xref: /freebsd/sys/kern/kern_ktrace.c (revision 23833df4831a6f41aa39e952fba524edfb8cec6d)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/systm.h>
42 #include <sys/fcntl.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/namei.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/unistd.h>
53 #include <sys/vnode.h>
54 #include <sys/socket.h>
55 #include <sys/stat.h>
56 #include <sys/ktrace.h>
57 #include <sys/sx.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysent.h>
60 #include <sys/syslog.h>
61 #include <sys/sysproto.h>
62 
63 #include <security/mac/mac_framework.h>
64 
65 /*
66  * The ktrace facility allows the tracing of certain key events in user space
67  * processes, such as system calls, signal delivery, context switches, and
68  * user generated events using utrace(2).  It works by streaming event
69  * records and data to a vnode associated with the process using the
70  * ktrace(2) system call.  In general, records can be written directly from
71  * the context that generates the event.  One important exception to this is
72  * during a context switch, where sleeping is not permitted.  To handle this
73  * case, trace events are generated using in-kernel ktr_request records, and
74  * then delivered to disk at a convenient moment -- either immediately, the
75  * next traceable event, at system call return, or at process exit.
76  *
77  * When dealing with multiple threads or processes writing to the same event
78  * log, ordering guarantees are weak: specifically, if an event has multiple
79  * records (i.e., system call enter and return), they may be interlaced with
80  * records from another event.  Process and thread ID information is provided
81  * in the record, and user applications can de-interlace events if required.
82  */
83 
84 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
85 
86 #ifdef KTRACE
87 
88 FEATURE(ktrace, "Kernel support for system-call tracing");
89 
90 #ifndef KTRACE_REQUEST_POOL
91 #define	KTRACE_REQUEST_POOL	100
92 #endif
93 
94 struct ktr_request {
95 	struct	ktr_header ktr_header;
96 	void	*ktr_buffer;
97 	union {
98 		struct	ktr_proc_ctor ktr_proc_ctor;
99 		struct	ktr_cap_fail ktr_cap_fail;
100 		struct	ktr_syscall ktr_syscall;
101 		struct	ktr_sysret ktr_sysret;
102 		struct	ktr_genio ktr_genio;
103 		struct	ktr_psig ktr_psig;
104 		struct	ktr_csw ktr_csw;
105 		struct	ktr_fault ktr_fault;
106 		struct	ktr_faultend ktr_faultend;
107 	} ktr_data;
108 	STAILQ_ENTRY(ktr_request) ktr_list;
109 };
110 
111 static int data_lengths[] = {
112 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
113 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
114 	[KTR_NAMEI] = 0,
115 	[KTR_GENIO] = sizeof(struct ktr_genio),
116 	[KTR_PSIG] = sizeof(struct ktr_psig),
117 	[KTR_CSW] = sizeof(struct ktr_csw),
118 	[KTR_USER] = 0,
119 	[KTR_STRUCT] = 0,
120 	[KTR_SYSCTL] = 0,
121 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
122 	[KTR_PROCDTOR] = 0,
123 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
124 	[KTR_FAULT] = sizeof(struct ktr_fault),
125 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
126 };
127 
128 static STAILQ_HEAD(, ktr_request) ktr_free;
129 
130 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
131 
132 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
133 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
134 
135 u_int ktr_geniosize = PAGE_SIZE;
136 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
137     0, "Maximum size of genio event payload");
138 
139 static int print_message = 1;
140 static struct mtx ktrace_mtx;
141 static struct sx ktrace_sx;
142 
143 static void ktrace_init(void *dummy);
144 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
145 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
146 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
147 static struct ktr_request *ktr_getrequest(int type);
148 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
149 static void ktr_freeproc(struct proc *p, struct ucred **uc,
150     struct vnode **vp);
151 static void ktr_freerequest(struct ktr_request *req);
152 static void ktr_freerequest_locked(struct ktr_request *req);
153 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
154 static int ktrcanset(struct thread *,struct proc *);
155 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
156 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
157 static void ktrprocctor_entered(struct thread *, struct proc *);
158 
159 /*
160  * ktrace itself generates events, such as context switches, which we do not
161  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
162  * whether or not it is in a region where tracing of events should be
163  * suppressed.
