xref: /freebsd/sys/kern/kern_kcov.c (revision bc7512cc58af2e8bbe5bbf5ca0059b1daa1da897)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2018 The FreeBSD Foundation. All rights reserved.
5  * Copyright (C) 2018, 2019 Andrew Turner
6  *
7  * This software was developed by Mitchell Horne under sponsorship of
8  * the FreeBSD Foundation.
9  *
10  * This software was developed by SRI International and the University of
11  * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
12  * ("CTSRD"), as part of the DARPA CRASH research programme.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * $FreeBSD$
36  */
37 
38 /* Interceptors are required for KMSAN. */
39 #if defined(KASAN) || defined(KCSAN)
40 #define	SAN_RUNTIME
41 #endif
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/conf.h>
49 #include <sys/eventhandler.h>
50 #include <sys/kcov.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mman.h>
56 #include <sys/mutex.h>
57 #include <sys/proc.h>
58 #include <sys/rwlock.h>
59 #include <sys/sysctl.h>
60 
61 #include <vm/vm.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_param.h>
68 
69 MALLOC_DEFINE(M_KCOV_INFO, "kcovinfo", "KCOV info type");
70 
71 #define	KCOV_ELEMENT_SIZE	sizeof(uint64_t)
72 
73 /*
74  * To know what the code can safely perform at any point in time we use a
75  * state machine. In the normal case the state transitions are:
76  *
77  * OPEN -> READY -> RUNNING -> DYING
78  *  |       | ^        |        ^ ^
79  *  |       | +--------+        | |
80  *  |       +-------------------+ |
81  *  +-----------------------------+
82  *
83  * The states are:
84  *  OPEN:   The kcov fd has been opened, but no buffer is available to store
85  *          coverage data.
86  *  READY:  The buffer to store coverage data has been allocated. Userspace
87  *          can set this by using ioctl(fd, KIOSETBUFSIZE, entries);. When
88  *          this has been set the buffer can be written to by the kernel,
89  *          and mmaped by userspace.
90  * RUNNING: The coverage probes are able to store coverage data in the buffer.
91  *          This is entered with ioctl(fd, KIOENABLE, mode);. The READY state
92  *          can be exited by ioctl(fd, KIODISABLE); or exiting the thread to
93  *          return to the READY state to allow tracing to be reused, or by
94  *          closing the kcov fd to enter the DYING state.
95  * DYING:   The fd has been closed. All states can enter into this state when
96  *          userspace closes the kcov fd.
97  *
98  * We need to be careful when moving into and out of the RUNNING state. As
99  * an interrupt may happen while this is happening the ordering of memory
100  * operations is important so struct kcov_info is valid for the tracing
101  * functions.
102  *
103  * When moving into the RUNNING state prior stores to struct kcov_info need
104  * to be observed before the state is set. This allows for interrupts that
105  * may call into one of the coverage functions to fire at any point while
106  * being enabled and see a consistent struct kcov_info.
107  *
108  * When moving out of the RUNNING state any later stores to struct kcov_info
109  * need to be observed after the state is set. As with entering this is to
110  * present a consistent struct kcov_info to interrupts.
111  */
112 typedef enum {
113 	KCOV_STATE_INVALID,
114 	KCOV_STATE_OPEN,	/* The device is open, but with no buffer */
115 	KCOV_STATE_READY,	/* The buffer has been allocated */
116 	KCOV_STATE_RUNNING,	/* Recording trace data */
117 	KCOV_STATE_DYING,	/* The fd was closed */
118 } kcov_state_t;
119 
120 /*
121  * (l) Set while holding the kcov_lock mutex and not in the RUNNING state.
122  * (o) Only set once while in the OPEN state. Cleaned up while in the DYING
123  *     state, and with no thread associated with the struct kcov_info.
124  * (s) Set atomically to enter or exit the RUNNING state, non-atomically
125  *     otherwise. See above for a description of the other constraints while
126  *     moving into or out of the RUNNING state.
