xref: /freebsd/sys/kern/kern_ktrace.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 #include "opt_mac.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mac.h>
48 #include <sys/malloc.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/unistd.h>
52 #include <sys/vnode.h>
53 #include <sys/ktrace.h>
54 #include <sys/sx.h>
55 #include <sys/sysctl.h>
56 #include <sys/syslog.h>
57 #include <sys/sysproto.h>
58 
59 /*
60  * The ktrace facility allows the tracing of certain key events in user space
61  * processes, such as system calls, signal delivery, context switches, and
62  * user generated events using utrace(2).  It works by streaming event
63  * records and data to a vnode associated with the process using the
64  * ktrace(2) system call.  In general, records can be written directly from
65  * the context that generates the event.  One important exception to this is
66  * during a context switch, where sleeping is not permitted.  To handle this
67  * case, trace events are generated using in-kernel ktr_request records, and
68  * then delivered to disk at a convenient moment -- either immediately, the
69  * next traceable event, at system call return, or at process exit.
70  *
71  * When dealing with multiple threads or processes writing to the same event
72  * log, ordering guarantees are weak: specifically, if an event has multiple
73  * records (i.e., system call enter and return), they may be interlaced with
74  * records from another event.  Process and thread ID information is provided
75  * in the record, and user applications can de-interlace events if required.
76  */
77 
78 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
79 
80 #ifdef KTRACE
81 
82 #ifndef KTRACE_REQUEST_POOL
83 #define	KTRACE_REQUEST_POOL	100
84 #endif
85 
86 struct ktr_request {
87 	struct	ktr_header ktr_header;
88 	void	*ktr_buffer;
89 	union {
90 		struct	ktr_syscall ktr_syscall;
91 		struct	ktr_sysret ktr_sysret;
92 		struct	ktr_genio ktr_genio;
93 		struct	ktr_psig ktr_psig;
94 		struct	ktr_csw ktr_csw;
95 	} ktr_data;
96 	STAILQ_ENTRY(ktr_request) ktr_list;
97 };
98 
99 static int data_lengths[] = {
100 	0,					/* none */
101 	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
102 	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
103 	0,					/* KTR_NAMEI */
104 	sizeof(struct ktr_genio),		/* KTR_GENIO */
105 	sizeof(struct ktr_psig),		/* KTR_PSIG */
106 	sizeof(struct ktr_csw),			/* KTR_CSW */
107 	0					/* KTR_USER */
108 };
109 
110 static STAILQ_HEAD(, ktr_request) ktr_free;
111 
112 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
113 
114 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
115 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
116 
117 static u_int ktr_geniosize = PAGE_SIZE;
118 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
119 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
120     0, "Maximum size of genio event payload");
121 
122 static int print_message = 1;
123 struct mtx ktrace_mtx;
124 static struct cv ktrace_cv;
125 static struct sx ktrace_sx;
126 
127 static void ktrace_init(void *dummy);
128 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
129 static u_int ktrace_resize_pool(u_int newsize);
130 static struct ktr_request *ktr_getrequest(int type);
131 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
132 static void ktr_freerequest(struct ktr_request *req);
133 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
134 static int ktrcanset(struct thread *,struct proc *);
135 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
136 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
137 
138 /*
139  * ktrace itself generates events, such as context switches, which we do not
140  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
141  * whether or not it is in a region where tracing of events should be
142  * suppressed.