164  */
165 static void
166 ktrace_enter(struct thread *td)
167 {
168 
169 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
170 	td->td_pflags |= TDP_INKTRACE;
171 }
172 
173 static void
174 ktrace_exit(struct thread *td)
175 {
176 
177 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
178 	td->td_pflags &= ~TDP_INKTRACE;
179 }
180 
181 static void
182 ktrace_assert(struct thread *td)
183 {
184 
185 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
186 }
187 
188 static void
189 ktrace_init(void *dummy)
190 {
191 	struct ktr_request *req;
192 	int i;
193 
194 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
195 	sx_init(&ktrace_sx, "ktrace_sx");
196 	STAILQ_INIT(&ktr_free);
197 	for (i = 0; i < ktr_requestpool; i++) {
198 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
199 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
200 	}
201 }
202 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
203 
204 static int
205 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
206 {
207 	struct thread *td;
208 	u_int newsize, oldsize, wantsize;
209 	int error;
210 
211 	/* Handle easy read-only case first to avoid warnings from GCC. */
212 	if (!req->newptr) {
213 		oldsize = ktr_requestpool;
214 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
215 	}
216 
217 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
218 	if (error)
219 		return (error);
220 	td = curthread;
221 	ktrace_enter(td);
222 	oldsize = ktr_requestpool;
223 	newsize = ktrace_resize_pool(oldsize, wantsize);
224 	ktrace_exit(td);
225 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
226 	if (error)
227 		return (error);
228 	if (wantsize > oldsize && newsize < wantsize)
229 		return (ENOSPC);
230 	return (0);
231 }
232 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
233     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
234     "Pool buffer size for ktrace(1)");
235 
236 static u_int
237 ktrace_resize_pool(u_int oldsize, u_int newsize)
238 {
239 	STAILQ_HEAD(, ktr_request) ktr_new;
240 	struct ktr_request *req;
241 	int bound;
242 
243 	print_message = 1;
244 	bound = newsize - oldsize;
245 	if (bound == 0)
246 		return (ktr_requestpool);
247 	if (bound < 0) {
248 		mtx_lock(&ktrace_mtx);
249 		/* Shrink pool down to newsize if possible. */
250 		while (bound++ < 0) {
251 			req = STAILQ_FIRST(&ktr_free);
252 			if (req == NULL)
253 				break;
254 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
255 			ktr_requestpool--;
256 			free(req, M_KTRACE);
257 		}
258 	} else {
259 		/* Grow pool up to newsize. */
260 		STAILQ_INIT(&ktr_new);
261 		while (bound-- > 0) {
262 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
263 			    M_WAITOK);
264 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
265 		}
266 		mtx_lock(&ktrace_mtx);
267 		STAILQ_CONCAT(&ktr_free, &ktr_new);
268 		ktr_requestpool += (newsize - oldsize);
269 	}
270 	mtx_unlock(&ktrace_mtx);
271 	return (ktr_requestpool);
272 }
273 
274 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
275 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
276     (sizeof((struct thread *)NULL)->td_name));
277 
278 static struct ktr_request *
279 ktr_getrequest_entered(struct thread *td, int type)
280 {
281 	struct ktr_request *req;
282 	struct proc *p = td->td_proc;
283 	int pm;
284 
285 	mtx_lock(&ktrace_mtx);
286 	if (!KTRCHECK(td, type)) {
287 		mtx_unlock(&ktrace_mtx);
288 		return (NULL);
289 	}
290 	req = STAILQ_FIRST(&ktr_free);
291 	if (req != NULL) {
292 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
293 		req->ktr_header.ktr_type = type;
294 		if (p->p_traceflag & KTRFAC_DROP) {
295 			req->ktr_header.ktr_type |= KTR_DROP;
296 			p->p_traceflag &= ~KTRFAC_DROP;
297 		}
298 		mtx_unlock(&ktrace_mtx);
299 		microtime(&req->ktr_header.ktr_time);
300 		req->ktr_header.ktr_pid = p->p_pid;
301 		req->ktr_header.ktr_tid = td->td_tid;
302 		bcopy(td->td_name, req->ktr_header.ktr_comm,
303 		    sizeof(req->ktr_header.ktr_comm));
304 		req->ktr_buffer = NULL;
305 		req->ktr_header.ktr_len = 0;
306 	} else {
307 		p->p_traceflag |= KTRFAC_DROP;
308 		pm = print_message;
309 		print_message = 0;
310 		mtx_unlock(&ktrace_mtx);
311 		if (pm)
312 			printf("Out of ktrace request objects.\n");
313 	}
314 	return (req);
315 }
316 
317 static struct ktr_request *
318 ktr_getrequest(int type)
319 {
320 	struct thread *td = curthread;
321 	struct ktr_request *req;
322 
323 	ktrace_enter(td);
324 	req = ktr_getrequest_entered(td, type);
325 	if (req == NULL)
326 		ktrace_exit(td);
327 
328 	return (req);
329 }
330 
331 /*
332  * Some trace generation environments don't permit direct access to VFS,
333  * such as during a context switch where sleeping is not allowed.  Under these
334  * circumstances, queue a request to the thread to be written asynchronously
335  * later.
336  */
337 static void
338 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
339 {
340 
341 	mtx_lock(&ktrace_mtx);
342 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
343 	mtx_unlock(&ktrace_mtx);
344 }
345 
346 /*
347  * Drain any pending ktrace records from the per-thread queue to disk.  This
348  * is used both internally before committing other records, and also on
349  * system call return.  We drain all the ones we can find at the time when
350  * drain is requested, but don't keep draining after that as those events
351  * may be approximately "after" the current event.