127  */
128 struct kcov_info {
129 	struct thread	*thread;	/* (l) */
130 	vm_object_t	bufobj;		/* (o) */
131 	vm_offset_t	kvaddr;		/* (o) */
132 	size_t		entries;	/* (o) */
133 	size_t		bufsize;	/* (o) */
134 	kcov_state_t	state;		/* (s) */
135 	int		mode;		/* (l) */
136 };
137 
138 /* Prototypes */
139 static d_open_t		kcov_open;
140 static d_close_t	kcov_close;
141 static d_mmap_single_t	kcov_mmap_single;
142 static d_ioctl_t	kcov_ioctl;
143 
144 static int  kcov_alloc(struct kcov_info *info, size_t entries);
145 static void kcov_free(struct kcov_info *info);
146 static void kcov_init(const void *unused);
147 
148 static struct cdevsw kcov_cdevsw = {
149 	.d_version =	D_VERSION,
150 	.d_open =	kcov_open,
151 	.d_close =	kcov_close,
152 	.d_mmap_single = kcov_mmap_single,
153 	.d_ioctl =	kcov_ioctl,
154 	.d_name =	"kcov",
155 };
156 
157 SYSCTL_NODE(_kern, OID_AUTO, kcov, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
158     "Kernel coverage");
159 
160 static u_int kcov_max_entries = KCOV_MAXENTRIES;
161 SYSCTL_UINT(_kern_kcov, OID_AUTO, max_entries, CTLFLAG_RW,
162     &kcov_max_entries, 0,
163     "Maximum number of entries in the kcov buffer");
164 
165 static struct mtx kcov_lock;
166 static int active_count;
167 
168 static struct kcov_info * __nosanitizeaddress __nosanitizememory
169 get_kinfo(struct thread *td)
170 {
171 	struct kcov_info *info;
172 
173 	/* We might have a NULL thread when releasing the secondary CPUs */
174 	if (td == NULL)
175 		return (NULL);
176 
177 	/*
178 	 * We are in an interrupt, stop tracing as it is not explicitly
179 	 * part of a syscall.
180 	 */
181 	if (td->td_intr_nesting_level > 0 || td->td_intr_frame != NULL)
182 		return (NULL);
183 
184 	/*
185 	 * If info is NULL or the state is not running we are not tracing.
186 	 */
187 	info = td->td_kcov_info;
188 	if (info == NULL ||
189 	    atomic_load_acq_int(&info->state) != KCOV_STATE_RUNNING)
190 		return (NULL);
191 
192 	return (info);
193 }
194 
195 static void __nosanitizeaddress __nosanitizememory
196 trace_pc(uintptr_t ret)
197 {
198 	struct thread *td;
199 	struct kcov_info *info;
200 	uint64_t *buf, index;
201 
202 	td = curthread;
203 	info = get_kinfo(td);
204 	if (info == NULL)
205 		return;
206 
207 	/*
208 	 * Check we are in the PC-trace mode.
209 	 */
210 	if (info->mode != KCOV_MODE_TRACE_PC)
211 		return;
212 
213 	KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__));
214 
215 	buf = (uint64_t *)info->kvaddr;
216 
217 	/* The first entry of the buffer holds the index */
218 	index = buf[0];
219 	if (index + 2 > info->entries)
220 		return;
221 
222 	buf[index + 1] = ret;
223 	buf[0] = index + 1;
224 }
225 
226 static bool __nosanitizeaddress __nosanitizememory
227 trace_cmp(uint64_t type, uint64_t arg1, uint64_t arg2, uint64_t ret)
228 {
229 	struct thread *td;
230 	struct kcov_info *info;
231 	uint64_t *buf, index;
232 
233 	td = curthread;
234 	info = get_kinfo(td);
235 	if (info == NULL)
236 		return (false);
237 
238 	/*
239 	 * Check we are in the comparison-trace mode.
