1 /*- 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. 4 * Copyright (c) 2005 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/systm.h> 42 #include <sys/fcntl.h> 43 #include <sys/kernel.h> 44 #include <sys/kthread.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/malloc.h> 48 #include <sys/mount.h> 49 #include <sys/namei.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/unistd.h> 53 #include <sys/vnode.h> 54 #include <sys/socket.h> 55 #include <sys/stat.h> 56 #include <sys/ktrace.h> 57 #include <sys/sx.h> 58 #include <sys/sysctl.h> 59 #include <sys/sysent.h> 60 #include <sys/syslog.h> 61 #include <sys/sysproto.h> 62 63 #include <security/mac/mac_framework.h> 64 65 /* 66 * The ktrace facility allows the tracing of certain key events in user space 67 * processes, such as system calls, signal delivery, context switches, and 68 * user generated events using utrace(2). It works by streaming event 69 * records and data to a vnode associated with the process using the 70 * ktrace(2) system call. In general, records can be written directly from 71 * the context that generates the event. One important exception to this is 72 * during a context switch, where sleeping is not permitted. To handle this 73 * case, trace events are generated using in-kernel ktr_request records, and 74 * then delivered to disk at a convenient moment -- either immediately, the 75 * next traceable event, at system call return, or at process exit. 76 * 77 * When dealing with multiple threads or processes writing to the same event 78 * log, ordering guarantees are weak: specifically, if an event has multiple 79 * records (i.e., system call enter and return), they may be interlaced with 80 * records from another event. Process and thread ID information is provided 81 * in the record, and user applications can de-interlace events if required. 82 */ 83 84 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); 85 86 #ifdef KTRACE 87 88 FEATURE(ktrace, "Kernel support for system-call tracing"); 89 90 #ifndef KTRACE_REQUEST_POOL 91 #define KTRACE_REQUEST_POOL 100 92 #endif 93 94 struct ktr_request { 95 struct ktr_header ktr_header; 96 void *ktr_buffer; 97 union { 98 struct ktr_proc_ctor ktr_proc_ctor; 99 struct ktr_cap_fail ktr_cap_fail; 100 struct ktr_syscall ktr_syscall; 101 struct ktr_sysret ktr_sysret; 102 struct ktr_genio ktr_genio; 103 struct ktr_psig ktr_psig; 104 struct ktr_csw ktr_csw; 105 struct ktr_fault ktr_fault; 106 struct ktr_faultend ktr_faultend; 107 } ktr_data; 108 STAILQ_ENTRY(ktr_request) ktr_list; 109 }; 110 111 static int data_lengths[] = { 112 [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args), 113 [KTR_SYSRET] = sizeof(struct ktr_sysret), 114 [KTR_NAMEI] = 0, 115 [KTR_GENIO] = sizeof(struct ktr_genio), 116 [KTR_PSIG] = sizeof(struct ktr_psig), 117 [KTR_CSW] = sizeof(struct ktr_csw), 118 [KTR_USER] = 0, 119 [KTR_STRUCT] = 0, 120 [KTR_SYSCTL] = 0, 121 [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor), 122 [KTR_PROCDTOR] = 0, 123 [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail), 124 [KTR_FAULT] = sizeof(struct ktr_fault), 125 [KTR_FAULTEND] = sizeof(struct ktr_faultend), 126 }; 127 128 static STAILQ_HEAD(, ktr_request) ktr_free; 129 130 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options"); 131 132 static u_int ktr_requestpool = KTRACE_REQUEST_POOL; 133 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); 134 135 u_int ktr_geniosize = PAGE_SIZE; 136 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize, 137 0, "Maximum size of genio event payload"); 138 139 static int print_message = 1; 140 static struct mtx ktrace_mtx; 141 static struct sx ktrace_sx; 142 143 static void ktrace_init(void *dummy); 144 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); 145 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize); 146 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type); 147 static struct ktr_request *ktr_getrequest(int type); 148 static void ktr_submitrequest(struct