143  */
144 static void
145 ktrace_enter(struct thread *td)
146 {
147 
148 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
149 	td->td_pflags |= TDP_INKTRACE;
150 }
151 
152 static void
153 ktrace_exit(struct thread *td)
154 {
155 
156 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
157 	td->td_pflags &= ~TDP_INKTRACE;
158 }
159 
160 static void
161 ktrace_assert(struct thread *td)
162 {
163 
164 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
165 }
166 
167 static void
168 ktrace_init(void *dummy)
169 {
170 	struct ktr_request *req;
171 	int i;
172 
173 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
174 	sx_init(&ktrace_sx, "ktrace_sx");
175 	cv_init(&ktrace_cv, "ktrace");
176 	STAILQ_INIT(&ktr_free);
177 	for (i = 0; i < ktr_requestpool; i++) {
178 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
179 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
180 	}
181 }
182 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
183 
184 static int
185 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
186 {
187 	struct thread *td;
188 	u_int newsize, oldsize, wantsize;
189 	int error;
190 
191 	/* Handle easy read-only case first to avoid warnings from GCC. */
192 	if (!req->newptr) {
193 		mtx_lock(&ktrace_mtx);
194 		oldsize = ktr_requestpool;
195 		mtx_unlock(&ktrace_mtx);
196 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
197 	}
198 
199 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
200 	if (error)
201 		return (error);
202 	td = curthread;
203 	ktrace_enter(td);
204 	mtx_lock(&ktrace_mtx);
205 	oldsize = ktr_requestpool;
206 	newsize = ktrace_resize_pool(wantsize);
207 	mtx_unlock(&ktrace_mtx);
208 	ktrace_exit(td);
209 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
210 	if (error)
211 		return (error);
212 	if (wantsize > oldsize && newsize < wantsize)
213 		return (ENOSPC);
214 	return (0);
215 }
216 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
217     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
218 
219 static u_int
220 ktrace_resize_pool(u_int newsize)
221 {
222 	struct ktr_request *req;
223 	int bound;
224 
225 	mtx_assert(&ktrace_mtx, MA_OWNED);
226 	print_message = 1;
227 	bound = newsize - ktr_requestpool;
228 	if (bound == 0)
229 		return (ktr_requestpool);
230 	if (bound < 0)
231 		/* Shrink pool down to newsize if possible. */
232 		while (bound++ < 0) {
233 			req = STAILQ_FIRST(&ktr_free);
234 			if (req == NULL)
235 				return (ktr_requestpool);
236 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
237 			ktr_requestpool--;
238 			mtx_unlock(&ktrace_mtx);
239 			free(req, M_KTRACE);
240 			mtx_lock(&ktrace_mtx);
241 		}
242 	else
243 		/* Grow pool up to newsize. */
244 		while (bound-- > 0) {
245 			mtx_unlock(&ktrace_mtx);
246 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
247 			    M_WAITOK);
248 			mtx_lock(&ktrace_mtx);
249 			STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
250 			ktr_requestpool++;
251 		}
252 	return (ktr_requestpool);
253 }
254 
255 static struct ktr_request *
256 ktr_getrequest(int type)
257 {
258 	struct ktr_request *req;
259 	struct thread *td = curthread;
260 	struct proc *p = td->td_proc;
261 	int pm;
262 
263 	ktrace_enter(td);	/* XXX: In caller instead? */
264 	mtx_lock(&ktrace_mtx);
265 	if (!KTRCHECK(td, type)) {
266 		mtx_unlock(&ktrace_mtx);
267 		ktrace_exit(td);
268 		return (NULL);
269 	}
270 	req = STAILQ_FIRST(&ktr_free);
271 	if (req != NULL) {
272 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
273 		req->ktr_header.ktr_type = type;
274 		if (p->p_traceflag & KTRFAC_DROP) {
275 			req->ktr_header.ktr_type |= KTR_DROP;
276 			p->p_traceflag &= ~KTRFAC_DROP;
277 		}
278 		mtx_unlock(&ktrace_mtx);
279 		microtime(&req->ktr_header.ktr_time);
280 		req->ktr_header.ktr_pid = p->p_pid;
281 		req->ktr_header.ktr_tid = td->td_tid;
282 		bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
283 		req->ktr_buffer = NULL;
284 		req->ktr_header.ktr_len = 0;
285 	} else {
286 		p->p_traceflag |= KTRFAC_DROP;
287 		pm = print_message;
288 		print_message = 0;
289 		mtx_unlock(&ktrace_mtx);
290 		if (pm)
291 			printf("Out of ktrace request objects.\n");
292 		ktrace_exit(td);
293 	}
294 	return (req);
295 }
296 
297 /*
298  * Some trace generation environments don't permit direct access to VFS,
299  * such as during a context switch where sleeping is not allowed.  Under these
300  * circumstances, queue a request to the thread to be written asynchronously
301  * later.