240 	 */
241 	if (info->mode != KCOV_MODE_TRACE_CMP)
242 		return (false);
243 
244 	KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__));
245 
246 	buf = (uint64_t *)info->kvaddr;
247 
248 	/* The first entry of the buffer holds the index */
249 	index = buf[0];
250 
251 	/* Check we have space to store all elements */
252 	if (index * 4 + 4 + 1 > info->entries)
253 		return (false);
254 
255 	while (1) {
256 		buf[index * 4 + 1] = type;
257 		buf[index * 4 + 2] = arg1;
258 		buf[index * 4 + 3] = arg2;
259 		buf[index * 4 + 4] = ret;
260 
261 		if (atomic_cmpset_64(&buf[0], index, index + 1))
262 			break;
263 		buf[0] = index;
264 	}
265 
266 	return (true);
267 }
268 
269 /*
270  * The fd is being closed, cleanup everything we can.
271  */
272 static void
273 kcov_mmap_cleanup(void *arg)
274 {
275 	struct kcov_info *info = arg;
276 	struct thread *thread;
277 
278 	mtx_lock_spin(&kcov_lock);
279 	/*
280 	 * Move to KCOV_STATE_DYING to stop adding new entries.
281 	 *
282 	 * If the thread is running we need to wait until thread exit to
283 	 * clean up as it may currently be adding a new entry. If this is
284 	 * the case being in KCOV_STATE_DYING will signal that the buffer
285 	 * needs to be cleaned up.
286 	 */
287 	atomic_store_int(&info->state, KCOV_STATE_DYING);
288 	atomic_thread_fence_seq_cst();
289 	thread = info->thread;
290 	mtx_unlock_spin(&kcov_lock);
291 
292 	if (thread != NULL)
293 		return;
294 
295 	/*
296 	 * We can safely clean up the info struct as it is in the
297 	 * KCOV_STATE_DYING state with no thread associated.
298 	 *
299 	 * The KCOV_STATE_DYING stops new threads from using it.
300 	 * The lack of a thread means nothing is currently using the buffers.
301 	 */
302 	kcov_free(info);
303 }
304 
305 static int
306 kcov_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
307 {
308 	struct kcov_info *info;
309 	int error;
310 
311 	info = malloc(sizeof(struct kcov_info), M_KCOV_INFO, M_ZERO | M_WAITOK);
312 	info->state = KCOV_STATE_OPEN;
313 	info->thread = NULL;
314 	info->mode = -1;
315 
316 	if ((error = devfs_set_cdevpriv(info, kcov_mmap_cleanup)) != 0)
317 		kcov_mmap_cleanup(info);
318 
319 	return (error);
320 }
321 
322 static int
323 kcov_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
324 {
325 	struct kcov_info *info;
326 	int error;
327 
328 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
329 		return (error);
330 
331 	KASSERT(info != NULL, ("kcov_close with no kcov_info structure"));
332 
333 	/* Trying to close, but haven't disabled */
334 	if (info->state == KCOV_STATE_RUNNING)
335 		return (EBUSY);
336 
337 	return (0);
338 }
339 
340 static int
341 kcov_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size,
342     struct vm_object **object, int nprot)
343 {
344 	struct kcov_info *info;
345 	int error;
346 
347 	if ((nprot & (PROT_EXEC | PROT_READ | PROT_WRITE)) !=
348 	    (PROT_READ | PROT_WRITE))
349 		return (EINVAL);
350 
351 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
352 		return (error);
353 
354 	if (info->kvaddr == 0 || size / KCOV_ELEMENT_SIZE != info->entries)
355 		return (EINVAL);
356 
357 	vm_object_reference(info->bufobj);
358 	*offset = 0;
359 	*object = info->bufobj;
360 	return (0);
361 }
362 
363 static int