thread *td, struct ktr_request *req); 149 static void ktr_freeproc(struct proc *p, struct ucred **uc, 150 struct vnode **vp); 151 static void ktr_freerequest(struct ktr_request *req); 152 static void ktr_freerequest_locked(struct ktr_request *req); 153 static void ktr_writerequest(struct thread *td, struct ktr_request *req); 154 static int ktrcanset(struct thread *,struct proc *); 155 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *); 156 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *); 157 static void ktrprocctor_entered(struct thread *, struct proc *); 158 159 /* 160 * ktrace itself generates events, such as context switches, which we do not 161 * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine 162 * whether or not it is in a region where tracing of events should be 163 * suppressed. 164 */ 165 static void 166 ktrace_enter(struct thread *td) 167 { 168 169 KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set")); 170 td->td_pflags |= TDP_INKTRACE; 171 } 172 173 static void 174 ktrace_exit(struct thread *td) 175 { 176 177 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set")); 178 td->td_pflags &= ~TDP_INKTRACE; 179 } 180 181 static void 182 ktrace_assert(struct thread *td) 183 { 184 185 KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set")); 186 } 187 188 static void 189 ktrace_init(void *dummy) 190 { 191 struct ktr_request *req; 192 int i; 193 194 mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); 195 sx_init(&ktrace_sx, "ktrace_sx"); 196 STAILQ_INIT(&ktr_free); 197 for (i = 0; i < ktr_requestpool; i++) { 198 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); 199 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 200 } 201 } 202 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); 203 204 static int 205 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) 206 { 207 struct thread *td; 208 u_int newsize, oldsize, wantsize; 209 int error; 210 211 /* Handle easy read-only case first to avoid warnings from GCC. */ 212 if (!req->newptr) { 213 oldsize = ktr_requestpool; 214 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int))); 215 } 216 217 error = SYSCTL_IN(req, &wantsize, sizeof(u_int)); 218 if (error) 219 return (error); 220 td = curthread; 221 ktrace_enter(td); 222 oldsize = ktr_requestpool; 223 newsize = ktrace_resize_pool(oldsize, wantsize); 224 ktrace_exit(td); 225 error = SYSCTL_OUT(req, &oldsize, sizeof(u_int)); 226 if (error) 227 return (error); 228 if (wantsize > oldsize && newsize < wantsize) 229 return (ENOSPC); 230 return (0); 231 } 232 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW, 233 &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", 234 "Pool buffer size for ktrace(1)"); 235 236 static u_int 237 ktrace_resize_pool(u_int oldsize, u_int newsize) 238 { 239 STAILQ_HEAD(, ktr_request) ktr_new; 240 struct ktr_request *req; 241 int bound; 242 243 print_message = 1; 244 bound = newsize - oldsize; 245 if (bound == 0) 246 return (ktr_requestpool); 247 if (bound < 0) { 248 mtx_lock(&ktrace_mtx); 249 /* Shrink pool down to newsize if possible. */ 250 while (bound++ < 0) { 251 req = STAILQ_FIRST(&ktr_free); 252 if (req == NULL) 253 break; 254 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 255 ktr_requestpool--; 256 free(req, M_KTRACE); 257 } 258 } else { 259 /* Grow pool up to newsize. */ 260 STAILQ_INIT(&ktr_new); 261 while (bound-- > 0) { 262 req = malloc(sizeof(struct ktr_request), M_KTRACE, 263 M_WAITOK); 264 STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list); 265 } 266 mtx_lock(&ktrace_mtx); 267 STAILQ_CONCAT(&ktr_free, &ktr_new); 268 ktr_requestpool += (newsize - oldsize); 269 } 270 mtx_unlock(&ktrace_mtx); 271 return (ktr_requestpool); 272 } 273 274 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */ 275 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) == 276 (sizeof((struct thread *)NULL)->td_name)); 277 278 static struct ktr_request * 279 ktr_getrequest_entered(struct thread *td, int type) 