302  */
303 static void
304 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
305 {
306 
307 	mtx_lock(&ktrace_mtx);
308 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
309 	mtx_unlock(&ktrace_mtx);
310 	ktrace_exit(td);
311 }
312 
313 /*
314  * Drain any pending ktrace records from the per-thread queue to disk.  This
315  * is used both internally before committing other records, and also on
316  * system call return.  We drain all the ones we can find at the time when
317  * drain is requested, but don't keep draining after that as those events
318  * may me approximately "after" the current event.
319  */
320 static void
321 ktr_drain(struct thread *td)
322 {
323 	struct ktr_request *queued_req;
324 	STAILQ_HEAD(, ktr_request) local_queue;
325 
326 	ktrace_assert(td);
327 	sx_assert(&ktrace_sx, SX_XLOCKED);
328 
329 	STAILQ_INIT(&local_queue);	/* XXXRW: needed? */
330 
331 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
332 		mtx_lock(&ktrace_mtx);
333 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
334 		mtx_unlock(&ktrace_mtx);
335 
336 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
337 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
338 			ktr_writerequest(td, queued_req);
339 			ktr_freerequest(queued_req);
340 		}
341 	}
342 }
343 
344 /*
345  * Submit a trace record for immediate commit to disk -- to be used only
346  * where entering VFS is OK.  First drain any pending records that may have
347  * been cached in the thread.
348  */
349 static void
350 ktr_submitrequest(struct thread *td, struct ktr_request *req)
351 {
352 
353 	ktrace_assert(td);
354 
355 	sx_xlock(&ktrace_sx);
356 	ktr_drain(td);
357 	ktr_writerequest(td, req);
358 	ktr_freerequest(req);
359 	sx_xunlock(&ktrace_sx);
360 
361 	ktrace_exit(td);
362 }
363 
364 static void
365 ktr_freerequest(struct ktr_request *req)
366 {
367 
368 	if (req->ktr_buffer != NULL)
369 		free(req->ktr_buffer, M_KTRACE);
370 	mtx_lock(&ktrace_mtx);
371 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
372 	mtx_unlock(&ktrace_mtx);
373 }
374 
375 /*
376  * MPSAFE
377  */
378 void
379 ktrsyscall(code, narg, args)
380 	int code, narg;
381 	register_t args[];
382 {
383 	struct ktr_request *req;
384 	struct ktr_syscall *ktp;
385 	size_t buflen;
386 	char *buf = NULL;
387 
388 	buflen = sizeof(register_t) * narg;
389 	if (buflen > 0) {
390 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
391 		bcopy(args, buf, buflen);
392 	}
393 	req = ktr_getrequest(KTR_SYSCALL);
394 	if (req == NULL) {
395 		if (buf != NULL)
396 			free(buf, M_KTRACE);
397 		return;
398 	}
399 	ktp = &req->ktr_data.ktr_syscall;
400 	ktp->ktr_code = code;
401 	ktp->ktr_narg = narg;
402 	if (buflen > 0) {
403 		req->ktr_header.ktr_len = buflen;
404 		req->ktr_buffer = buf;
405 	}
406 	ktr_submitrequest(curthread, req);
407 }
408 
409 /*
410  * MPSAFE
411  */
412 void
413 ktrsysret(code, error, retval)
414 	int code, error;
415 	register_t retval;
416 {
417 	struct ktr_request *req;
418 	struct ktr_sysret *ktp;
419 
420 	req = ktr_getrequest(KTR_SYSRET);
421 	if (req == NULL)
422 		return;
423 	ktp = &req->ktr_data.ktr_sysret;
424 	ktp->ktr_code = code;
425 	ktp->ktr_error = error;
426 	ktp->ktr_retval = retval;		/* what about val2 ? */
427 	ktr_submitrequest(curthread, req);
428 }
429 
430 /*
431  * When a process exits, drain per-process asynchronous trace records.