352  */
353 static void
354 ktr_drain(struct thread *td)
355 {
356 	struct ktr_request *queued_req;
357 	STAILQ_HEAD(, ktr_request) local_queue;
358 
359 	ktrace_assert(td);
360 	sx_assert(&ktrace_sx, SX_XLOCKED);
361 
362 	STAILQ_INIT(&local_queue);
363 
364 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
365 		mtx_lock(&ktrace_mtx);
366 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
367 		mtx_unlock(&ktrace_mtx);
368 
369 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
370 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
371 			ktr_writerequest(td, queued_req);
372 			ktr_freerequest(queued_req);
373 		}
374 	}
375 }
376 
377 /*
378  * Submit a trace record for immediate commit to disk -- to be used only
379  * where entering VFS is OK.  First drain any pending records that may have
380  * been cached in the thread.
381  */
382 static void
383 ktr_submitrequest(struct thread *td, struct ktr_request *req)
384 {
385 
386 	ktrace_assert(td);
387 
388 	sx_xlock(&ktrace_sx);
389 	ktr_drain(td);
390 	ktr_writerequest(td, req);
391 	ktr_freerequest(req);
392 	sx_xunlock(&ktrace_sx);
393 	ktrace_exit(td);
394 }
395 
396 static void
397 ktr_freerequest(struct ktr_request *req)
398 {
399 
400 	mtx_lock(&ktrace_mtx);
401 	ktr_freerequest_locked(req);
402 	mtx_unlock(&ktrace_mtx);
403 }
404 
405 static void
406 ktr_freerequest_locked(struct ktr_request *req)
407 {
408 
409 	mtx_assert(&ktrace_mtx, MA_OWNED);
410 	if (req->ktr_buffer != NULL)
411 		free(req->ktr_buffer, M_KTRACE);
412 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
413 }
414 
415 /*
416  * Disable tracing for a process and release all associated resources.
417  * The caller is responsible for releasing a reference on the returned
418  * vnode and credentials.
419  */
420 static void
421 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
422 {
423 	struct ktr_request *req;
424 
425 	PROC_LOCK_ASSERT(p, MA_OWNED);
426 	mtx_assert(&ktrace_mtx, MA_OWNED);
427 	*uc = p->p_tracecred;
428 	p->p_tracecred = NULL;
429 	if (vp != NULL)
430 		*vp = p->p_tracevp;
431 	p->p_tracevp = NULL;
432 	p->p_traceflag = 0;
433 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
434 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
435 		ktr_freerequest_locked(req);
436 	}
437 }
438 
439 void
440 ktrsyscall(int code, int narg, register_t args[])
441 {
442 	struct ktr_request *req;
443 	struct ktr_syscall *ktp;
444 	size_t buflen;
445 	char *buf = NULL;
446 
447 	buflen = sizeof(register_t) * narg;
448 	if (buflen > 0) {
449 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
450 		bcopy(args, buf, buflen);
451 	}
452 	req = ktr_getrequest(KTR_SYSCALL);
453 	if (req == NULL) {
454 		if (buf != NULL)
455 			free(buf, M_KTRACE);
456 		return;
457 	}
458 	ktp = &req->ktr_data.ktr_syscall;
459 	ktp->ktr_code = code;
460 	ktp->ktr_narg = narg;
461 	if (buflen > 0) {
462 		req->ktr_header.ktr_len = buflen;
463 		req->ktr_buffer = buf;
464 	}
465 	ktr_submitrequest(curthread, req);
466 }
467 
468 void
469 ktrsysret(int code, int error, register_t retval)
470 {
471 	struct ktr_request *req;
472 	struct ktr_sysret *ktp;
473 
474 	req = ktr_getrequest(KTR_SYSRET);
475 	if (req == NULL)
476 		return;
477 	ktp = &req->ktr_data.ktr_sysret;
478 	ktp->ktr_code = code;
479 	ktp->ktr_error = error;
480 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
481 	ktr_submitrequest(curthread, req);
482 }
483 
484 /*
485  * When a setuid process execs, disable tracing.
486  *
487  * XXX: We toss any pending asynchronous records.
488  */
489 void
490 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
491 {
492 
493 	PROC_LOCK_ASSERT(p, MA_OWNED);
494 	mtx_lock(&ktrace_mtx);
495 	ktr_freeproc(p, uc, vp);
496 	mtx_unlock(&ktrace_mtx);
497 }
498 
499 /*
500  * When a process exits, drain per-process asynchronous trace records
501  * and disable tracing.