280 { 281 struct ktr_request *req; 282 struct proc *p = td->td_proc; 283 int pm; 284 285 mtx_lock(&ktrace_mtx); 286 if (!KTRCHECK(td, type)) { 287 mtx_unlock(&ktrace_mtx); 288 return (NULL); 289 } 290 req = STAILQ_FIRST(&ktr_free); 291 if (req != NULL) { 292 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); 293 req->ktr_header.ktr_type = type; 294 if (p->p_traceflag & KTRFAC_DROP) { 295 req->ktr_header.ktr_type |= KTR_DROP; 296 p->p_traceflag &= ~KTRFAC_DROP; 297 } 298 mtx_unlock(&ktrace_mtx); 299 microtime(&req->ktr_header.ktr_time); 300 req->ktr_header.ktr_pid = p->p_pid; 301 req->ktr_header.ktr_tid = td->td_tid; 302 bcopy(td->td_name, req->ktr_header.ktr_comm, 303 sizeof(req->ktr_header.ktr_comm)); 304 req->ktr_buffer = NULL; 305 req->ktr_header.ktr_len = 0; 306 } else { 307 p->p_traceflag |= KTRFAC_DROP; 308 pm = print_message; 309 print_message = 0; 310 mtx_unlock(&ktrace_mtx); 311 if (pm) 312 printf("Out of ktrace request objects.\n"); 313 } 314 return (req); 315 } 316 317 static struct ktr_request * 318 ktr_getrequest(int type) 319 { 320 struct thread *td = curthread; 321 struct ktr_request *req; 322 323 ktrace_enter(td); 324 req = ktr_getrequest_entered(td, type); 325 if (req == NULL) 326 ktrace_exit(td); 327 328 return (req); 329 } 330 331 /* 332 * Some trace generation environments don't permit direct access to VFS, 333 * such as during a context switch where sleeping is not allowed. Under these 334 * circumstances, queue a request to the thread to be written asynchronously 335 * later. 336 */ 337 static void 338 ktr_enqueuerequest(struct thread *td, struct ktr_request *req) 339 { 340 341 mtx_lock(&ktrace_mtx); 342 STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list); 343 mtx_unlock(&ktrace_mtx); 344 } 345 346 /* 347 * Drain any pending ktrace records from the per-thread queue to disk. This 348 * is used both internally before committing other records, and also on 349 * system call return. We drain all the ones we can find at the time when 350 * drain is requested, but don't keep draining after that as those events 351 * may be approximately "after" the current event. 352 */ 353 static void 354 ktr_drain(struct thread *td) 355 { 356 struct ktr_request *queued_req; 357 STAILQ_HEAD(, ktr_request) local_queue; 358 359 ktrace_assert(td); 360 sx_assert(&ktrace_sx, SX_XLOCKED); 361 362 STAILQ_INIT(&local_queue); 363 364 if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) { 365 mtx_lock(&ktrace_mtx); 366 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr); 367 mtx_unlock(&ktrace_mtx); 368 369 while ((queued_req = STAILQ_FIRST(&local_queue))) { 370 STAILQ_REMOVE_HEAD(&local_queue, ktr_list); 371 ktr_writerequest(td, queued_req); 372 ktr_freerequest(queued_req); 373 } 374 } 375 } 376 377 /* 378 * Submit a trace record for immediate commit to disk -- to be used only 379 * where entering VFS is OK. First drain any pending records that may have 380 * been cached in the thread. 381 */ 382 static void 383 ktr_submitrequest(struct thread *td, struct ktr_request *req) 384 { 385 386 ktrace_assert(td); 387 388 sx_xlock(&ktrace_sx); 389 ktr_drain(td); 390 ktr_writerequest(td, req); 391 ktr_freerequest(req); 392 sx_xunlock(&ktrace_sx); 393 ktrace_exit(td); 394 } 395 396 static void 397 ktr_freerequest(struct ktr_request *req) 398 { 399 400 mtx_lock(&ktrace_mtx); 401 ktr_freerequest_locked(req); 402 mtx_unlock(&ktrace_mtx); 403 } 404 405 static void 406 ktr_freerequest_locked(struct ktr_request *req) 407 { 408 409 mtx_assert(&ktrace_mtx, MA_OWNED); 410 if (req->ktr_buffer != NULL) 411 free(req->ktr_buffer, M_KTRACE); 412 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); 413 } 414 415 /* 416 * Disable tracing for a process and release all associated resources. 417 * The caller is responsible for releasing a reference on the returned 418 * vnode and credentials. 