432  */
433 void
434 ktrprocexit(struct thread *td)
435 {
436 
437 	ktrace_enter(td);
438 	sx_xlock(&ktrace_sx);
439 	ktr_drain(td);
440 	sx_xunlock(&ktrace_sx);
441 	ktrace_exit(td);
442 }
443 
444 /*
445  * When a thread returns, drain any asynchronous records generated by the
446  * system call.
447  */
448 void
449 ktruserret(struct thread *td)
450 {
451 
452 	ktrace_enter(td);
453 	sx_xlock(&ktrace_sx);
454 	ktr_drain(td);
455 	sx_xunlock(&ktrace_sx);
456 	ktrace_exit(td);
457 }
458 
459 void
460 ktrnamei(path)
461 	char *path;
462 {
463 	struct ktr_request *req;
464 	int namelen;
465 	char *buf = NULL;
466 
467 	namelen = strlen(path);
468 	if (namelen > 0) {
469 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
470 		bcopy(path, buf, namelen);
471 	}
472 	req = ktr_getrequest(KTR_NAMEI);
473 	if (req == NULL) {
474 		if (buf != NULL)
475 			free(buf, M_KTRACE);
476 		return;
477 	}
478 	if (namelen > 0) {
479 		req->ktr_header.ktr_len = namelen;
480 		req->ktr_buffer = buf;
481 	}
482 	ktr_submitrequest(curthread, req);
483 }
484 
485 /*
486  * Since the uio may not stay valid, we can not hand off this request to
487  * the thread and need to process it synchronously.  However, we wish to
488  * keep the relative order of records in a trace file correct, so we
489  * do put this request on the queue (if it isn't empty) and then block.
490  * The ktrace thread waks us back up when it is time for this event to
491  * be posted and blocks until we have completed writing out the event
492  * and woken it back up.
493  */
494 void
495 ktrgenio(fd, rw, uio, error)
496 	int fd;
497 	enum uio_rw rw;
498 	struct uio *uio;
499 	int error;
500 {
501 	struct ktr_request *req;
502 	struct ktr_genio *ktg;
503 	int datalen;
504 	char *buf;
505 
506 	if (error) {
507 		free(uio, M_IOV);
508 		return;
509 	}
510 	uio->uio_offset = 0;
511 	uio->uio_rw = UIO_WRITE;
512 	datalen = imin(uio->uio_resid, ktr_geniosize);
513 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
514 	error = uiomove(buf, datalen, uio);
515 	free(uio, M_IOV);
516 	if (error) {
517 		free(buf, M_KTRACE);
518 		return;
519 	}
520 	req = ktr_getrequest(KTR_GENIO);
521 	if (req == NULL) {
522 		free(buf, M_KTRACE);
523 		return;
524 	}
525 	ktg = &req->ktr_data.ktr_genio;
526 	ktg->ktr_fd = fd;
527 	ktg->ktr_rw = rw;
528 	req->ktr_header.ktr_len = datalen;
529 	req->ktr_buffer = buf;
530 	ktr_submitrequest(curthread, req);
531 }
532 
533 void
534 ktrpsig(sig, action, mask, code)
535 	int sig;
536 	sig_t action;
537 	sigset_t *mask;
538 	int code;
539 {
540 	struct ktr_request *req;
541 	struct ktr_psig	*kp;
542 
543 	req = ktr_getrequest(KTR_PSIG);
544 	if (req == NULL)
545 		return;
546 	kp = &req->ktr_data.ktr_psig;
547 	kp->signo = (char)sig;
548 	kp->action = action;
549 	kp->mask = *mask;
550 	kp->code = code;
551 	ktr_enqueuerequest(curthread, req);
552 }
553 
554 void
555 ktrcsw(out, user)
556 	int out, user;
557 {