502  */
503 void
504 ktrprocexit(struct thread *td)
505 {
506 	struct ktr_request *req;
507 	struct proc *p;
508 	struct ucred *cred;
509 	struct vnode *vp;
510 
511 	p = td->td_proc;
512 	if (p->p_traceflag == 0)
513 		return;
514 
515 	ktrace_enter(td);
516 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
517 	if (req != NULL)
518 		ktr_enqueuerequest(td, req);
519 	sx_xlock(&ktrace_sx);
520 	ktr_drain(td);
521 	sx_xunlock(&ktrace_sx);
522 	PROC_LOCK(p);
523 	mtx_lock(&ktrace_mtx);
524 	ktr_freeproc(p, &cred, &vp);
525 	mtx_unlock(&ktrace_mtx);
526 	PROC_UNLOCK(p);
527 	if (vp != NULL)
528 		vrele(vp);
529 	if (cred != NULL)
530 		crfree(cred);
531 	ktrace_exit(td);
532 }
533 
534 static void
535 ktrprocctor_entered(struct thread *td, struct proc *p)
536 {
537 	struct ktr_proc_ctor *ktp;
538 	struct ktr_request *req;
539 	struct thread *td2;
540 
541 	ktrace_assert(td);
542 	td2 = FIRST_THREAD_IN_PROC(p);
543 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
544 	if (req == NULL)
545 		return;
546 	ktp = &req->ktr_data.ktr_proc_ctor;
547 	ktp->sv_flags = p->p_sysent->sv_flags;
548 	ktr_enqueuerequest(td2, req);
549 }
550 
551 void
552 ktrprocctor(struct proc *p)
553 {
554 	struct thread *td = curthread;
555 
556 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
557 		return;
558 
559 	ktrace_enter(td);
560 	ktrprocctor_entered(td, p);
561 	ktrace_exit(td);
562 }
563 
564 /*
565  * When a process forks, enable tracing in the new process if needed.
566  */
567 void
568 ktrprocfork(struct proc *p1, struct proc *p2)
569 {
570 
571 	MPASS(p2->p_tracevp == NULL);
572 	MPASS(p2->p_traceflag == 0);
573 
574 	if (p1->p_traceflag == 0)
575 		return;
576 
577 	PROC_LOCK(p1);
578 	mtx_lock(&ktrace_mtx);
579 	if (p1->p_traceflag & KTRFAC_INHERIT) {
580 		p2->p_traceflag = p1->p_traceflag;
581 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
582 			VREF(p2->p_tracevp);
583 			KASSERT(p1->p_tracecred != NULL,
584 			    ("ktrace vnode with no cred"));
585 			p2->p_tracecred = crhold(p1->p_tracecred);
586 		}
587 	}
588 	mtx_unlock(&ktrace_mtx);
589 	PROC_UNLOCK(p1);
590 
591 	ktrprocctor(p2);
592 }
593 
594 /*
595  * When a thread returns, drain any asynchronous records generated by the
596  * system call.
597  */
598 void
599 ktruserret(struct thread *td)
600 {
601 
602 	ktrace_enter(td);
603 	sx_xlock(&ktrace_sx);
604 	ktr_drain(td);
605 	sx_xunlock(&ktrace_sx);
606 	ktrace_exit(td);
607 }
608 
609 void
610 ktrnamei(path)
611 	char *path;
612 {
613 	struct ktr_request *req;
614 	int namelen;
615 	char *buf = NULL;
616 
617 	namelen = strlen(path);
618 	if (namelen > 0) {
619 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
620 		bcopy(path, buf, namelen);
621 	}
622 	req = ktr_getrequest(KTR_NAMEI);
623 	if (req == NULL) {
624 		if (buf != NULL)
625 			free(buf, M_KTRACE);
626 		return;
627 	}
628 	if (namelen > 0) {
629 		req->ktr_header.ktr_len = namelen;
630 		req->ktr_buffer = buf;
631 	}
632 	ktr_submitrequest(curthread, req);
633 }
634 
635 void
636 ktrsysctl(int *name, u_int namelen)
637 {
638 	struct ktr_request *req;
639 	u_int mib[CTL_MAXNAME + 2];
640 	char *mibname;
641 	size_t mibnamelen;
642 	int error;
643 
644 	/* Lookup name of mib. */
645 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
646 	mib[0] = 0;
647 	mib[1] = 1;
648 	bcopy(name, mib + 2, namelen * sizeof(*name));
649 	mibnamelen = 128;
650 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
651 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
652 	    NULL, 0, &mibnamelen, 0);
653 	if (error) {
654 		free(mibname, M_KTRACE);
655 		return;
656 	}
657 	req = ktr_getrequest(KTR_SYSCTL);
658 	if (req == NULL) {
659 		free(mibname, M_KTRACE);
660 		return;
661 	}
662 	req->ktr_header.ktr_len = mibnamelen;
663 	req->ktr_buffer = mibname;
664 	ktr_submitrequest(curthread, req);
665 }
666 
667 void
668 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
669 {
670 	struct ktr_request *req;
671 	struct ktr_genio *ktg;
672 	int datalen;
673 	char *buf;
674 
675 	if (error) {
676 		free(uio, M_IOV);
677 		return;
678 	}
679 	uio->uio_offset = 0;
680 	uio->uio_rw = UIO_WRITE;