419 */ 420 static void 421 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp) 422 { 423 struct ktr_request *req; 424 425 PROC_LOCK_ASSERT(p, MA_OWNED); 426 mtx_assert(&ktrace_mtx, MA_OWNED); 427 *uc = p->p_tracecred; 428 p->p_tracecred = NULL; 429 if (vp != NULL) 430 *vp = p->p_tracevp; 431 p->p_tracevp = NULL; 432 p->p_traceflag = 0; 433 while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) { 434 STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list); 435 ktr_freerequest_locked(req); 436 } 437 } 438 439 void 440 ktrsyscall(int code, int narg, register_t args[]) 441 { 442 struct ktr_request *req; 443 struct ktr_syscall *ktp; 444 size_t buflen; 445 char *buf = NULL; 446 447 buflen = sizeof(register_t) * narg; 448 if (buflen > 0) { 449 buf = malloc(buflen, M_KTRACE, M_WAITOK); 450 bcopy(args, buf, buflen); 451 } 452 req = ktr_getrequest(KTR_SYSCALL); 453 if (req == NULL) { 454 if (buf != NULL) 455 free(buf, M_KTRACE); 456 return; 457 } 458 ktp = &req->ktr_data.ktr_syscall; 459 ktp->ktr_code = code; 460 ktp->ktr_narg = narg; 461 if (buflen > 0) { 462 req->ktr_header.ktr_len = buflen; 463 req->ktr_buffer = buf; 464 } 465 ktr_submitrequest(curthread, req); 466 } 467 468 void 469 ktrsysret(int code, int error, register_t retval) 470 { 471 struct ktr_request *req; 472 struct ktr_sysret *ktp; 473 474 req = ktr_getrequest(KTR_SYSRET); 475 if (req == NULL) 476 return; 477 ktp = &req->ktr_data.ktr_sysret; 478 ktp->ktr_code = code; 479 ktp->ktr_error = error; 480 ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */ 481 ktr_submitrequest(curthread, req); 482 } 483 484 /* 485 * When a setuid process execs, disable tracing. 486 * 487 * XXX: We toss any pending asynchronous records. 488 */ 489 void 490 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp) 491 { 492 493 PROC_LOCK_ASSERT(p, MA_OWNED); 494 mtx_lock(&ktrace_mtx); 495 ktr_freeproc(p, uc, vp); 496 mtx_unlock(&ktrace_mtx); 497 } 498 499 /* 500 * When a process exits, drain per-process asynchronous trace records 501 * and disable tracing. 502 */ 503 void 504 ktrprocexit(struct thread *td) 505 { 506 struct ktr_request *req; 507 struct proc *p; 508 struct ucred *cred; 509 struct vnode *vp; 510 511 p = td->td_proc; 512 if (p->p_traceflag == 0) 513 return; 514 515 ktrace_enter(td); 516 req = ktr_getrequest_entered(td, KTR_PROCDTOR); 517 if (req != NULL) 518 ktr_enqueuerequest(td, req); 519 sx_xlock(&ktrace_sx); 520 ktr_drain(td); 521 sx_xunlock(&ktrace_sx); 522 PROC_LOCK(p); 523 mtx_lock(&ktrace_mtx); 524 ktr_freeproc(p, &cred, &vp); 525 mtx_unlock(&ktrace_mtx); 526 PROC_UNLOCK(p); 527 if (vp != NULL) 528 vrele(vp); 529 if (cred != NULL) 530 crfree(cred); 531 ktrace_exit(td); 532 } 533 534 static void 535 ktrprocctor_entered(struct thread *td, struct proc *p) 536 { 537 struct ktr_proc_ctor *ktp; 538 struct ktr_request *req; 539 struct thread *td2; 540 541 ktrace_assert(td); 542 td2 = FIRST_THREAD_IN_PROC(p); 543 req = ktr_getrequest_entered(td2, KTR_PROCCTOR); 544 if (req == NULL) 545 return; 546 ktp = &req->ktr_data.ktr_proc_ctor; 547 ktp->sv_flags = p->p_sysent->sv_flags; 548 ktr_enqueuerequest(td2, req); 549 } 550 551 void 552 ktrprocctor(struct proc *p) 553 { 554 struct thread *td = curthread; 555 556 if ((p->p_traceflag & KTRFAC_MASK) == 0) 557 return; 558 559 ktrace_enter(td); 560 ktrprocctor_entered(td, p); 561 ktrace_exit(td); 562 } 563 564 /* 565 * When a process forks, enable tracing in the new process if needed. 566 */ 567 void 568 ktrprocfork(struct proc *p1, struct proc *p2) 569 { 570 571 MPASS(p2->p_tracevp == NULL); 572 MPASS(p2->p_traceflag == 0); 573 574 if (p1->p_traceflag == 0) 575 return; 576 577 PROC_LOCK(p1); 578 mtx_lock(&ktrace_mtx); 579 if (p1->p_traceflag & KTRFAC_INHERIT) { 580 p2->p_traceflag = p1->p_traceflag; 581 if ((p2->p_tracevp = p1->p_tracevp) != NULL) { 582 VREF(p2->p_tracevp); 583 KASSERT(p1->p_tracecred != NULL, 584 ("ktrace vnode with no cred")); 585 p2->p_tracecred = crhold(p1->p_tracecred); 586 } 587 } 588 mtx_unlock(&ktrace_mtx); 589 PROC_UNLOCK(p1); 590 591 ktrprocctor(p2); 592 } 593 594 /* 595 * When a thread returns, drain any asynchronous