xref: /freebsd/sys/kern/kern_ktrace.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 #include "opt_mac.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/namei.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/unistd.h>
53 #include <sys/vnode.h>
54 #include <sys/ktrace.h>
55 #include <sys/sx.h>
56 #include <sys/sysctl.h>
57 #include <sys/syslog.h>
58 #include <sys/sysproto.h>
59 
60 #include <security/mac/mac_framework.h>
61 
62 /*
63  * The ktrace facility allows the tracing of certain key events in user space
64  * processes, such as system calls, signal delivery, context switches, and
65  * user generated events using utrace(2).  It works by streaming event
66  * records and data to a vnode associated with the process using the
67  * ktrace(2) system call.  In general, records can be written directly from
68  * the context that generates the event.  One important exception to this is
69  * during a context switch, where sleeping is not permitted.  To handle this
70  * case, trace events are generated using in-kernel ktr_request records, and
71  * then delivered to disk at a convenient moment -- either immediately, the
72  * next traceable event, at system call return, or at process exit.
73  *
74  * When dealing with multiple threads or processes writing to the same event
75  * log, ordering guarantees are weak: specifically, if an event has multiple
76  * records (i.e., system call enter and return), they may be interlaced with
77  * records from another event.  Process and thread ID information is provided
78  * in the record, and user applications can de-interlace events if required.
79  */
80 
81 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
82 
83 #ifdef KTRACE
84 
85 #ifndef KTRACE_REQUEST_POOL
86 #define	KTRACE_REQUEST_POOL	100
87 #endif
88 
89 struct ktr_request {
90 	struct	ktr_header ktr_header;
91 	void	*ktr_buffer;
92 	union {
93 		struct	ktr_syscall ktr_syscall;
94 		struct	ktr_sysret ktr_sysret;
95 		struct	ktr_genio ktr_genio;
96 		struct	ktr_psig ktr_psig;
97 		struct	ktr_csw ktr_csw;
98 	} ktr_data;
99 	STAILQ_ENTRY(ktr_request) ktr_list;
100 };
101 
102 static int data_lengths[] = {
103 	0,					/* none */
104 	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
105 	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
106 	0,					/* KTR_NAMEI */
107 	sizeof(struct ktr_genio),		/* KTR_GENIO */
108 	sizeof(struct ktr_psig),		/* KTR_PSIG */
109 	sizeof(struct ktr_csw),			/* KTR_CSW */
110 	0					/* KTR_USER */
111 };
112 
113 static STAILQ_HEAD(, ktr_request) ktr_free;
114 
115 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
116 
117 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
118 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
119 
120 static u_int ktr_geniosize = PAGE_SIZE;
121 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
122 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
123     0, "Maximum size of genio event payload");
124 
125 static int print_message = 1;
126 struct mtx ktrace_mtx;
127 static struct sx ktrace_sx;
128 
129 static void ktrace_init(void *dummy);
130 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
131 static u_int ktrace_resize_pool(u_int newsize);
132 static struct ktr_request *ktr_getrequest(int type);
133 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
134 static void ktr_freerequest(struct ktr_request *req);
135 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
136 static int ktrcanset(struct thread *,struct proc *);
137 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
138 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
139 
140 /*
141  * ktrace itself generates events, such as context switches, which we do not
142  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
143  * whether or not it is in a region where tracing of events should be
144  * suppressed.