681 	datalen = MIN(uio->uio_resid, ktr_geniosize);
682 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
683 	error = uiomove(buf, datalen, uio);
684 	free(uio, M_IOV);
685 	if (error) {
686 		free(buf, M_KTRACE);
687 		return;
688 	}
689 	req = ktr_getrequest(KTR_GENIO);
690 	if (req == NULL) {
691 		free(buf, M_KTRACE);
692 		return;
693 	}
694 	ktg = &req->ktr_data.ktr_genio;
695 	ktg->ktr_fd = fd;
696 	ktg->ktr_rw = rw;
697 	req->ktr_header.ktr_len = datalen;
698 	req->ktr_buffer = buf;
699 	ktr_submitrequest(curthread, req);
700 }
701 
702 void
703 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
704 {
705 	struct thread *td = curthread;
706 	struct ktr_request *req;
707 	struct ktr_psig	*kp;
708 
709 	req = ktr_getrequest(KTR_PSIG);
710 	if (req == NULL)
711 		return;
712 	kp = &req->ktr_data.ktr_psig;
713 	kp->signo = (char)sig;
714 	kp->action = action;
715 	kp->mask = *mask;
716 	kp->code = code;
717 	ktr_enqueuerequest(td, req);
718 	ktrace_exit(td);
719 }
720 
721 void
722 ktrcsw(int out, int user, const char *wmesg)
723 {
724 	struct thread *td = curthread;
725 	struct ktr_request *req;
726 	struct ktr_csw *kc;
727 
728 	req = ktr_getrequest(KTR_CSW);
729 	if (req == NULL)
730 		return;
731 	kc = &req->ktr_data.ktr_csw;
732 	kc->out = out;
733 	kc->user = user;
734 	if (wmesg != NULL)
735 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
736 	else
737 		bzero(kc->wmesg, sizeof(kc->wmesg));
738 	ktr_enqueuerequest(td, req);
739 	ktrace_exit(td);
740 }
741 
742 void
743 ktrstruct(const char *name, void *data, size_t datalen)
744 {
745 	struct ktr_request *req;
746 	char *buf;
747 	size_t buflen, namelen;
748 
749 	if (data == NULL)
750 		datalen = 0;
751 	namelen = strlen(name) + 1;
752 	buflen = namelen + datalen;
753 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
754 	strcpy(buf, name);
755 	bcopy(data, buf + namelen, datalen);
756 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
757 		free(buf, M_KTRACE);
758 		return;
759 	}
760 	req->ktr_buffer = buf;
761 	req->ktr_header.ktr_len = buflen;
762 	ktr_submitrequest(curthread, req);
763 }
764 
765 void
766 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed,
767     const cap_rights_t *held)
768 {
769 	struct thread *td = curthread;
770 	struct ktr_request *req;
771 	struct ktr_cap_fail *kcf;
772 
773 	req = ktr_getrequest(KTR_CAPFAIL);
774 	if (req == NULL)
775 		return;
776 	kcf = &req->ktr_data.ktr_cap_fail;
777 	kcf->cap_type = type;
778 	if (needed != NULL)
779 		kcf->cap_needed = *needed;
780 	else
781 		cap_rights_init(&kcf->cap_needed);
782 	if (held != NULL)
783 		kcf->cap_held = *held;
784 	else
785 		cap_rights_init(&kcf->cap_held);
786 	ktr_enqueuerequest(td, req);
787 	ktrace_exit(td);
788 }
789 
790 void
791 ktrfault(vm_offset_t vaddr, int type)
792 {
793 	struct thread *td = curthread;
794 	struct ktr_request *req;
795 	struct ktr_fault *kf;
796 
797 	req = ktr_getrequest(KTR_FAULT);
798 	if (req == NULL)
799 		return;
800 	kf = &req->ktr_data.ktr_fault;
801 	kf->vaddr = vaddr;
802 	kf->type = type;
803 	ktr_enqueuerequest(td, req);
804 	ktrace_exit(td);
805 }
806 
807 void
808 ktrfaultend(int result)
809 {
810 	struct thread *td = curthread;
811 	struct ktr_request *req;
812 	struct ktr_faultend *kf;
813 
814 	req = ktr_getrequest(KTR_FAULTEND);
815 	if (req == NULL)
816 		return;
817 	kf = &req->ktr_data.ktr_faultend;
818 	kf->result = result;
819 	ktr_enqueuerequest(td, req);
820 	ktrace_exit(td);
821 }
822 #endif /* KTRACE */
823 
824 /* Interface and common routines */
825 
826 #ifndef _SYS_SYSPROTO_H_
827 struct ktrace_args {
828 	char	*fname;
829 	int	ops;
830 	int	facs;
831 	int	pid;
832 };
833 #endif
834 /* ARGSUSED */
835 int
836 sys_ktrace(struct thread *td, struct ktrace_args *uap)
837 {
838 #ifdef KTRACE
839 	struct vnode *vp = NULL;
840 	struct proc *p;
841 	struct pgrp *pg;
842 	int facs = uap->facs & ~KTRFAC_ROOT;
843 	int ops = KTROP(uap->ops);
844 	int descend = uap->ops & KTRFLAG_DESCEND;
845 	int nfound, ret = 0;
846 	int flags, error = 0;
847 	struct nameidata nd;
848 	struct ucred *cred;
849 
850 	/*
851 	 * Need something to (un)trace.
