 
929 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
930 		return;
931 
932 	req = ktr_getrequest(KTR_CAPFAIL);
933 	if (req == NULL)
934 		return;
935 	kcf = &req->ktr_data.ktr_cap_fail;
936 	kcf->cap_type = type;
937 	if (needed != NULL)
938 		kcf->cap_needed = *needed;
939 	else
940 		cap_rights_init(&kcf->cap_needed);
941 	if (held != NULL)
942 		kcf->cap_held = *held;
943 	else
944 		cap_rights_init(&kcf->cap_held);
945 	ktr_enqueuerequest(td, req);
946 	ktrace_exit(td);
947 }
948 
949 void
950 ktrfault(vm_offset_t vaddr, int type)
951 {
952 	struct thread *td = curthread;
953 	struct ktr_request *req;
954 	struct ktr_fault *kf;
955 
956 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
957 		return;
958 
959 	req = ktr_getrequest(KTR_FAULT);
960 	if (req == NULL)
961 		return;
962 	kf = &req->ktr_data.ktr_fault;
963 	kf->vaddr = vaddr;
964 	kf->type = type;
965 	ktr_enqueuerequest(td, req);
966 	ktrace_exit(td);
967 }
968 
969 void
970 ktrfaultend(int result)
971 {
972 	struct thread *td = curthread;
973 	struct ktr_request *req;
974 	struct ktr_faultend *kf;
975 
976 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
977 		return;
978 
979 	req = ktr_getrequest(KTR_FAULTEND);
980 	if (req == NULL)
981 		return;
982 	kf = &req->ktr_data.ktr_faultend;
983 	kf->result = result;
984 	ktr_enqueuerequest(td, req);
985 	ktrace_exit(td);
986 }
987 #endif /* KTRACE */
988 
989 /* Interface and common routines */
990 
991 #ifndef _SYS_SYSPROTO_H_
992 struct ktrace_args {
993 	char	*fname;
994 	int	ops;
995 	int	facs;
996 	int	pid;
997 };
998 #endif
999 /* ARGSUSED */
1000 int
1001 sys_ktrace(struct thread *td, struct ktrace_args *uap)
1002 {
1003 #ifdef KTRACE
1004 	struct vnode *vp = NULL;
1005 	struct proc *p;
1006 	struct pgrp *pg;
1007 	int facs = uap->facs & ~KTRFAC_ROOT;
1008 	int ops = KTROP(uap->ops);
1009 	int descend = uap->ops & KTRFLAG_DESCEND;
1010 	int ret = 0;
1011 	int flags, error = 0;
1012 	struct nameidata nd;
1013 	struct ktr_io_params *kiop, *old_kiop;
1014 
1015 	/*
1016 	 * Need something to (un)trace.
1017 	 */
1018 	if (ops != KTROP_CLEARFILE && facs == 0)
1019 		return (EINVAL);
1020 
1021 	kiop = NULL;
1022 	if (ops != KTROP_CLEAR) {
1023 		/*
1024 		 * an operation which requires a file argument.
1025 		 */
1026 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname);
1027 		flags = FREAD | FWRITE | O_NOFOLLOW;
1028 		error = vn_open(&nd, &flags, 0, NULL);
1029 		if (error)
1030 			return (error);
1031 		NDFREE_PNBUF(&nd);
1032 		vp = nd.ni_vp;
1033 		VOP_UNLOCK(vp);
1034 		if (vp->v_type != VREG) {
1035 			(void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
1036 			return (EACCES);
1037 		}
1038 		kiop = ktr_io_params_alloc(td, vp);
1039 	}
1040 
1041 	/*
1042 	 * Clear all uses of the tracefile.
