xref: /freebsd/sys/kern/kern_kcov.c (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2018 The FreeBSD Foundation. All rights reserved.
5  * Copyright (C) 2018, 2019 Andrew Turner
6  *
7  * This software was developed by Mitchell Horne under sponsorship of
8  * the FreeBSD Foundation.
9  *
10  * This software was developed by SRI International and the University of
11  * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
12  * ("CTSRD"), as part of the DARPA CRASH research programme.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /* Interceptors are required for KMSAN. */
37 #if defined(KASAN) || defined(KCSAN)
38 #define	SAN_RUNTIME
39 #endif
40 
41 #include <sys/cdefs.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/conf.h>
45 #include <sys/eventhandler.h>
46 #include <sys/kcov.h>
47 #include <sys/kernel.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mman.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/sysctl.h>
56 
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_extern.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_pager.h>
63 #include <vm/vm_param.h>
64 
65 MALLOC_DEFINE(M_KCOV_INFO, "kcovinfo", "KCOV info type");
66 
67 #define	KCOV_ELEMENT_SIZE	sizeof(uint64_t)
68 
69 /*
70  * To know what the code can safely perform at any point in time we use a
71  * state machine. In the normal case the state transitions are:
72  *
73  * OPEN -> READY -> RUNNING -> DYING
74  *  |       | ^        |        ^ ^
75  *  |       | +--------+        | |
76  *  |       +-------------------+ |
77  *  +-----------------------------+
78  *
79  * The states are:
80  *  OPEN:   The kcov fd has been opened, but no buffer is available to store
81  *          coverage data.
82  *  READY:  The buffer to store coverage data has been allocated. Userspace
83  *          can set this by using ioctl(fd, KIOSETBUFSIZE, entries);. When
84  *          this has been set the buffer can be written to by the kernel,
85  *          and mmaped by userspace.
86  * RUNNING: The coverage probes are able to store coverage data in the buffer.
87  *          This is entered with ioctl(fd, KIOENABLE, mode);. The READY state
88  *          can be exited by ioctl(fd, KIODISABLE); or exiting the thread to
89  *          return to the READY state to allow tracing to be reused, or by
90  *          closing the kcov fd to enter the DYING state.
91  * DYING:   The fd has been closed. All states can enter into this state when
92  *          userspace closes the kcov fd.
93  *
94  * We need to be careful when moving into and out of the RUNNING state. As
95  * an interrupt may happen while this is happening the ordering of memory
96  * operations is important so struct kcov_info is valid for the tracing
97  * functions.
98  *
99  * When moving into the RUNNING state prior stores to struct kcov_info need
100  * to be observed before the state is set. This allows for interrupts that
101  * may call into one of the coverage functions to fire at any point while
102  * being enabled and see a consistent struct kcov_info.
103  *
104  * When moving out of the RUNNING state any later stores to struct kcov_info
105  * need to be observed after the state is set. As with entering this is to
106  * present a consistent struct kcov_info to interrupts.
107  */
108 typedef enum {
109 	KCOV_STATE_INVALID,
110 	KCOV_STATE_OPEN,	/* The device is open, but with no buffer */
111 	KCOV_STATE_READY,	/* The buffer has been allocated */
112 	KCOV_STATE_RUNNING,	/* Recording trace data */
113 	KCOV_STATE_DYING,	/* The fd was closed */
114 } kcov_state_t;
115 
116 /*
117  * (l) Set while holding the kcov_lock mutex and not in the RUNNING state.
118  * (o) Only set once while in the OPEN state. Cleaned up while in the DYING
119  *     state, and with no thread associated with the struct kcov_info.
120  * (s) Set atomically to enter or exit the RUNNING state, non-atomically
121  *     otherwise. See above for a description of the other constraints while
122  *     moving into or out of the RUNNING state.