852 	 */
853 	if (ops != KTROP_CLEARFILE && facs == 0)
854 		return (EINVAL);
855 
856 	ktrace_enter(td);
857 	if (ops != KTROP_CLEAR) {
858 		/*
859 		 * an operation which requires a file argument.
860 		 */
861 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
862 		flags = FREAD | FWRITE | O_NOFOLLOW;
863 		error = vn_open(&nd, &flags, 0, NULL);
864 		if (error) {
865 			ktrace_exit(td);
866 			return (error);
867 		}
868 		NDFREE(&nd, NDF_ONLY_PNBUF);
869 		vp = nd.ni_vp;
870 		VOP_UNLOCK(vp, 0);
871 		if (vp->v_type != VREG) {
872 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
873 			ktrace_exit(td);
874 			return (EACCES);
875 		}
876 	}
877 	/*
878 	 * Clear all uses of the tracefile.
879 	 */
880 	if (ops == KTROP_CLEARFILE) {
881 		int vrele_count;
882 
883 		vrele_count = 0;
884 		sx_slock(&allproc_lock);
885 		FOREACH_PROC_IN_SYSTEM(p) {
886 			PROC_LOCK(p);
887 			if (p->p_tracevp == vp) {
888 				if (ktrcanset(td, p)) {
889 					mtx_lock(&ktrace_mtx);
890 					ktr_freeproc(p, &cred, NULL);
891 					mtx_unlock(&ktrace_mtx);
892 					vrele_count++;
893 					crfree(cred);
894 				} else
895 					error = EPERM;
896 			}
897 			PROC_UNLOCK(p);
898 		}
899 		sx_sunlock(&allproc_lock);
900 		if (vrele_count > 0) {
901 			while (vrele_count-- > 0)
902 				vrele(vp);
903 		}
904 		goto done;
905 	}
906 	/*
907 	 * do it
908 	 */
909 	sx_slock(&proctree_lock);
910 	if (uap->pid < 0) {
911 		/*
912 		 * by process group
913 		 */
914 		pg = pgfind(-uap->pid);
915 		if (pg == NULL) {
916 			sx_sunlock(&proctree_lock);
917 			error = ESRCH;
918 			goto done;
919 		}
920 		/*
921 		 * ktrops() may call vrele(). Lock pg_members
922 		 * by the proctree_lock rather than pg_mtx.
923 		 */
924 		PGRP_UNLOCK(pg);
925 		nfound = 0;
926 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
927 			PROC_LOCK(p);
928 			if (p->p_state == PRS_NEW ||
929 			    p_cansee(td, p) != 0) {
930 				PROC_UNLOCK(p);
931 				continue;
932 			}
933 			nfound++;
934 			if (descend)
935 				ret |= ktrsetchildren(td, p, ops, facs, vp);
936 			else
937 				ret |= ktrops(td, p, ops, facs, vp);
938 		}
939 		if (nfound == 0) {
940 			sx_sunlock(&proctree_lock);
941 			error = ESRCH;
942 			goto done;
943 		}
944 	} else {
945 		/*
946 		 * by pid
947 		 */
948 		p = pfind(uap->pid);
949 		if (p == NULL)
950 			error = ESRCH;
951 		else
952 			error = p_cansee(td, p);
953 		if (error) {
954 			if (p != NULL)
955 				PROC_UNLOCK(p);
956 			sx_sunlock(&proctree_lock);
957 			goto done;
958 		}
959 		if (descend)
960 			ret |= ktrsetchildren(td, p, ops, facs, vp);
961 		else
962 			ret |= ktrops(td, p, ops, facs, vp);
963 	}
964 	sx_sunlock(&proctree_lock);
965 	if (!ret)
966 		error = EPERM;
967 done:
968 	if (vp != NULL)
969 		(void) vn_close(vp, FWRITE, td->td_ucred, td);
970 	ktrace_exit(td);
971 	return (error);
972 #else /* !KTRACE */
973 	return (ENOSYS);
974 #endif /* KTRACE */
975 }
976 
977 /* ARGSUSED */
978 int
979 sys_utrace(struct thread *td, struct utrace_args *uap)
980 {
981 
982 #ifdef KTRACE
983 	struct ktr_request *req;
984 	void *cp;
985 	int error;
986 
987 	if (!KTRPOINT(td, KTR_USER))
988 		return (0);
989 	if (uap->len > KTR_USER_MAXLEN)
990 		return (EINVAL);
991 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