558 	struct ktr_request *req;
559 	struct ktr_csw *kc;
560 
561 	req = ktr_getrequest(KTR_CSW);
562 	if (req == NULL)
563 		return;
564 	kc = &req->ktr_data.ktr_csw;
565 	kc->out = out;
566 	kc->user = user;
567 	ktr_enqueuerequest(curthread, req);
568 }
569 #endif /* KTRACE */
570 
571 /* Interface and common routines */
572 
573 /*
574  * ktrace system call
575  *
576  * MPSAFE
577  */
578 #ifndef _SYS_SYSPROTO_H_
579 struct ktrace_args {
580 	char	*fname;
581 	int	ops;
582 	int	facs;
583 	int	pid;
584 };
585 #endif
586 /* ARGSUSED */
587 int
588 ktrace(td, uap)
589 	struct thread *td;
590 	register struct ktrace_args *uap;
591 {
592 #ifdef KTRACE
593 	register struct vnode *vp = NULL;
594 	register struct proc *p;
595 	struct pgrp *pg;
596 	int facs = uap->facs & ~KTRFAC_ROOT;
597 	int ops = KTROP(uap->ops);
598 	int descend = uap->ops & KTRFLAG_DESCEND;
599 	int nfound, ret = 0;
600 	int flags, error = 0;
601 	struct nameidata nd;
602 	struct ucred *cred;
603 
604 	/*
605 	 * Need something to (un)trace.
606 	 */
607 	if (ops != KTROP_CLEARFILE && facs == 0)
608 		return (EINVAL);
609 
610 	ktrace_enter(td);
611 	if (ops != KTROP_CLEAR) {
612 		/*
613 		 * an operation which requires a file argument.
614 		 */
615 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
616 		flags = FREAD | FWRITE | O_NOFOLLOW;
617 		mtx_lock(&Giant);
618 		error = vn_open(&nd, &flags, 0, -1);
619 		if (error) {
620 			mtx_unlock(&Giant);
621 			ktrace_exit(td);
622 			return (error);
623 		}
624 		NDFREE(&nd, NDF_ONLY_PNBUF);
625 		vp = nd.ni_vp;
626 		VOP_UNLOCK(vp, 0, td);
627 		if (vp->v_type != VREG) {
628 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
629 			mtx_unlock(&Giant);
630 			ktrace_exit(td);
631 			return (EACCES);
632 		}
633 		mtx_unlock(&Giant);
634 	}
635 	/*
636 	 * Clear all uses of the tracefile.
637 	 */
638 	if (ops == KTROP_CLEARFILE) {
639 		sx_slock(&allproc_lock);
640 		LIST_FOREACH(p, &allproc, p_list) {
641 			PROC_LOCK(p);
642 			if (p->p_tracevp == vp) {
643 				if (ktrcanset(td, p)) {
644 					mtx_lock(&ktrace_mtx);
645 					cred = p->p_tracecred;
646 					p->p_tracecred = NULL;
647 					p->p_tracevp = NULL;
648 					p->p_traceflag = 0;
649 					mtx_unlock(&ktrace_mtx);
650 					PROC_UNLOCK(p);
651 					mtx_lock(&Giant);
652 					(void) vn_close(vp, FREAD|FWRITE,
653 						cred, td);
654 					mtx_unlock(&Giant);
655 					crfree(cred);
656 				} else {
657 					PROC_UNLOCK(p);
658 					error = EPERM;
659 				}
660 			} else
661 				PROC_UNLOCK(p);
662 		}
663 		sx_sunlock(&allproc_lock);
664 		goto done;
665 	}
666 	/*
667 	 * do it
668 	 */
669 	sx_slock(&proctree_lock);
670 	if (uap->pid < 0) {
671 		/*
672 		 * by process group
673 		 */
674 		pg = pgfind(-uap->pid);
675 		if (pg == NULL) {
676 			sx_sunlock(&proctree_lock);
677 			error = ESRCH;
678 			goto done;
679 		}
680 		/*
681 		 * ktrops() may call vrele(). Lock pg_members
682 		 * by the proctree_lock rather than pg_mtx.