364 kcov_alloc(struct kcov_info *info, size_t entries)
365 {
366 	size_t n, pages;
367 	vm_page_t m;
368 
369 	KASSERT(info->kvaddr == 0, ("kcov_alloc: Already have a buffer"));
370 	KASSERT(info->state == KCOV_STATE_OPEN,
371 	    ("kcov_alloc: Not in open state (%x)", info->state));
372 
373 	if (entries < 2 || entries > kcov_max_entries)
374 		return (EINVAL);
375 
376 	/* Align to page size so mmap can't access other kernel memory */
377 	info->bufsize = roundup2(entries * KCOV_ELEMENT_SIZE, PAGE_SIZE);
378 	pages = info->bufsize / PAGE_SIZE;
379 
380 	if ((info->kvaddr = kva_alloc(info->bufsize)) == 0)
381 		return (ENOMEM);
382 
383 	info->bufobj = vm_pager_allocate(OBJT_PHYS, 0, info->bufsize,
384 	    PROT_READ | PROT_WRITE, 0, curthread->td_ucred);
385 
386 	VM_OBJECT_WLOCK(info->bufobj);
387 	for (n = 0; n < pages; n++) {
388 		m = vm_page_grab(info->bufobj, n,
389 		    VM_ALLOC_ZERO | VM_ALLOC_WIRED);
390 		vm_page_valid(m);
391 		vm_page_xunbusy(m);
392 		pmap_qenter(info->kvaddr + n * PAGE_SIZE, &m, 1);
393 	}
394 	VM_OBJECT_WUNLOCK(info->bufobj);
395 
396 	info->entries = entries;
397 
398 	return (0);
399 }
400 
401 static void
402 kcov_free(struct kcov_info *info)
403 {
404 	vm_page_t m;
405 	size_t i;
406 
407 	if (info->kvaddr != 0) {
408 		pmap_qremove(info->kvaddr, info->bufsize / PAGE_SIZE);
409 		kva_free(info->kvaddr, info->bufsize);
410 	}
411 	if (info->bufobj != NULL) {
412 		VM_OBJECT_WLOCK(info->bufobj);
413 		m = vm_page_lookup(info->bufobj, 0);
414 		for (i = 0; i < info->bufsize / PAGE_SIZE; i++) {
415 			vm_page_unwire_noq(m);
416 			m = vm_page_next(m);
417 		}
418 		VM_OBJECT_WUNLOCK(info->bufobj);
419 		vm_object_deallocate(info->bufobj);
420 	}
421 	free(info, M_KCOV_INFO);
422 }
423 
424 static int
425 kcov_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag __unused,
426     struct thread *td)
427 {
428 	struct kcov_info *info;
429 	int mode, error;
430 
431 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
432 		return (error);
433 
434 	if (cmd == KIOSETBUFSIZE) {
435 		/*
436 		 * Set the size of the coverage buffer. Should be called
437 		 * before enabling coverage collection for that thread.
438 		 */
439 		if (info->state != KCOV_STATE_OPEN) {
440 			return (EBUSY);
441 		}
442 		error = kcov_alloc(info, *(u_int *)data);
443 		if (error == 0)
444 			info->state = KCOV_STATE_READY;
445 		return (error);
446 	}
447 
448 	mtx_lock_spin(&kcov_lock);
449 	switch (cmd) {
450 	case KIOENABLE:
451 		if (info->state != KCOV_STATE_READY) {
452 			error = EBUSY;
453 			break;
454 		}
455 		if (td->td_kcov_info != NULL) {
456 			error = EINVAL;
457 			break;
458 		}
459 		mode = *(int *)data;
460 		if (mode != KCOV_MODE_TRACE_PC && mode != KCOV_MODE_TRACE_CMP) {
461 			error = EINVAL;
462 			break;
463 		}
464 
465 		/* Lets hope nobody opens this 2 billion times */
466 		KASSERT(active_count < INT_MAX,
467 		    ("%s: Open too many times", __func__));
468 		active_count++;
469 		if (active_count == 1) {
470 			cov_register_pc(&trace_pc);
471 			cov_register_cmp(&trace_cmp);
472 		}
473 
474 		KASSERT(info->thread == NULL,
475 		    ("Enabling kcov when already enabled"));
476 		info->thread = td;
477 		info->mode = mode;
478 		/*
479 		 * Ensure the mode has been set before starting coverage
480 		 * tracing.