145  */
146 static void
147 ktrace_enter(struct thread *td)
148 {
149 
150 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
151 	td->td_pflags |= TDP_INKTRACE;
152 }
153 
154 static void
155 ktrace_exit(struct thread *td)
156 {
157 
158 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
159 	td->td_pflags &= ~TDP_INKTRACE;
160 }
161 
162 static void
163 ktrace_assert(struct thread *td)
164 {
165 
166 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
167 }
168 
169 static void
170 ktrace_init(void *dummy)
171 {
172 	struct ktr_request *req;
173 	int i;
174 
175 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
176 	sx_init(&ktrace_sx, "ktrace_sx");
177 	STAILQ_INIT(&ktr_free);
178 	for (i = 0; i < ktr_requestpool; i++) {
179 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
180 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
181 	}
182 }
183 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
184 
185 static int
186 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
187 {
188 	struct thread *td;
189 	u_int newsize, oldsize, wantsize;
190 	int error;
191 
192 	/* Handle easy read-only case first to avoid warnings from GCC. */
193 	if (!req->newptr) {
194 		mtx_lock(&ktrace_mtx);
195 		oldsize = ktr_requestpool;
196 		mtx_unlock(&ktrace_mtx);
197 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
198 	}
199 
200 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
201 	if (error)
202 		return (error);
203 	td = curthread;
204 	ktrace_enter(td);
205 	mtx_lock(&ktrace_mtx);
206 	oldsize = ktr_requestpool;
207 	newsize = ktrace_resize_pool(wantsize);
208 	mtx_unlock(&ktrace_mtx);
209 	ktrace_exit(td);
210 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
211 	if (error)
212 		return (error);
213 	if (wantsize > oldsize && newsize < wantsize)
214 		return (ENOSPC);
215 	return (0);
216 }
217 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
218     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
219 
220 static u_int
221 ktrace_resize_pool(u_int newsize)
222 {
223 	struct ktr_request *req;
224 	int bound;
225 
226 	mtx_assert(&ktrace_mtx, MA_OWNED);
227 	print_message = 1;
228 	bound = newsize - ktr_requestpool;
229 	if (bound == 0)
230 		return (ktr_requestpool);
231 	if (bound < 0)
232 		/* Shrink pool down to newsize if possible. */
233 		while (bound++ < 0) {
234 			req = STAILQ_FIRST(&ktr_free);
235 			if (req == NULL)
236 				return (ktr_requestpool);
237 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
238 			ktr_requestpool--;
239 			mtx_unlock(&ktrace_mtx);
240 			free(req, M_KTRACE);
241 			mtx_lock(&ktrace_mtx);
242 		}
243 	else
244 		/* Grow pool up to newsize. */
245 		while (bound-- > 0) {
246 			mtx_unlock(&ktrace_mtx);
247 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
248 			    M_WAITOK);
249 			mtx_lock(&ktrace_mtx);
250 			STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
251 			ktr_requestpool++;
252 		}
253 	return (ktr_requestpool);
254 }
255 
256 static struct ktr_request *
257 ktr_getrequest(int type)
258 {
259 	struct ktr_request *req;
260 	struct thread *td = curthread;
261 	struct proc *p = td->td_proc;
262 	int pm;
263 
264 	ktrace_enter(td);	/* XXX: In caller instead? */
265 	mtx_lock(&ktrace_mtx);
266 	if (!KTRCHECK(td, type)) {
267 		mtx_unlock(&ktrace_mtx);
268 		ktrace_exit(td);
269 		return (NULL);
270 	}
271 	req = STAILQ_FIRST(&ktr_free);
272 	if (req != NULL) {
273 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
274 		req->ktr_header.ktr_type = type;
275 		if (p->p_traceflag & KTRFAC_DROP) {
276 			req->ktr_header.ktr_type |= KTR_DROP;
277 			p->p_traceflag &= ~KTRFAC_DROP;
278 		}
279 		mtx_unlock(&ktrace_mtx);
280 		microtime(&req->ktr_header.ktr_time);
281 		req->ktr_header.ktr_pid = p->p_pid;
282 		req->ktr_header.ktr_tid = td->td_tid;
283 		bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
284 		req->ktr_buffer = NULL;
285 		req->ktr_header.ktr_len = 0;
286 	} else {
287 		p->p_traceflag |= KTRFAC_DROP;
288 		pm = print_message;
289 		print_message = 0;
290 		mtx_unlock(&ktrace_mtx);
291 		if (pm)
292 			printf("Out of ktrace request objects.\n");
293 		ktrace_exit(td);
294 	}
295 	return (req);
296 }
297 
298 /*
299  * Some trace generation environments don't permit direct access to VFS,
300  * such as during a context switch where sleeping is not allowed.  Under these
301  * circumstances, queue a request to the thread to be written asynchronously
302  * later.