683 		 */
684 		PGRP_UNLOCK(pg);
685 		nfound = 0;
686 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
687 			PROC_LOCK(p);
688 			if (p_cansee(td, p) != 0) {
689 				PROC_UNLOCK(p);
690 				continue;
691 			}
692 			PROC_UNLOCK(p);
693 			nfound++;
694 			if (descend)
695 				ret |= ktrsetchildren(td, p, ops, facs, vp);
696 			else
697 				ret |= ktrops(td, p, ops, facs, vp);
698 		}
699 		if (nfound == 0) {
700 			sx_sunlock(&proctree_lock);
701 			error = ESRCH;
702 			goto done;
703 		}
704 	} else {
705 		/*
706 		 * by pid
707 		 */
708 		p = pfind(uap->pid);
709 		if (p == NULL) {
710 			sx_sunlock(&proctree_lock);
711 			error = ESRCH;
712 			goto done;
713 		}
714 		error = p_cansee(td, p);
715 		/*
716 		 * The slock of the proctree lock will keep this process
717 		 * from going away, so unlocking the proc here is ok.
718 		 */
719 		PROC_UNLOCK(p);
720 		if (error) {
721 			sx_sunlock(&proctree_lock);
722 			goto done;
723 		}
724 		if (descend)
725 			ret |= ktrsetchildren(td, p, ops, facs, vp);
726 		else
727 			ret |= ktrops(td, p, ops, facs, vp);
728 	}
729 	sx_sunlock(&proctree_lock);
730 	if (!ret)
731 		error = EPERM;
732 done:
733 	if (vp != NULL) {
734 		mtx_lock(&Giant);
735 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
736 		mtx_unlock(&Giant);
737 	}
738 	ktrace_exit(td);
739 	return (error);
740 #else /* !KTRACE */
741 	return (ENOSYS);
742 #endif /* KTRACE */
743 }
744 
745 /*
746  * utrace system call
747  *
748  * MPSAFE
749  */
750 /* ARGSUSED */
751 int
752 utrace(td, uap)
753 	struct thread *td;
754 	register struct utrace_args *uap;
755 {
756 
757 #ifdef KTRACE
758 	struct ktr_request *req;
759 	void *cp;
760 	int error;
761 
762 	if (!KTRPOINT(td, KTR_USER))
763 		return (0);
764 	if (uap->len > KTR_USER_MAXLEN)
765 		return (EINVAL);
766 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
767 	error = copyin(uap->addr, cp, uap->len);
768 	if (error) {
769 		free(cp, M_KTRACE);
770 		return (error);
771 	}
772 	req = ktr_getrequest(KTR_USER);
773 	if (req == NULL) {
774 		free(cp, M_KTRACE);
775 		return (ENOMEM);
776 	}
777 	req->ktr_buffer = cp;
778 	req->ktr_header.ktr_len = uap->len;
779 	ktr_submitrequest(td, req);
780 	return (0);
781 #else /* !KTRACE */
782 	return (ENOSYS);
783 #endif /* KTRACE */
784 }
785 
786 #ifdef KTRACE
787 static int
788 ktrops(td, p, ops, facs, vp)
789 	struct thread *td;
790 	struct proc *p;
791 	int ops, facs;
792 	struct vnode *vp;
793 {
794 	struct vnode *tracevp = NULL;
795 	struct ucred *tracecred = NULL;
796 
797 	PROC_LOCK(p);
798 	if (!ktrcanset(td, p)) {
799 		PROC_UNLOCK(p);
800 		return (0);
801 	}
802 	mtx_lock(&ktrace_mtx);
803 	if (ops == KTROP_SET) {
804 		if (p->p_tracevp != vp) {
805 			/*