records generated by the 596 * system call. 597 */ 598 void 599 ktruserret(struct thread *td) 600 { 601 602 ktrace_enter(td); 603 sx_xlock(&ktrace_sx); 604 ktr_drain(td); 605 sx_xunlock(&ktrace_sx); 606 ktrace_exit(td); 607 } 608 609 void 610 ktrnamei(path) 611 char *path; 612 { 613 struct ktr_request *req; 614 int namelen; 615 char *buf = NULL; 616 617 namelen = strlen(path); 618 if (namelen > 0) { 619 buf = malloc(namelen, M_KTRACE, M_WAITOK); 620 bcopy(path, buf, namelen); 621 } 622 req = ktr_getrequest(KTR_NAMEI); 623 if (req == NULL) { 624 if (buf != NULL) 625 free(buf, M_KTRACE); 626 return; 627 } 628 if (namelen > 0) { 629 req->ktr_header.ktr_len = namelen; 630 req->ktr_buffer = buf; 631 } 632 ktr_submitrequest(curthread, req); 633 } 634 635 void 636 ktrsysctl(int *name, u_int namelen) 637 { 638 struct ktr_request *req; 639 u_int mib[CTL_MAXNAME + 2]; 640 char *mibname; 641 size_t mibnamelen; 642 int error; 643 644 /* Lookup name of mib. */ 645 KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long")); 646 mib[0] = 0; 647 mib[1] = 1; 648 bcopy(name, mib + 2, namelen * sizeof(*name)); 649 mibnamelen = 128; 650 mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK); 651 error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen, 652 NULL, 0, &mibnamelen, 0); 653 if (error) { 654 free(mibname, M_KTRACE); 655 return; 656 } 657 req = ktr_getrequest(KTR_SYSCTL); 658 if (req == NULL) { 659 free(mibname, M_KTRACE); 660 return; 661 } 662 req->ktr_header.ktr_len = mibnamelen; 663 req->ktr_buffer = mibname; 664 ktr_submitrequest(curthread, req); 665 } 666 667 void 668 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error) 669 { 670 struct ktr_request *req; 671 struct ktr_genio *ktg; 672 int datalen; 673 char *buf; 674 675 if (error) { 676 free(uio, M_IOV); 677 return; 678 } 679 uio->uio_offset = 0; 680 uio->uio_rw = UIO_WRITE; 681 datalen = MIN(uio->uio_resid, ktr_geniosize); 682 buf = malloc(datalen, M_KTRACE, M_WAITOK); 683 error = uiomove(buf, datalen, uio); 684 free(uio, M_IOV); 685 if (error) { 686 free(buf, M_KTRACE); 687 return; 688 } 689 req = ktr_getrequest(KTR_GENIO); 690 if (req == NULL) { 691 free(buf, M_KTRACE); 692 return; 693 } 694 ktg = &req->ktr_data.ktr_genio; 695 ktg->ktr_fd = fd; 696 ktg->ktr_rw = rw; 697 req->ktr_header.ktr_len = datalen; 698 req->ktr_buffer = buf; 699 ktr_submitrequest(curthread, req); 700 } 701 702 void 703 ktrpsig(int sig, sig_t action, sigset_t *mask, int code) 704 { 705 struct thread *td = curthread; 706 struct ktr_request *req; 707 struct ktr_psig *kp; 708 709 req = ktr_getrequest(KTR_PSIG); 710 if (req == NULL) 711 return; 712 kp = &req->ktr_data.ktr_psig; 713 kp->signo = (char)sig; 714 kp->action = action; 715 kp->mask = *mask; 716 kp->code = code; 717 ktr_enqueuerequest(td, req); 718 ktrace_exit(td); 719 } 720 721 void 722 ktrcsw(int out, int user, const char *wmesg) 723 { 724 struct thread *td = curthread; 725 struct ktr_request *req; 726 struct ktr_csw *kc; 727 728 req = ktr_getrequest(KTR_CSW); 729 if (req == NULL) 730 return; 731 kc = &req->ktr_data.ktr_csw; 732 kc->out = out; 733 kc->user = user; 734 if (wmesg != NULL) 735 strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg)); 736 else 737 bzero(kc->wmesg, sizeof(kc->wmesg)); 738 ktr_enqueuerequest(td, req); 739 ktrace_exit(td); 740 } 741 742 void 743 ktrstruct(const char *name, void *data, size_t datalen) 744 { 745 struct ktr_request *req; 746 char *buf; 747 size_t buflen, namelen; 748 749 if (data == NULL) 750 datalen = 0; 751 namelen = strlen(name) + 1; 752 buflen = namelen + datalen; 753 buf = malloc(buflen, M_KTRACE, M_WAITOK); 754 strcpy(buf, name); 755 bcopy(data, buf + namelen, datalen); 756 if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) { 757 free(buf, M_KTRACE); 758 return; 759 } 760 req->ktr_buffer = buf; 761 req->ktr_header.ktr_len = buflen; 762 ktr_submitrequest(curthread, req); 763 } 764 765 void 766 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed, 767 const