1043 	 */
1044 	ktrace_enter(td);
1045 	if (ops == KTROP_CLEARFILE) {
1046 restart:
1047 		sx_slock(&allproc_lock);
1048 		FOREACH_PROC_IN_SYSTEM(p) {
1049 			old_kiop = NULL;
1050 			PROC_LOCK(p);
1051 			if (p->p_ktrioparms != NULL &&
1052 			    p->p_ktrioparms->vp == vp) {
1053 				if (ktrcanset(td, p)) {
1054 					mtx_lock(&ktrace_mtx);
1055 					old_kiop = ktr_freeproc(p);
1056 					mtx_unlock(&ktrace_mtx);
1057 				} else
1058 					error = EPERM;
1059 			}
1060 			PROC_UNLOCK(p);
1061 			if (old_kiop != NULL) {
1062 				sx_sunlock(&allproc_lock);
1063 				ktr_io_params_free(old_kiop);
1064 				goto restart;
1065 			}
1066 		}
1067 		sx_sunlock(&allproc_lock);
1068 		goto done;
1069 	}
1070 	/*
1071 	 * do it
1072 	 */
1073 	sx_slock(&proctree_lock);
1074 	if (uap->pid < 0) {
1075 		/*
1076 		 * by process group
1077 		 */
1078 		pg = pgfind(-uap->pid);
1079 		if (pg == NULL) {
1080 			sx_sunlock(&proctree_lock);
1081 			error = ESRCH;
1082 			goto done;
1083 		}
1084 
1085 		/*
1086 		 * ktrops() may call vrele(). Lock pg_members
1087 		 * by the proctree_lock rather than pg_mtx.
1088 		 */
1089 		PGRP_UNLOCK(pg);
1090 		if (LIST_EMPTY(&pg->pg_members)) {
1091 			sx_sunlock(&proctree_lock);
1092 			error = ESRCH;
1093 			goto done;
1094 		}
1095 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1096 			PROC_LOCK(p);
1097 			if (descend)
1098 				ret |= ktrsetchildren(td, p, ops, facs, kiop);
1099 			else
1100 				ret |= ktrops(td, p, ops, facs, kiop);
1101 		}
1102 	} else {
1103 		/*
1104 		 * by pid
1105 		 */
1106 		p = pfind(uap->pid);
1107 		if (p == NULL) {
1108 			error = ESRCH;
1109 			sx_sunlock(&proctree_lock);
1110 			goto done;
1111 		}
1112 		if (descend)
1113 			ret |= ktrsetchildren(td, p, ops, facs, kiop);
1114 		else
1115 			ret |= ktrops(td, p, ops, facs, kiop);
1116 	}
1117 	sx_sunlock(&proctree_lock);
1118 	if (!ret)
1119 		error = EPERM;
1120 done:
1121 	if (kiop != NULL) {
1122 		mtx_lock(&ktrace_mtx);
1123 		kiop = ktr_io_params_rele(kiop);
1124 		mtx_unlock(&ktrace_mtx);
1125 		ktr_io_params_free(kiop);
1126 	}
1127 	ktrace_exit(td);
1128 	return (error);
1129 #else /* !KTRACE */
1130 	return (ENOSYS);
1131 #endif /* KTRACE */
1132 }
1133 
1134 /* ARGSUSED */
1135 int
1136 sys_utrace(struct thread *td, struct utrace_args *uap)
1137 {
1138 
1139 #ifdef KTRACE
1140 	struct ktr_request *req;
1141 	void *cp;
1142 	int error;
1143 
1144 	if (!KTRPOINT(td, KTR_USER))
1145 		return (0);
1146 	if (uap->len > KTR_USER_MAXLEN)
1147 		return (EINVAL);
1148 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1149 	error = copyin(uap->addr, cp, uap->len);
1150 	if (error) {
1151 		free(cp, M_KTRACE);
1152 		return (error);
1153 	}
1154 	req = ktr_getrequest(KTR_USER);
1155 	if (req == NULL) {
1156 		free(cp, M_KTRACE);
1157 		return (ENOMEM);
1158 	}
1159 	req->ktr_buffer = cp;
1160 	req->ktr_header.ktr_len = uap->len;
1161 	ktr_submitrequest(td, req);
1162 	return (0);
1163 #else /* !KTRACE */
1164 	return (ENOSYS);
1165 #endif /* KTRACE */
1166 }
1167 
1168 #ifdef KTRACE
1169 static int
1170 ktrops(struct thread *td, struct proc *p, int ops, int facs,
1171     struct ktr_io_params *new_kiop)
1172 {
1173 	struct ktr_io_params *old_kiop;
1174 
1175 	PROC_LOCK_ASSERT(p, MA_OWNED);
1176 	if (!ktrcanset(td, p)) {
1177 		PROC_UNLOCK(p);
1178 		return (0);
1179 	}
1180 	if ((ops == KTROP_SET && p->p_state == PRS_NEW) ||
1181 	    p_cansee(td, p) != 0) {
1182 		/*
1183 		 * Disallow setting trace points if the process is being born.