992 	error = copyin(uap->addr, cp, uap->len);
993 	if (error) {
994 		free(cp, M_KTRACE);
995 		return (error);
996 	}
997 	req = ktr_getrequest(KTR_USER);
998 	if (req == NULL) {
999 		free(cp, M_KTRACE);
1000 		return (ENOMEM);
1001 	}
1002 	req->ktr_buffer = cp;
1003 	req->ktr_header.ktr_len = uap->len;
1004 	ktr_submitrequest(td, req);
1005 	return (0);
1006 #else /* !KTRACE */
1007 	return (ENOSYS);
1008 #endif /* KTRACE */
1009 }
1010 
1011 #ifdef KTRACE
1012 static int
1013 ktrops(struct thread *td, struct proc *p, int ops, int facs, struct vnode *vp)
1014 {
1015 	struct vnode *tracevp = NULL;
1016 	struct ucred *tracecred = NULL;
1017 
1018 	PROC_LOCK_ASSERT(p, MA_OWNED);
1019 	if (!ktrcanset(td, p)) {
1020 		PROC_UNLOCK(p);
1021 		return (0);
1022 	}
1023 	if (p->p_flag & P_WEXIT) {
1024 		/* If the process is exiting, just ignore it. */
1025 		PROC_UNLOCK(p);
1026 		return (1);
1027 	}
1028 	mtx_lock(&ktrace_mtx);
1029 	if (ops == KTROP_SET) {
1030 		if (p->p_tracevp != vp) {
1031 			/*
1032 			 * if trace file already in use, relinquish below
1033 			 */
1034 			tracevp = p->p_tracevp;
1035 			VREF(vp);
1036 			p->p_tracevp = vp;
1037 		}
1038 		if (p->p_tracecred != td->td_ucred) {
1039 			tracecred = p->p_tracecred;
1040 			p->p_tracecred = crhold(td->td_ucred);
1041 		}
1042 		p->p_traceflag |= facs;
1043 		if (priv_check(td, PRIV_KTRACE) == 0)
1044 			p->p_traceflag |= KTRFAC_ROOT;
1045 	} else {
1046 		/* KTROP_CLEAR */
1047 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1048 			/* no more tracing */
1049 			ktr_freeproc(p, &tracecred, &tracevp);
1050 	}
1051 	mtx_unlock(&ktrace_mtx);
1052 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1053 		ktrprocctor_entered(td, p);
1054 	PROC_UNLOCK(p);
1055 	if (tracevp != NULL)
1056 		vrele(tracevp);
1057 	if (tracecred != NULL)
1058 		crfree(tracecred);
1059 
1060 	return (1);
1061 }
1062 
1063 static int
1064 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
1065     struct vnode *vp)
1066 {
1067 	struct proc *p;
1068 	int ret = 0;
1069 
1070 	p = top;
1071 	PROC_LOCK_ASSERT(p, MA_OWNED);
1072 	sx_assert(&proctree_lock, SX_LOCKED);
1073 	for (;;) {
1074 		ret |= ktrops(td, p, ops, facs, vp);
1075 		/*
1076 		 * If this process has children, descend to them next,
1077 		 * otherwise do any siblings, and if done with this level,
1078 		 * follow back up the tree (but not past top).
1079 		 */
1080 		if (!LIST_EMPTY(&p->p_children))
1081 			p = LIST_FIRST(&p->p_children);
1082 		else for (;;) {
1083 			if (p == top)
1084 				return (ret);
1085 			if (LIST_NEXT(p, p_sibling)) {
1086 				p = LIST_NEXT(p, p_sibling);
1087 				break;
1088 			}
1089 			p = p->p_pptr;
1090 		}
1091 		PROC_LOCK(p);
1092 	}
1093 	/*NOTREACHED*/
1094 }
1095 
1096 static void
1097 ktr_writerequest(struct thread *td, struct ktr_request *req)
1098 {
1099 	struct ktr_header *kth;
1100 	struct vnode *vp;
1101 	struct proc *p;
1102 	struct ucred *cred;
1103 	struct uio auio;
1104 	struct iovec aiov[3];
1105 	struct mount *mp;
1106 	int datalen, buflen, vrele_count;
1107 	int error;
1108 
1109 	/*
1110 	 * We hold the vnode and credential for use in I/O in case ktrace is
1111 	 * disabled on the process as we write out the request.