303  */
304 static void
305 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
306 {
307 
308 	mtx_lock(&ktrace_mtx);
309 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
310 	mtx_unlock(&ktrace_mtx);
311 	ktrace_exit(td);
312 }
313 
314 /*
315  * Drain any pending ktrace records from the per-thread queue to disk.  This
316  * is used both internally before committing other records, and also on
317  * system call return.  We drain all the ones we can find at the time when
318  * drain is requested, but don't keep draining after that as those events
319  * may me approximately "after" the current event.
320  */
321 static void
322 ktr_drain(struct thread *td)
323 {
324 	struct ktr_request *queued_req;
325 	STAILQ_HEAD(, ktr_request) local_queue;
326 
327 	ktrace_assert(td);
328 	sx_assert(&ktrace_sx, SX_XLOCKED);
329 
330 	STAILQ_INIT(&local_queue);	/* XXXRW: needed? */
331 
332 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
333 		mtx_lock(&ktrace_mtx);
334 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
335 		mtx_unlock(&ktrace_mtx);
336 
337 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
338 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
339 			ktr_writerequest(td, queued_req);
340 			ktr_freerequest(queued_req);
341 		}
342 	}
343 }
344 
345 /*
346  * Submit a trace record for immediate commit to disk -- to be used only
347  * where entering VFS is OK.  First drain any pending records that may have
348  * been cached in the thread.
349  */
350 static void
351 ktr_submitrequest(struct thread *td, struct ktr_request *req)
352 {
353 
354 	ktrace_assert(td);
355 
356 	sx_xlock(&ktrace_sx);
357 	ktr_drain(td);
358 	ktr_writerequest(td, req);
359 	ktr_freerequest(req);
360 	sx_xunlock(&ktrace_sx);
361 
362 	ktrace_exit(td);
363 }
364 
365 static void
366 ktr_freerequest(struct ktr_request *req)
367 {
368 
369 	if (req->ktr_buffer != NULL)
370 		free(req->ktr_buffer, M_KTRACE);
371 	mtx_lock(&ktrace_mtx);
372 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
373 	mtx_unlock(&ktrace_mtx);
374 }
375 
376 /*
377  * MPSAFE
378  */
379 void
380 ktrsyscall(code, narg, args)
381 	int code, narg;
382 	register_t args[];
383 {
384 	struct ktr_request *req;
385 	struct ktr_syscall *ktp;
386 	size_t buflen;
387 	char *buf = NULL;
388 
389 	buflen = sizeof(register_t) * narg;
390 	if (buflen > 0) {
391 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
392 		bcopy(args, buf, buflen);
393 	}
394 	req = ktr_getrequest(KTR_SYSCALL);
395 	if (req == NULL) {
396 		if (buf != NULL)
397 			free(buf, M_KTRACE);
398 		return;
399 	}
400 	ktp = &req->ktr_data.ktr_syscall;
401 	ktp->ktr_code = code;
402 	ktp->ktr_narg = narg;
403 	if (buflen > 0) {
404 		req->ktr_header.ktr_len = buflen;
405 		req->ktr_buffer = buf;
406 	}
407 	ktr_submitrequest(curthread, req);
408 }
409 
410 /*
411  * MPSAFE
412  */
413 void
414 ktrsysret(code, error, retval)
415 	int code, error;
416 	register_t retval;
417 {
418 	struct ktr_request *req;
419 	struct ktr_sysret *ktp;
420 
421 	req = ktr_getrequest(KTR_SYSRET);
422 	if (req == NULL)
423 		return;
424 	ktp = &req->ktr_data.ktr_sysret;
425 	ktp->ktr_code = code;
426 	ktp->ktr_error = error;
427 	ktp->ktr_retval = retval;		/* what about val2 ? */
428 	ktr_submitrequest(curthread, req);
429 }
430 
431 /*
432  * When a process exits, drain per-process asynchronous trace records.