806 			 * if trace file already in use, relinquish below
807 			 */
808 			tracevp = p->p_tracevp;
809 			VREF(vp);
810 			p->p_tracevp = vp;
811 		}
812 		if (p->p_tracecred != td->td_ucred) {
813 			tracecred = p->p_tracecred;
814 			p->p_tracecred = crhold(td->td_ucred);
815 		}
816 		p->p_traceflag |= facs;
817 		if (td->td_ucred->cr_uid == 0)
818 			p->p_traceflag |= KTRFAC_ROOT;
819 	} else {
820 		/* KTROP_CLEAR */
821 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
822 			/* no more tracing */
823 			p->p_traceflag = 0;
824 			tracevp = p->p_tracevp;
825 			p->p_tracevp = NULL;
826 			tracecred = p->p_tracecred;
827 			p->p_tracecred = NULL;
828 		}
829 	}
830 	mtx_unlock(&ktrace_mtx);
831 	PROC_UNLOCK(p);
832 	if (tracevp != NULL) {
833 		mtx_lock(&Giant);
834 		vrele(tracevp);
835 		mtx_unlock(&Giant);
836 	}
837 	if (tracecred != NULL)
838 		crfree(tracecred);
839 
840 	return (1);
841 }
842 
843 static int
844 ktrsetchildren(td, top, ops, facs, vp)
845 	struct thread *td;
846 	struct proc *top;
847 	int ops, facs;
848 	struct vnode *vp;
849 {
850 	register struct proc *p;
851 	register int ret = 0;
852 
853 	p = top;
854 	sx_assert(&proctree_lock, SX_LOCKED);
855 	for (;;) {
856 		ret |= ktrops(td, p, ops, facs, vp);
857 		/*
858 		 * If this process has children, descend to them next,
859 		 * otherwise do any siblings, and if done with this level,
860 		 * follow back up the tree (but not past top).
861 		 */
862 		if (!LIST_EMPTY(&p->p_children))
863 			p = LIST_FIRST(&p->p_children);
864 		else for (;;) {
865 			if (p == top)
866 				return (ret);
867 			if (LIST_NEXT(p, p_sibling)) {
868 				p = LIST_NEXT(p, p_sibling);
869 				break;
870 			}
871 			p = p->p_pptr;
872 		}
873 	}
874 	/*NOTREACHED*/
875 }
876 
877 static void
878 ktr_writerequest(struct thread *td, struct ktr_request *req)
879 {
880 	struct ktr_header *kth;
881 	struct vnode *vp;
882 	struct proc *p;
883 	struct ucred *cred;
884 	struct uio auio;
885 	struct iovec aiov[3];
886 	struct mount *mp;
887 	int datalen, buflen, vrele_count;
888 	int error;
889 
890 	/*
891 	 * We hold the vnode and credential for use in I/O in case ktrace is
892 	 * disabled on the process as we write out the request.
893 	 *
894 	 * XXXRW: This is not ideal: we could end up performing a write after
895 	 * the vnode has been closed.
896 	 */
897 	mtx_lock(&ktrace_mtx);
898 	vp = td->td_proc->p_tracevp;
899 	if (vp != NULL)
900 		VREF(vp);
901 	cred = td->td_proc->p_tracecred;
902 	if (cred != NULL)
903 		crhold(cred);
904 	mtx_unlock(&ktrace_mtx);
905 
906 	/*
907 	 * If vp is NULL, the vp has been cleared out from under this
908 	 * request, so just drop it.  Make sure the credential and vnode are
909 	 * in sync: we should have both or neither.