1112 	 *
1113 	 * XXXRW: This is not ideal: we could end up performing a write after
1114 	 * the vnode has been closed.
1115 	 */
1116 	mtx_lock(&ktrace_mtx);
1117 	vp = td->td_proc->p_tracevp;
1118 	cred = td->td_proc->p_tracecred;
1119 
1120 	/*
1121 	 * If vp is NULL, the vp has been cleared out from under this
1122 	 * request, so just drop it.  Make sure the credential and vnode are
1123 	 * in sync: we should have both or neither.
1124 	 */
1125 	if (vp == NULL) {
1126 		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1127 		mtx_unlock(&ktrace_mtx);
1128 		return;
1129 	}
1130 	VREF(vp);
1131 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1132 	crhold(cred);
1133 	mtx_unlock(&ktrace_mtx);
1134 
1135 	kth = &req->ktr_header;
1136 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths),
1137 	    ("data_lengths array overflow"));
1138 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1139 	buflen = kth->ktr_len;
1140 	auio.uio_iov = &aiov[0];
1141 	auio.uio_offset = 0;
1142 	auio.uio_segflg = UIO_SYSSPACE;
1143 	auio.uio_rw = UIO_WRITE;
1144 	aiov[0].iov_base = (caddr_t)kth;
1145 	aiov[0].iov_len = sizeof(struct ktr_header);
1146 	auio.uio_resid = sizeof(struct ktr_header);
1147 	auio.uio_iovcnt = 1;
1148 	auio.uio_td = td;
1149 	if (datalen != 0) {
1150 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1151 		aiov[1].iov_len = datalen;
1152 		auio.uio_resid += datalen;
1153 		auio.uio_iovcnt++;
1154 		kth->ktr_len += datalen;
1155 	}
1156 	if (buflen != 0) {
1157 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1158 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1159 		aiov[auio.uio_iovcnt].iov_len = buflen;
1160 		auio.uio_resid += buflen;
1161 		auio.uio_iovcnt++;
1162 	}
1163 
1164 	vn_start_write(vp, &mp, V_WAIT);
1165 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1166 #ifdef MAC
1167 	error = mac_vnode_check_write(cred, NOCRED, vp);
1168 	if (error == 0)
1169 #endif
1170 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1171 	VOP_UNLOCK(vp, 0);
1172 	vn_finished_write(mp);
1173 	crfree(cred);
1174 	if (!error) {
1175 		vrele(vp);
1176 		return;
1177 	}
1178 
1179 	/*
1180 	 * If error encountered, give up tracing on this vnode.  We defer
1181 	 * all the vrele()'s on the vnode until after we are finished walking
1182 	 * the various lists to avoid needlessly holding locks.
1183 	 * NB: at this point we still hold the vnode reference that must
1184 	 * not go away as we need the valid vnode to compare with. Thus let
1185 	 * vrele_count start at 1 and the reference will be freed
1186 	 * by the loop at the end after our last use of vp.
1187 	 */
1188 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1189 	    error);
1190 	vrele_count = 1;
1191 	/*
1192 	 * First, clear this vnode from being used by any processes in the
1193 	 * system.
1194 	 * XXX - If one process gets an EPERM writing to the vnode, should
1195 	 * we really do this?  Other processes might have suitable
1196 	 * credentials for the operation.
1197 	 */
1198 	cred = NULL;
1199 	sx_slock(&allproc_lock);
1200 	FOREACH_PROC_IN_SYSTEM(p) {
1201 		PROC_LOCK(p);
1202 		if (p->p_tracevp == vp) {
1203 			mtx_lock(&ktrace_mtx);
1204 			ktr_freeproc(p, &cred, NULL);
1205 			mtx_unlock(&ktrace_mtx);
1206 			vrele_count++;
1207 		}
1208 		PROC_UNLOCK(p);
1209 		if (cred != NULL) {
1210 			crfree(cred);
1211 			cred = NULL;
1212 		}
1213 	}
1214 	sx_sunlock(&allproc_lock);
1215 
1216 	while (vrele_count-- > 0)
1217 		vrele(vp);
1218 }
1219 
1220 /*
1221  * Return true if caller has permission to set the ktracing state
1222  * of target.  Essentially, the target can't possess any
1223  * more permissions than the caller.  KTRFAC_ROOT signifies that
1224  * root previously set the tracing status on the target process, and
1225  * so, only root may further change it.
1226  */
1227 static int
1228 ktrcanset(struct thread *td, struct proc *targetp)
1229 {
1230 
1231 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1232 	if (targetp->p_traceflag & KTRFAC_ROOT &&
1233 	    priv_check(td, PRIV_KTRACE))
1234 		return (0);
1235 
1236 	if (p_candebug(td, targetp) != 0)
1237 		return (0);
1238 
1239 	return (1);
1240 }
1241 
1242 #endif /* KTRACE */
1243