433  */
434 void
435 ktrprocexit(struct thread *td)
436 {
437 
438 	ktrace_enter(td);
439 	sx_xlock(&ktrace_sx);
440 	ktr_drain(td);
441 	sx_xunlock(&ktrace_sx);
442 	ktrace_exit(td);
443 }
444 
445 /*
446  * When a thread returns, drain any asynchronous records generated by the
447  * system call.
448  */
449 void
450 ktruserret(struct thread *td)
451 {
452 
453 	ktrace_enter(td);
454 	sx_xlock(&ktrace_sx);
455 	ktr_drain(td);
456 	sx_xunlock(&ktrace_sx);
457 	ktrace_exit(td);
458 }
459 
460 void
461 ktrnamei(path)
462 	char *path;
463 {
464 	struct ktr_request *req;
465 	int namelen;
466 	char *buf = NULL;
467 
468 	namelen = strlen(path);
469 	if (namelen > 0) {
470 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
471 		bcopy(path, buf, namelen);
472 	}
473 	req = ktr_getrequest(KTR_NAMEI);
474 	if (req == NULL) {
475 		if (buf != NULL)
476 			free(buf, M_KTRACE);
477 		return;
478 	}
479 	if (namelen > 0) {
480 		req->ktr_header.ktr_len = namelen;
481 		req->ktr_buffer = buf;
482 	}
483 	ktr_submitrequest(curthread, req);
484 }
485 
486 void
487 ktrgenio(fd, rw, uio, error)
488 	int fd;
489 	enum uio_rw rw;
490 	struct uio *uio;
491 	int error;
492 {
493 	struct ktr_request *req;
494 	struct ktr_genio *ktg;
495 	int datalen;
496 	char *buf;
497 
498 	if (error) {
499 		free(uio, M_IOV);
500 		return;
501 	}
502 	uio->uio_offset = 0;
503 	uio->uio_rw = UIO_WRITE;
504 	datalen = imin(uio->uio_resid, ktr_geniosize);
505 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
506 	error = uiomove(buf, datalen, uio);
507 	free(uio, M_IOV);
508 	if (error) {
509 		free(buf, M_KTRACE);
510 		return;
511 	}
512 	req = ktr_getrequest(KTR_GENIO);
513 	if (req == NULL) {
514 		free(buf, M_KTRACE);
515 		return;
516 	}
517 	ktg = &req->ktr_data.ktr_genio;
518 	ktg->ktr_fd = fd;
519 	ktg->ktr_rw = rw;
520 	req->ktr_header.ktr_len = datalen;
521 	req->ktr_buffer = buf;
522 	ktr_submitrequest(curthread, req);
523 }
524 
525 void
526 ktrpsig(sig, action, mask, code)
527 	int sig;
528 	sig_t action;
529 	sigset_t *mask;
530 	int code;
531 {
532 	struct ktr_request *req;
533 	struct ktr_psig	*kp;
534 
535 	req = ktr_getrequest(KTR_PSIG);
536 	if (req == NULL)
537 		return;
538 	kp = &req->ktr_data.ktr_psig;
539 	kp->signo = (char)sig;
540 	kp->action = action;
541 	kp->mask = *mask;
542 	kp->code = code;
543 	ktr_enqueuerequest(curthread, req);
544 }
545 
546 void
547 ktrcsw(out, user)
548 	int out, user;
549 {
550 	struct ktr_request *req;
551 	struct ktr_csw *kc;
552 
553 	req = ktr_getrequest(KTR_CSW);
554 	if (req == NULL)
555 		return;
556 	kc = &req->ktr_data.ktr_csw;
557 	kc->out = out;
558 	kc->user = user;
559 	ktr_enqueuerequest(curthread, req);
560 }
561 #endif /* KTRACE */
562 
563 /* Interface and common routines */