cap_rights_t *held) 768 { 769 struct thread *td = curthread; 770 struct ktr_request *req; 771 struct ktr_cap_fail *kcf; 772 773 req = ktr_getrequest(KTR_CAPFAIL); 774 if (req == NULL) 775 return; 776 kcf = &req->ktr_data.ktr_cap_fail; 777 kcf->cap_type = type; 778 if (needed != NULL) 779 kcf->cap_needed = *needed; 780 else 781 cap_rights_init(&kcf->cap_needed); 782 if (held != NULL) 783 kcf->cap_held = *held; 784 else 785 cap_rights_init(&kcf->cap_held); 786 ktr_enqueuerequest(td, req); 787 ktrace_exit(td); 788 } 789 790 void 791 ktrfault(vm_offset_t vaddr, int type) 792 { 793 struct thread *td = curthread; 794 struct ktr_request *req; 795 struct ktr_fault *kf; 796 797 req = ktr_getrequest(KTR_FAULT); 798 if (req == NULL) 799 return; 800 kf = &req->ktr_data.ktr_fault; 801 kf->vaddr = vaddr; 802 kf->type = type; 803 ktr_enqueuerequest(td, req); 804 ktrace_exit(td); 805 } 806 807 void 808 ktrfaultend(int result) 809 { 810 struct thread *td = curthread; 811 struct ktr_request *req; 812 struct ktr_faultend *kf; 813 814 req = ktr_getrequest(KTR_FAULTEND); 815 if (req == NULL) 816 return; 817 kf = &req->ktr_data.ktr_faultend; 818 kf->result = result; 819 ktr_enqueuerequest(td, req); 820 ktrace_exit(td); 821 } 822 #endif /* KTRACE */ 823 824 /* Interface and common routines */ 825 826 #ifndef _SYS_SYSPROTO_H_ 827 struct ktrace_args { 828 char *fname; 829 int ops; 830 int facs; 831 int pid; 832 }; 833 #endif 834 /* ARGSUSED */ 835 int 836 sys_ktrace(struct thread *td, struct ktrace_args *uap) 837 { 838 #ifdef KTRACE 839 struct vnode *vp = NULL; 840 struct proc *p; 841 struct pgrp *pg; 842 int facs = uap->facs & ~KTRFAC_ROOT; 843 int ops = KTROP(uap->ops); 844 int descend = uap->ops & KTRFLAG_DESCEND; 845 int nfound, ret = 0; 846 int flags, error = 0; 847 struct nameidata nd; 848 struct ucred *cred; 849 850 /* 851 * Need something to (un)trace. 852 */ 853 if (ops != KTROP_CLEARFILE && facs == 0) 854 return (EINVAL); 855 856 ktrace_enter(td); 857 if (ops != KTROP_CLEAR) { 858 /* 859 * an operation which requires a file argument. 860 */ 861 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td); 862 flags = FREAD | FWRITE | O_NOFOLLOW; 863 error = vn_open(&nd, &flags, 0, NULL); 864 if (error) { 865 ktrace_exit(td); 866 return (error); 867 } 868 NDFREE(&nd, NDF_ONLY_PNBUF); 869 vp = nd.ni_vp; 870 VOP_UNLOCK(vp, 0); 871 if (vp->v_type != VREG) { 872 (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td); 873 ktrace_exit(td); 874 return (EACCES); 875 } 876 } 877 /* 878 * Clear all uses of the tracefile. 879 */ 880 if (ops == KTROP_CLEARFILE) { 881 int vrele_count; 882 883 vrele_count = 0; 884 sx_slock(&allproc_lock); 885 FOREACH_PROC_IN_SYSTEM(p) { 886 PROC_LOCK(p); 887 if (p->p_tracevp == vp) { 888 if (ktrcanset(td, p)) { 889 mtx_lock(&ktrace_mtx); 890 ktr_freeproc(p, &cred, NULL); 891 mtx_unlock(&ktrace_mtx); 892 vrele_count++; 893 crfree(cred); 894 } else 895 error = EPERM; 896 } 897 PROC_UNLOCK(p); 898 } 899 sx_sunlock(&allproc_lock); 900 if (vrele_count > 0) { 901 while (vrele_count-- > 0) 902 vrele(vp); 903 } 904 goto done; 905 } 906 /* 907 * do it 908 */ 909 sx_slock(&proctree_lock); 910 if (uap->pid < 0) { 911 /* 912 * by process group 913 */ 914 pg = pgfind(-uap->pid); 915 if (pg == NULL) { 916 sx_sunlock(&proctree_lock); 917 error = ESRCH; 918 goto done; 919 } 920 /* 921 * ktrops() may call vrele(). Lock pg_members 922 * by the proctree_lock rather than pg_mtx. 923 */ 924 PGRP_UNLOCK(pg); 925 nfound = 0; 926 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 927 PROC_LOCK(p); 928 if (p->p_state == PRS_NEW || 929 p_cansee(td, p) != 0) { 930 PROC_UNLOCK(p); 931 continue; 932 } 933 nfound++; 934 if (descend) 935 ret |= ktrsetchildren(td, p, ops, facs, vp); 936 else 937 ret |= ktrops(td, p, ops, facs, vp); 938 } 939 if (nfound == 0) { 940 sx_sunlock(&proctree_lock); 941 error = ESRCH; 942 goto done; 943 } 944 } else { 945 /* 946 * by pid 947 */ 948 p = pfind(uap->pid); 949 if (p == NULL) 950 error = ESRCH; 951 