481 		 */
482 		atomic_store_rel_int(&info->state, KCOV_STATE_RUNNING);
483 		td->td_kcov_info = info;
484 		break;
485 	case KIODISABLE:
486 		/* Only the currently enabled thread may disable itself */
487 		if (info->state != KCOV_STATE_RUNNING ||
488 		    info != td->td_kcov_info) {
489 			error = EINVAL;
490 			break;
491 		}
492 		KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
493 		active_count--;
494 		if (active_count == 0) {
495 			cov_unregister_pc();
496 			cov_unregister_cmp();
497 		}
498 
499 		td->td_kcov_info = NULL;
500 		atomic_store_int(&info->state, KCOV_STATE_READY);
501 		/*
502 		 * Ensure we have exited the READY state before clearing the
503 		 * rest of the info struct.
504 		 */
505 		atomic_thread_fence_rel();
506 		info->mode = -1;
507 		info->thread = NULL;
508 		break;
509 	default:
510 		error = EINVAL;
511 		break;
512 	}
513 	mtx_unlock_spin(&kcov_lock);
514 
515 	return (error);
516 }
517 
518 static void
519 kcov_thread_dtor(void *arg __unused, struct thread *td)
520 {
521 	struct kcov_info *info;
522 
523 	info = td->td_kcov_info;
524 	if (info == NULL)
525 		return;
526 
527 	mtx_lock_spin(&kcov_lock);
528 	KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
529 	active_count--;
530 	if (active_count == 0) {
531 		cov_unregister_pc();
532 		cov_unregister_cmp();
533 	}
534 	td->td_kcov_info = NULL;
535 	if (info->state != KCOV_STATE_DYING) {
536 		/*
537 		 * The kcov file is still open. Mark it as unused and
538 		 * wait for it to be closed before cleaning up.
539 		 */
540 		atomic_store_int(&info->state, KCOV_STATE_READY);
541 		atomic_thread_fence_seq_cst();
542 		/* This info struct is unused */
543 		info->thread = NULL;
544 		mtx_unlock_spin(&kcov_lock);
545 		return;
546 	}
547 	mtx_unlock_spin(&kcov_lock);
548 
549 	/*
550 	 * We can safely clean up the info struct as it is in the
551 	 * KCOV_STATE_DYING state where the info struct is associated with
552 	 * the current thread that's about to exit.
553 	 *
554 	 * The KCOV_STATE_DYING stops new threads from using it.
555 	 * It also stops the current thread from trying to use the info struct.
556 	 */
557 	kcov_free(info);
558 }
559 
560 static void
561 kcov_init(const void *unused)
562 {
563 	struct make_dev_args args;
564 	struct cdev *dev;
565 
566 	mtx_init(&kcov_lock, "kcov lock", NULL, MTX_SPIN);
567 
568 	make_dev_args_init(&args);
569 	args.mda_devsw = &kcov_cdevsw;
570 	args.mda_uid = UID_ROOT;
571 	args.mda_gid = GID_WHEEL;
572 	args.mda_mode = 0600;
573 	if (make_dev_s(&args, &dev, "kcov") != 0) {
574 		printf("%s", "Failed to create kcov device");
575 		return;
576 	}
577 
578 	EVENTHANDLER_REGISTER(thread_dtor, kcov_thread_dtor, NULL,
579 	    EVENTHANDLER_PRI_ANY);
580 }
581 
582 SYSINIT(kcovdev, SI_SUB_LAST, SI_ORDER_ANY, kcov_init, NULL);
583