564 
565 /*
566  * ktrace system call
567  *
568  * MPSAFE
569  */
570 #ifndef _SYS_SYSPROTO_H_
571 struct ktrace_args {
572 	char	*fname;
573 	int	ops;
574 	int	facs;
575 	int	pid;
576 };
577 #endif
578 /* ARGSUSED */
579 int
580 ktrace(td, uap)
581 	struct thread *td;
582 	register struct ktrace_args *uap;
583 {
584 #ifdef KTRACE
585 	register struct vnode *vp = NULL;
586 	register struct proc *p;
587 	struct pgrp *pg;
588 	int facs = uap->facs & ~KTRFAC_ROOT;
589 	int ops = KTROP(uap->ops);
590 	int descend = uap->ops & KTRFLAG_DESCEND;
591 	int nfound, ret = 0;
592 	int flags, error = 0, vfslocked;
593 	struct nameidata nd;
594 	struct ucred *cred;
595 
596 	/*
597 	 * Need something to (un)trace.
598 	 */
599 	if (ops != KTROP_CLEARFILE && facs == 0)
600 		return (EINVAL);
601 
602 	ktrace_enter(td);
603 	if (ops != KTROP_CLEAR) {
604 		/*
605 		 * an operation which requires a file argument.
606 		 */
607 		NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
608 		    uap->fname, td);
609 		flags = FREAD | FWRITE | O_NOFOLLOW;
610 		error = vn_open(&nd, &flags, 0, -1);
611 		if (error) {
612 			ktrace_exit(td);
613 			return (error);
614 		}
615 		vfslocked = NDHASGIANT(&nd);
616 		NDFREE(&nd, NDF_ONLY_PNBUF);
617 		vp = nd.ni_vp;
618 		VOP_UNLOCK(vp, 0, td);
619 		if (vp->v_type != VREG) {
620 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
621 			VFS_UNLOCK_GIANT(vfslocked);
622 			ktrace_exit(td);
623 			return (EACCES);
624 		}
625 		VFS_UNLOCK_GIANT(vfslocked);
626 	}
627 	/*
628 	 * Clear all uses of the tracefile.
629 	 */
630 	if (ops == KTROP_CLEARFILE) {
631 		int vrele_count;
632 
633 		vrele_count = 0;
634 		sx_slock(&allproc_lock);
635 		FOREACH_PROC_IN_SYSTEM(p) {
636 			PROC_LOCK(p);
637 			if (p->p_tracevp == vp) {
638 				if (ktrcanset(td, p)) {
639 					mtx_lock(&ktrace_mtx);
640 					cred = p->p_tracecred;
641 					p->p_tracecred = NULL;
642 					p->p_tracevp = NULL;
643 					p->p_traceflag = 0;
644 					mtx_unlock(&ktrace_mtx);
645 					vrele_count++;
646 					crfree(cred);
647 				} else
648 					error = EPERM;
649 			}
650 			PROC_UNLOCK(p);
651 		}
652 		sx_sunlock(&allproc_lock);
653 		if (vrele_count > 0) {
654 			vfslocked = VFS_LOCK_GIANT(vp->v_mount);
655 			while (vrele_count-- > 0)
656 				vrele(vp);
657 			VFS_UNLOCK_GIANT(vfslocked);
658 		}
659 		goto done;
660 	}
661 	/*
662 	 * do it
663 	 */
664 	sx_slock(&proctree_lock);
665 	if (uap->pid < 0) {
666 		/*
667 		 * by process group
668 		 */
669 		pg = pgfind(-uap->pid);
670 		if (pg == NULL) {
671 			sx_sunlock(&proctree_lock);
672 			error = ESRCH;
673 			goto done;
674 		}
675 		/*
676 		 * ktrops() may call vrele(). Lock pg_members
677 		 * by the proctree_lock rather than pg_mtx.