else 952 error = p_cansee(td, p); 953 if (error) { 954 if (p != NULL) 955 PROC_UNLOCK(p); 956 sx_sunlock(&proctree_lock); 957 goto done; 958 } 959 if (descend) 960 ret |= ktrsetchildren(td, p, ops, facs, vp); 961 else 962 ret |= ktrops(td, p, ops, facs, vp); 963 } 964 sx_sunlock(&proctree_lock); 965 if (!ret) 966 error = EPERM; 967 done: 968 if (vp != NULL) 969 (void) vn_close(vp, FWRITE, td->td_ucred, td); 970 ktrace_exit(td); 971 return (error); 972 #else /* !KTRACE */ 973 return (ENOSYS); 974 #endif /* KTRACE */ 975 } 976 977 /* ARGSUSED */ 978 int 979 sys_utrace(struct thread *td, struct utrace_args *uap) 980 { 981 982 #ifdef KTRACE 983 struct ktr_request *req; 984 void *cp; 985 int error; 986 987 if (!KTRPOINT(td, KTR_USER)) 988 return (0); 989 if (uap->len > KTR_USER_MAXLEN) 990 return (EINVAL); 991 cp = malloc(uap->len, M_KTRACE, M_WAITOK); 992 error = copyin(uap->addr, cp, uap->len); 993 if (error) { 994 free(cp, M_KTRACE); 995 return (error); 996 } 997 req = ktr_getrequest(KTR_USER); 998 if (req == NULL) { 999 free(cp, M_KTRACE); 1000 return (ENOMEM); 1001 } 1002 req->ktr_buffer = cp; 1003 req->ktr_header.ktr_len = uap->len; 1004 ktr_submitrequest(td, req); 1005 return (0); 1006 #else /* !KTRACE */ 1007 return (ENOSYS); 1008 #endif /* KTRACE */ 1009 } 1010 1011 #ifdef KTRACE 1012 static int 1013 ktrops(struct thread *td, struct proc *p, int ops, int facs, struct vnode *vp) 1014 { 1015 struct vnode *tracevp = NULL; 1016 struct ucred *tracecred = NULL; 1017 1018 PROC_LOCK_ASSERT(p, MA_OWNED); 1019 if (!ktrcanset(td, p)) { 1020 PROC_UNLOCK(p); 1021 return (0); 1022 } 1023 if (p->p_flag & P_WEXIT) { 1024 /* If the process is exiting, just ignore it. */ 1025 PROC_UNLOCK(p); 1026 return (1); 1027 } 1028 mtx_lock(&ktrace_mtx); 1029 if (ops == KTROP_SET) { 1030 if (p->p_tracevp != vp) { 1031 /* 1032 * if trace file already in use, relinquish below 1033 */ 1034 tracevp = p->p_tracevp; 1035 VREF(vp); 1036 p->p_tracevp = vp; 1037 } 1038 if (p->p_tracecred != td->td_ucred) { 1039 tracecred = p->p_tracecred; 1040 p->p_tracecred = crhold(td->td_ucred); 1041 } 1042 p->p_traceflag |= facs; 1043 if (priv_check(td, PRIV_KTRACE) == 0) 1044 p->p_traceflag |= KTRFAC_ROOT; 1045 } else { 1046 /* KTROP_CLEAR */ 1047 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) 1048 /* no more tracing */ 1049 ktr_freeproc(p, &tracecred, &tracevp); 1050 } 1051 mtx_unlock(&ktrace_mtx); 1052 if ((p->p_traceflag & KTRFAC_MASK) != 0) 1053 ktrprocctor_entered(td, p); 1054 PROC_UNLOCK(p); 1055 if (tracevp != NULL) 1056 vrele(tracevp); 1057 if (tracecred != NULL) 1058 crfree(tracecred); 1059 1060 return (1); 1061 } 1062 1063 static int 1064 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs, 1065 struct vnode *vp) 1066 { 1067 struct proc *p; 1068 int ret = 0; 1069 1070 p = top; 1071 PROC_LOCK_ASSERT(p, MA_OWNED); 1072 sx_assert(&proctree_lock, SX_LOCKED); 1073 for (;;) { 1074 ret |= ktrops(td, p, ops, facs, vp); 1075 /* 1076 * If this process has children, descend to them next, 1077 * otherwise do any siblings, and if done with this level, 1078 * follow back up the tree (but not past top). 1079 */ 1080 if (!LIST_EMPTY(&p->p_children)) 1081 p = LIST_FIRST(&p->p_children); 1082 else for (;;) { 1083 if (p == top) 1084 return (ret); 1085 if (LIST_NEXT(p, p_sibling)) { 1086 p = LIST_NEXT(p, p_sibling); 1087 break; 1088 } 1089 p = p->p_pptr; 1090 } 1091 PROC_LOCK(p); 1092 } 1093 /*NOTREACHED*/ 1094 } 1095 1096 static void 1097 ktr_writerequest(struct thread *td, struct ktr_request *req) 1098 { 1099 struct ktr_header *kth; 1100 struct vnode *vp; 1101 struct proc *p; 1102 struct ucred *cred; 1103 struct uio auio; 1104 struct iovec aiov[3]; 1105 struct mount *mp; 1106 int datalen, buflen, vrele_count; 1107 int error; 1108 1109 /* 1110 * We hold the vnode and credential for use in I/O in case ktrace is 1111 * disabled on the process as we write out the request. 1112 * 1113 * XXXRW: This is not ideal: we could end up performing a write after 1114 * the vnode has been closed. 