1184 		 * This avoids races with trace point inheritance in
1185 		 * ktrprocfork().
1186 		 */
1187 		PROC_UNLOCK(p);
1188 		return (0);
1189 	}
1190 	if ((p->p_flag & P_WEXIT) != 0) {
1191 		/*
1192 		 * There's nothing to do if the process is exiting, but avoid
1193 		 * signaling an error.
1194 		 */
1195 		PROC_UNLOCK(p);
1196 		return (1);
1197 	}
1198 	old_kiop = NULL;
1199 	mtx_lock(&ktrace_mtx);
1200 	if (ops == KTROP_SET) {
1201 		if (p->p_ktrioparms != NULL &&
1202 		    p->p_ktrioparms->vp != new_kiop->vp) {
1203 			/* if trace file already in use, relinquish below */
1204 			old_kiop = ktr_io_params_rele(p->p_ktrioparms);
1205 			p->p_ktrioparms = NULL;
1206 		}
1207 		if (p->p_ktrioparms == NULL) {
1208 			p->p_ktrioparms = new_kiop;
1209 			ktr_io_params_ref(new_kiop);
1210 		}
1211 		p->p_traceflag |= facs;
1212 		if (priv_check(td, PRIV_KTRACE) == 0)
1213 			p->p_traceflag |= KTRFAC_ROOT;
1214 	} else {
1215 		/* KTROP_CLEAR */
1216 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1217 			/* no more tracing */
1218 			old_kiop = ktr_freeproc(p);
1219 	}
1220 	mtx_unlock(&ktrace_mtx);
1221 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1222 		ktrprocctor_entered(td, p);
1223 	PROC_UNLOCK(p);
1224 	ktr_io_params_free(old_kiop);
1225 
1226 	return (1);
1227 }
1228 
1229 static int
1230 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1231     struct ktr_io_params *new_kiop)
1232 {
1233 	struct proc *p;
1234 	int ret = 0;
1235 
1236 	p = top;
1237 	PROC_LOCK_ASSERT(p, MA_OWNED);
1238 	sx_assert(&proctree_lock, SX_LOCKED);
1239 	for (;;) {
1240 		ret |= ktrops(td, p, ops, facs, new_kiop);
1241 		/*
1242 		 * If this process has children, descend to them next,
1243 		 * otherwise do any siblings, and if done with this level,
1244 		 * follow back up the tree (but not past top).
1245 		 */
1246 		if (!LIST_EMPTY(&p->p_children))
1247 			p = LIST_FIRST(&p->p_children);
1248 		else for (;;) {
1249 			if (p == top)
1250 				return (ret);
1251 			if (LIST_NEXT(p, p_sibling)) {
1252 				p = LIST_NEXT(p, p_sibling);
1253 				break;
1254 			}
1255 			p = p->p_pptr;
1256 		}
1257 		PROC_LOCK(p);
1258 	}
1259 	/*NOTREACHED*/
1260 }
1261 
1262 static void
1263 ktr_writerequest(struct thread *td, struct ktr_request *req)
1264 {
1265 	struct ktr_io_params *kiop, *kiop1;
1266 	struct ktr_header *kth;
1267 	struct vnode *vp;
1268 	struct proc *p;
1269 	struct ucred *cred;
1270 	struct uio auio;
1271 	struct iovec aiov[3];
1272 	struct mount *mp;
1273 	off_t lim;
1274 	int datalen, buflen;
1275 	int error;
1276 
1277 	p = td->td_proc;
1278 
1279 	/*
1280 	 * We reference the kiop for use in I/O in case ktrace is
1281 	 * disabled on the process as we write out the request.