678 		 */
679 		PGRP_UNLOCK(pg);
680 		nfound = 0;
681 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
682 			PROC_LOCK(p);
683 			if (p_cansee(td, p) != 0) {
684 				PROC_UNLOCK(p);
685 				continue;
686 			}
687 			PROC_UNLOCK(p);
688 			nfound++;
689 			if (descend)
690 				ret |= ktrsetchildren(td, p, ops, facs, vp);
691 			else
692 				ret |= ktrops(td, p, ops, facs, vp);
693 		}
694 		if (nfound == 0) {
695 			sx_sunlock(&proctree_lock);
696 			error = ESRCH;
697 			goto done;
698 		}
699 	} else {
700 		/*
701 		 * by pid
702 		 */
703 		p = pfind(uap->pid);
704 		if (p == NULL) {
705 			sx_sunlock(&proctree_lock);
706 			error = ESRCH;
707 			goto done;
708 		}
709 		error = p_cansee(td, p);
710 		/*
711 		 * The slock of the proctree lock will keep this process
712 		 * from going away, so unlocking the proc here is ok.
713 		 */
714 		PROC_UNLOCK(p);
715 		if (error) {
716 			sx_sunlock(&proctree_lock);
717 			goto done;
718 		}
719 		if (descend)
720 			ret |= ktrsetchildren(td, p, ops, facs, vp);
721 		else
722 			ret |= ktrops(td, p, ops, facs, vp);
723 	}
724 	sx_sunlock(&proctree_lock);
725 	if (!ret)
726 		error = EPERM;
727 done:
728 	if (vp != NULL) {
729 		vfslocked = VFS_LOCK_GIANT(vp->v_mount);
730 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
731 		VFS_UNLOCK_GIANT(vfslocked);
732 	}
733 	ktrace_exit(td);
734 	return (error);
735 #else /* !KTRACE */
736 	return (ENOSYS);
737 #endif /* KTRACE */
738 }
739 
740 /*
741  * utrace system call
742  *
743  * MPSAFE
744  */
745 /* ARGSUSED */
746 int
747 utrace(td, uap)
748 	struct thread *td;
749 	register struct utrace_args *uap;
750 {
751 
752 #ifdef KTRACE
753 	struct ktr_request *req;
754 	void *cp;
755 	int error;
756 
757 	if (!KTRPOINT(td, KTR_USER))
758 		return (0);
759 	if (uap->len > KTR_USER_MAXLEN)
760 		return (EINVAL);
761 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
762 	error = copyin(uap->addr, cp, uap->len);
763 	if (error) {
764 		free(cp, M_KTRACE);
765 		return (error);
766 	}
767 	req = ktr_getrequest(KTR_USER);
768 	if (req == NULL) {
769 		free(cp, M_KTRACE);
770 		return (ENOMEM);
771 	}
772 	req->ktr_buffer = cp;
773 	req->ktr_header.ktr_len = uap->len;
774 	ktr_submitrequest(td, req);
775 	return (0);
776 #else /* !KTRACE */
777 	return (ENOSYS);
778 #endif /* KTRACE */
779 }
780 
781 #ifdef KTRACE
782 static int
783 ktrops(td, p, ops, facs, vp)
784 	struct thread *td;
785 	struct proc *p;
786 	int ops, facs;
787 	struct vnode *vp;
788 {
789 	struct vnode *tracevp = NULL;
790 	struct ucred *tracecred = NULL;
791 
792 	PROC_LOCK(p);
793 	if (!ktrcanset(td, p)) {
794 		PROC_UNLOCK(p);
795 		return (0);
796 	}
797 	mtx_lock(&ktrace_mtx);
798 	if (ops == KTROP_SET) {
799 		if (p->p_tracevp != vp) {
800 			/*
801 			 * if trace file already in use, relinquish below
802 			 */