1115 */ 1116 mtx_lock(&ktrace_mtx); 1117 vp = td->td_proc->p_tracevp; 1118 cred = td->td_proc->p_tracecred; 1119 1120 /* 1121 * If vp is NULL, the vp has been cleared out from under this 1122 * request, so just drop it. Make sure the credential and vnode are 1123 * in sync: we should have both or neither. 1124 */ 1125 if (vp == NULL) { 1126 KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL")); 1127 mtx_unlock(&ktrace_mtx); 1128 return; 1129 } 1130 VREF(vp); 1131 KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL")); 1132 crhold(cred); 1133 mtx_unlock(&ktrace_mtx); 1134 1135 kth = &req->ktr_header; 1136 KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths), 1137 ("data_lengths array overflow")); 1138 datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP]; 1139 buflen = kth->ktr_len; 1140 auio.uio_iov = &aiov[0]; 1141 auio.uio_offset = 0; 1142 auio.uio_segflg = UIO_SYSSPACE; 1143 auio.uio_rw = UIO_WRITE; 1144 aiov[0].iov_base = (caddr_t)kth; 1145 aiov[0].iov_len = sizeof(struct ktr_header); 1146 auio.uio_resid = sizeof(struct ktr_header); 1147 auio.uio_iovcnt = 1; 1148 auio.uio_td = td; 1149 if (datalen != 0) { 1150 aiov[1].iov_base = (caddr_t)&req->ktr_data; 1151 aiov[1].iov_len = datalen; 1152 auio.uio_resid += datalen; 1153 auio.uio_iovcnt++; 1154 kth->ktr_len += datalen; 1155 } 1156 if (buflen != 0) { 1157 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write")); 1158 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer; 1159 aiov[auio.uio_iovcnt].iov_len = buflen; 1160 auio.uio_resid += buflen; 1161 auio.uio_iovcnt++; 1162 } 1163 1164 vn_start_write(vp, &mp, V_WAIT); 1165 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1166 #ifdef MAC 1167 error = mac_vnode_check_write(cred, NOCRED, vp); 1168 if (error == 0) 1169 #endif 1170 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); 1171 VOP_UNLOCK(vp, 0); 1172 vn_finished_write(mp); 1173 crfree(cred); 1174 if (!error) { 1175 vrele(vp); 1176 return; 1177 } 1178 1179 /* 1180 * If error encountered, give up tracing on this vnode. We defer 1181 * all the vrele()'s on the vnode until after we are finished walking 1182 * the various lists to avoid needlessly holding locks. 1183 * NB: at this point we still hold the vnode reference that must 1184 * not go away as we need the valid vnode to compare with. Thus let 1185 * vrele_count start at 1 and the reference will be freed 1186 * by the loop at the end after our last use of vp. 1187 */ 1188 log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n", 1189 error); 1190 vrele_count = 1; 1191 /* 1192 * First, clear this vnode from being used by any processes in the 1193 * system. 1194 * XXX - If one process gets an EPERM writing to the vnode, should 1195 * we really do this? Other processes might have suitable 1196 * credentials for the operation. 1197 */ 1198 cred = NULL; 1199 sx_slock(&allproc_lock); 1200 FOREACH_PROC_IN_SYSTEM(p) { 1201 PROC_LOCK(p); 1202 if (p->p_tracevp == vp) { 1203 mtx_lock(&ktrace_mtx); 1204 ktr_freeproc(p, &cred, NULL); 1205 mtx_unlock(&ktrace_mtx); 1206 vrele_count++; 1207 } 1208 PROC_UNLOCK(p); 1209 if (cred != NULL) { 1210 crfree(cred); 1211 cred = NULL; 1212 } 1213 } 1214 sx_sunlock(&allproc_lock); 1215 1216 while (vrele_count-- > 0) 1217 vrele(vp); 1218 } 1219 1220 /* 1221 * Return true if caller has permission to set the ktracing state 1222 * of target. Essentially, the target can't possess any 1223 * more permissions than the caller. KTRFAC_ROOT signifies that 1224 * root previously set the tracing status on the target process, and 1225 * so, only root may further change it. 1226 */ 1227 static int 1228 ktrcanset(struct thread *td, struct proc *targetp) 1229 { 1230 1231 PROC_LOCK_ASSERT(targetp, MA_OWNED); 1232 if (targetp->p_traceflag & KTRFAC_ROOT && 1233 priv_check(td, PRIV_KTRACE)) 1234 return (0); 1235 1236 if (p_candebug(td, targetp) != 0) 1237 return (0); 1238 1239 return (1); 1240 } 1241 1242 #endif /* KTRACE */ 1243