1282 	 */
1283 	mtx_lock(&ktrace_mtx);
1284 	kiop = p->p_ktrioparms;
1285 
1286 	/*
1287 	 * If kiop is NULL, it has been cleared out from under this
1288 	 * request, so just drop it.
1289 	 */
1290 	if (kiop == NULL) {
1291 		mtx_unlock(&ktrace_mtx);
1292 		return;
1293 	}
1294 
1295 	ktr_io_params_ref(kiop);
1296 	vp = kiop->vp;
1297 	cred = kiop->cr;
1298 	lim = kiop->lim;
1299 
1300 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1301 	mtx_unlock(&ktrace_mtx);
1302 
1303 	kth = &req->ktr_header;
1304 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths),
1305 	    ("data_lengths array overflow"));
1306 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1307 	buflen = kth->ktr_len;
1308 	auio.uio_iov = &aiov[0];
1309 	auio.uio_offset = 0;
1310 	auio.uio_segflg = UIO_SYSSPACE;
1311 	auio.uio_rw = UIO_WRITE;
1312 	aiov[0].iov_base = (caddr_t)kth;
1313 	aiov[0].iov_len = sizeof(struct ktr_header);
1314 	auio.uio_resid = sizeof(struct ktr_header);
1315 	auio.uio_iovcnt = 1;
1316 	auio.uio_td = td;
1317 	if (datalen != 0) {
1318 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1319 		aiov[1].iov_len = datalen;
1320 		auio.uio_resid += datalen;
1321 		auio.uio_iovcnt++;
1322 		kth->ktr_len += datalen;
1323 	}
1324 	if (buflen != 0) {
1325 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1326 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1327 		aiov[auio.uio_iovcnt].iov_len = buflen;
1328 		auio.uio_resid += buflen;
1329 		auio.uio_iovcnt++;
1330 	}
1331 
1332 	vn_start_write(vp, &mp, V_WAIT);
1333 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1334 	td->td_ktr_io_lim = lim;
1335 #ifdef MAC
1336 	error = mac_vnode_check_write(cred, NOCRED, vp);
1337 	if (error == 0)
1338 #endif
1339 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1340 	VOP_UNLOCK(vp);
1341 	vn_finished_write(mp);
1342 	if (error == 0) {
1343 		mtx_lock(&ktrace_mtx);
1344 		kiop = ktr_io_params_rele(kiop);
1345 		mtx_unlock(&ktrace_mtx);
1346 		ktr_io_params_free(kiop);
1347 		return;
1348 	}
1349 
1350 	/*
1351 	 * If error encountered, give up tracing on this vnode on this
1352 	 * process.  Other processes might still be suitable for
1353 	 * writes to this vnode.
1354 	 */
1355 	log(LOG_NOTICE,
1356 	    "ktrace write failed, errno %d, tracing stopped for pid %d\n",
1357 	    error, p->p_pid);
1358 
1359 	kiop1 = NULL;
1360 	PROC_LOCK(p);
1361 	mtx_lock(&ktrace_mtx);
1362 	if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
1363 		kiop1 = ktr_freeproc(p);
1364 	kiop = ktr_io_params_rele(kiop);
1365 	mtx_unlock(&ktrace_mtx);
1366 	PROC_UNLOCK(p);
1367 	ktr_io_params_free(kiop1);
1368 	ktr_io_params_free(kiop);
1369 }
1370 
1371 /*
1372  * Return true if caller has permission to set the ktracing state
1373  * of target.  Essentially, the target can't possess any
1374  * more permissions than the caller.  KTRFAC_ROOT signifies that
1375  * root previously set the tracing status on the target process, and
1376  * so, only root may further change it.
1377  */
1378 static int
1379 ktrcanset(struct thread *td, struct proc *targetp)
1380 {
1381 
1382 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1383 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1384 	    priv_check(td, PRIV_KTRACE))
1385 		return (0);
1386 
1387 	if (p_candebug(td, targetp) != 0)
1388 		return (0);
1389 
1390 	return (1);
1391 }
1392 
1393 #endif /* KTRACE */
1394