803 			tracevp = p->p_tracevp;
804 			VREF(vp);
805 			p->p_tracevp = vp;
806 		}
807 		if (p->p_tracecred != td->td_ucred) {
808 			tracecred = p->p_tracecred;
809 			p->p_tracecred = crhold(td->td_ucred);
810 		}
811 		p->p_traceflag |= facs;
812 		if (priv_check_cred(td->td_ucred, PRIV_KTRACE,
813 		    SUSER_ALLOWJAIL) == 0)
814 			p->p_traceflag |= KTRFAC_ROOT;
815 	} else {
816 		/* KTROP_CLEAR */
817 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
818 			/* no more tracing */
819 			p->p_traceflag = 0;
820 			tracevp = p->p_tracevp;
821 			p->p_tracevp = NULL;
822 			tracecred = p->p_tracecred;
823 			p->p_tracecred = NULL;
824 		}
825 	}
826 	mtx_unlock(&ktrace_mtx);
827 	PROC_UNLOCK(p);
828 	if (tracevp != NULL) {
829 		int vfslocked;
830 
831 		vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
832 		vrele(tracevp);
833 		VFS_UNLOCK_GIANT(vfslocked);
834 	}
835 	if (tracecred != NULL)
836 		crfree(tracecred);
837 
838 	return (1);
839 }
840 
841 static int
842 ktrsetchildren(td, top, ops, facs, vp)
843 	struct thread *td;
844 	struct proc *top;
845 	int ops, facs;
846 	struct vnode *vp;
847 {
848 	register struct proc *p;
849 	register int ret = 0;
850 
851 	p = top;
852 	sx_assert(&proctree_lock, SX_LOCKED);
853 	for (;;) {
854 		ret |= ktrops(td, p, ops, facs, vp);
855 		/*
856 		 * If this process has children, descend to them next,
857 		 * otherwise do any siblings, and if done with this level,
858 		 * follow back up the tree (but not past top).
859 		 */
860 		if (!LIST_EMPTY(&p->p_children))
861 			p = LIST_FIRST(&p->p_children);
862 		else for (;;) {
863 			if (p == top)
864 				return (ret);
865 			if (LIST_NEXT(p, p_sibling)) {
866 				p = LIST_NEXT(p, p_sibling);
867 				break;
868 			}
869 			p = p->p_pptr;
870 		}
871 	}
872 	/*NOTREACHED*/
873 }
874 
875 static void
876 ktr_writerequest(struct thread *td, struct ktr_request *req)
877 {
878 	struct ktr_header *kth;
879 	struct vnode *vp;
880 	struct proc *p;
881 	struct ucred *cred;
882 	struct uio auio;
883 	struct iovec aiov[3];
884 	struct mount *mp;
885 	int datalen, buflen, vrele_count;
886 	int error, vfslocked;
887 
888 	/*
889 	 * We hold the vnode and credential for use in I/O in case ktrace is
890 	 * disabled on the process as we write out the request.
891 	 *
892 	 * XXXRW: This is not ideal: we could end up performing a write after
893 	 * the vnode has been closed.
894 	 */
895 	mtx_lock(&ktrace_mtx);
896 	vp = td->td_proc->p_tracevp;
897 	if (vp != NULL)
898 		VREF(vp);
899 	cred = td->td_proc->p_tracecred;
900 	if (cred != NULL)
901 		crhold(cred);
902 	mtx_unlock(&ktrace_mtx);
903 
904 	/*
905 	 * If vp is NULL, the vp has been cleared out from under this
906 	 * request, so just drop it.  Make sure the credential and vnode are
907 	 * in sync: we should have both or neither.