910 	 */
911 	if (vp == NULL) {
912 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
913 		return;
914 	}
915 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
916 
917 	kth = &req->ktr_header;
918 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
919 	buflen = kth->ktr_len;
920 	auio.uio_iov = &aiov[0];
921 	auio.uio_offset = 0;
922 	auio.uio_segflg = UIO_SYSSPACE;
923 	auio.uio_rw = UIO_WRITE;
924 	aiov[0].iov_base = (caddr_t)kth;
925 	aiov[0].iov_len = sizeof(struct ktr_header);
926 	auio.uio_resid = sizeof(struct ktr_header);
927 	auio.uio_iovcnt = 1;
928 	auio.uio_td = td;
929 	if (datalen != 0) {
930 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
931 		aiov[1].iov_len = datalen;
932 		auio.uio_resid += datalen;
933 		auio.uio_iovcnt++;
934 		kth->ktr_len += datalen;
935 	}
936 	if (buflen != 0) {
937 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
938 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
939 		aiov[auio.uio_iovcnt].iov_len = buflen;
940 		auio.uio_resid += buflen;
941 		auio.uio_iovcnt++;
942 	}
943 
944 	mtx_lock(&Giant);
945 	vn_start_write(vp, &mp, V_WAIT);
946 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
947 	(void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
948 #ifdef MAC
949 	error = mac_check_vnode_write(cred, NOCRED, vp);
950 	if (error == 0)
951 #endif
952 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
953 	VOP_UNLOCK(vp, 0, td);
954 	vn_finished_write(mp);
955 	mtx_unlock(&Giant);
956 	if (!error)
957 		return;
958 	/*
959 	 * If error encountered, give up tracing on this vnode.  We defer
960 	 * all the vrele()'s on the vnode until after we are finished walking
961 	 * the various lists to avoid needlessly holding locks.
962 	 */
963 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
964 	    error);
965 	vrele_count = 0;
966 	/*
967 	 * First, clear this vnode from being used by any processes in the
968 	 * system.
969 	 * XXX - If one process gets an EPERM writing to the vnode, should
970 	 * we really do this?  Other processes might have suitable
971 	 * credentials for the operation.
972 	 */
973 	cred = NULL;
974 	sx_slock(&allproc_lock);
975 	LIST_FOREACH(p, &allproc, p_list) {
976 		PROC_LOCK(p);
977 		if (p->p_tracevp == vp) {
978 			mtx_lock(&ktrace_mtx);
979 			p->p_tracevp = NULL;
980 			p->p_traceflag = 0;
981 			cred = p->p_tracecred;
982 			p->p_tracecred = NULL;
983 			mtx_unlock(&ktrace_mtx);
984 			vrele_count++;
985 		}
986 		PROC_UNLOCK(p);
987 		if (cred != NULL) {
988 			crfree(cred);
989 			cred = NULL;
990 		}
991 	}
992 	sx_sunlock(&allproc_lock);
993 
994 	/*
995 	 * We can't clear any pending requests in threads that have cached
996 	 * them but not yet committed them, as those are per-thread.  The
997 	 * thread will have to clear it itself on system call return.
998 	 */
999 	mtx_lock(&Giant);
1000 	while (vrele_count-- > 0)
1001 		vrele(vp);
1002 	mtx_unlock(&Giant);
1003 }
1004 
1005 /*
1006  * Return true if caller has permission to set the ktracing state
1007  * of target.  Essentially, the target can't possess any
1008  * more permissions than the caller.  KTRFAC_ROOT signifies that
1009  * root previously set the tracing status on the target process, and
1010  * so, only root may further change it.
1011  */
1012 static int
1013 ktrcanset(td, targetp)
1014 	struct thread *td;
1015 	struct proc *targetp;
1016 {
1017 
1018 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1019 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1020 	    suser_cred(td->td_ucred, SUSER_ALLOWJAIL))
1021 		return (0);
1022 
1023 	if (p_candebug(td, targetp) != 0)
1024 		return (0);
1025 
1026 	return (1);
1027 }
1028 
1029 #endif /* KTRACE */
1030