908 	 */
909 	if (vp == NULL) {
910 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
911 		return;
912 	}
913 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
914 
915 	kth = &req->ktr_header;
916 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
917 	buflen = kth->ktr_len;
918 	auio.uio_iov = &aiov[0];
919 	auio.uio_offset = 0;
920 	auio.uio_segflg = UIO_SYSSPACE;
921 	auio.uio_rw = UIO_WRITE;
922 	aiov[0].iov_base = (caddr_t)kth;
923 	aiov[0].iov_len = sizeof(struct ktr_header);
924 	auio.uio_resid = sizeof(struct ktr_header);
925 	auio.uio_iovcnt = 1;
926 	auio.uio_td = td;
927 	if (datalen != 0) {
928 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
929 		aiov[1].iov_len = datalen;
930 		auio.uio_resid += datalen;
931 		auio.uio_iovcnt++;
932 		kth->ktr_len += datalen;
933 	}
934 	if (buflen != 0) {
935 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
936 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
937 		aiov[auio.uio_iovcnt].iov_len = buflen;
938 		auio.uio_resid += buflen;
939 		auio.uio_iovcnt++;
940 	}
941 
942 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
943 	vn_start_write(vp, &mp, V_WAIT);
944 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
945 	(void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
946 #ifdef MAC
947 	error = mac_check_vnode_write(cred, NOCRED, vp);
948 	if (error == 0)
949 #endif
950 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
951 	VOP_UNLOCK(vp, 0, td);
952 	vn_finished_write(mp);
953 	vrele(vp);
954 	VFS_UNLOCK_GIANT(vfslocked);
955 	if (!error)
956 		return;
957 	/*
958 	 * If error encountered, give up tracing on this vnode.  We defer
959 	 * all the vrele()'s on the vnode until after we are finished walking
960 	 * the various lists to avoid needlessly holding locks.
961 	 */
962 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
963 	    error);
964 	vrele_count = 0;
965 	/*
966 	 * First, clear this vnode from being used by any processes in the
967 	 * system.
968 	 * XXX - If one process gets an EPERM writing to the vnode, should
969 	 * we really do this?  Other processes might have suitable
970 	 * credentials for the operation.
971 	 */
972 	cred = NULL;
973 	sx_slock(&allproc_lock);
974 	FOREACH_PROC_IN_SYSTEM(p) {
975 		PROC_LOCK(p);
976 		if (p->p_tracevp == vp) {
977 			mtx_lock(&ktrace_mtx);
978 			p->p_tracevp = NULL;
979 			p->p_traceflag = 0;
980 			cred = p->p_tracecred;
981 			p->p_tracecred = NULL;
982 			mtx_unlock(&ktrace_mtx);
983 			vrele_count++;
984 		}
985 		PROC_UNLOCK(p);
986 		if (cred != NULL) {
987 			crfree(cred);
988 			cred = NULL;
989 		}
990 	}
991 	sx_sunlock(&allproc_lock);
992 
993 	/*
994 	 * We can't clear any pending requests in threads that have cached
995 	 * them but not yet committed them, as those are per-thread.  The
996 	 * thread will have to clear it itself on system call return.
997 	 */
998 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
999 	while (vrele_count-- > 0)
1000 		vrele(vp);
1001 	VFS_UNLOCK_GIANT(vfslocked);
1002 }
1003 
1004 /*
1005  * Return true if caller has permission to set the ktracing state
1006  * of target.  Essentially, the target can't possess any
1007  * more permissions than the caller.  KTRFAC_ROOT signifies that
1008  * root previously set the tracing status on the target process, and
1009  * so, only root may further change it.
1010  */
1011 static int
1012 ktrcanset(td, targetp)
1013 	struct thread *td;
1014 	struct proc *targetp;
1015 {
1016 
1017 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1018 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1019 	    priv_check_cred(td->td_ucred, PRIV_KTRACE, SUSER_ALLOWJAIL))
1020 		return (0);
1021 
1022 	if (p_candebug(td, targetp) != 0)
1023 		return (0);
1024 
1025 	return (1);
1026 }
1027 
1028 #endif /* KTRACE */
1029