123  */
124 struct kcov_info {
125 	struct thread	*thread;	/* (l) */
126 	vm_object_t	bufobj;		/* (o) */
127 	vm_offset_t	kvaddr;		/* (o) */
128 	size_t		entries;	/* (o) */
129 	size_t		bufsize;	/* (o) */
130 	kcov_state_t	state;		/* (s) */
131 	int		mode;		/* (l) */
132 };
133 
134 /* Prototypes */
135 static d_open_t		kcov_open;
136 static d_close_t	kcov_close;
137 static d_mmap_single_t	kcov_mmap_single;
138 static d_ioctl_t	kcov_ioctl;
139 
140 static int  kcov_alloc(struct kcov_info *info, size_t entries);
141 static void kcov_free(struct kcov_info *info);
142 static void kcov_init(const void *unused);
143 
144 static struct cdevsw kcov_cdevsw = {
145 	.d_version =	D_VERSION,
146 	.d_open =	kcov_open,
147 	.d_close =	kcov_close,
148 	.d_mmap_single = kcov_mmap_single,
149 	.d_ioctl =	kcov_ioctl,
150 	.d_name =	"kcov",
151 };
152 
153 SYSCTL_NODE(_kern, OID_AUTO, kcov, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
154     "Kernel coverage");
155 
156 static u_int kcov_max_entries = KCOV_MAXENTRIES;
157 SYSCTL_UINT(_kern_kcov, OID_AUTO, max_entries, CTLFLAG_RW,
158     &kcov_max_entries, 0,
159     "Maximum number of entries in the kcov buffer");
160 
161 static struct mtx kcov_lock;
162 static int active_count;
163 
164 static struct kcov_info * __nosanitizeaddress __nosanitizememory
165 get_kinfo(struct thread *td)
166 {
167 	struct kcov_info *info;
168 
169 	/* We might have a NULL thread when releasing the secondary CPUs */
170 	if (td == NULL)
171 		return (NULL);
172 
173 	/*
174 	 * We are in an interrupt, stop tracing as it is not explicitly
175 	 * part of a syscall.
176 	 */
177 	if (td->td_intr_nesting_level > 0 || td->td_intr_frame != NULL)
178 		return (NULL);
179 
180 	/*
181 	 * If info is NULL or the state is not running we are not tracing.
182 	 */
183 	info = td->td_kcov_info;
184 	if (info == NULL ||
185 	    atomic_load_acq_int(&info->state) != KCOV_STATE_RUNNING)
186 		return (NULL);
187 
188 	return (info);
189 }
190 
191 static void __nosanitizeaddress __nosanitizememory
192 trace_pc(uintptr_t ret)
193 {
194 	struct thread *td;
195 	struct kcov_info *info;
196 	uint64_t *buf, index;
197 
198 	td = curthread;
199 	info = get_kinfo(td);
200 	if (info == NULL)
201 		return;
202 
203 	/*
204 	 * Check we are in the PC-trace mode.
205 	 */
206 	if (info->mode != KCOV_MODE_TRACE_PC)
207 		return;
208 
209 	KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__));
210 
211 	buf = (uint64_t *)info->kvaddr;
212 
213 	/* The first entry of the buffer holds the index */
214 	index = buf[0];
215 	if (index + 2 > info->entries)
216 		return;
217 
218 	buf[index + 1] = ret;
219 	buf[0] = index + 1;
220 }
221 
222 static bool __nosanitizeaddress __nosanitizememory
223 trace_cmp(uint64_t type, uint64_t arg1, uint64_t arg2, uint64_t ret)
224 {
225 	struct thread *td;
226 	struct kcov_info *info;
227 	uint64_t *buf, index;
228 
229 	td = curthread;
230 	info = get_kinfo(td);
231 	if (info == NULL)
232 		return (false);
233 
234 	/*
235 	 * Check we are in the comparison-trace mode.
236 	 */
237 	if (info->mode != KCOV_MODE_TRACE_CMP)
238 		return (false);
239 
240 	KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__));
241 
242 	buf = (uint64_t *)info->kvaddr;
243 
244 	/* The first entry of the buffer holds the index */
245 	index = buf[0];
246 
247 	/* Check we have space to store all elements */
248 	if (index * 4 + 4 + 1 > info->entries)
249 		return (false);
250 
251 	while (1) {
252 		buf[index * 4 + 1] = type;
253 		buf[index * 4 + 2] = arg1;
254 		buf[index * 4 + 3] = arg2;
255 		buf[index * 4 + 4] = ret;
256 
257 		if (atomic_cmpset_64(&buf[0], index, index + 1))
258 			break;
259 		buf[0] = index;
260 	}
261 
262 	return (true);
263 }
264 
265 /*
266  * The fd is being closed, cleanup everything we can.
267  */
268 static void
269 kcov_mmap_cleanup(void *arg)
270 {
271 	struct kcov_info *info = arg;
272 	struct thread *thread;
273 
274 	mtx_lock_spin(&kcov_lock);
275 	/*
276 	 * Move to KCOV_STATE_DYING to stop adding new entries.
277 	 *
278 	 * If the thread is running we need to wait until thread exit to
279 	 * clean up as it may currently be adding a new entry. If this is
280 	 * the case being in KCOV_STATE_DYING will signal that the buffer
281 	 * needs to be cleaned up.
282 	 */
283 	atomic_store_int(&info->state, KCOV_STATE_DYING);
284 	atomic_thread_fence_seq_cst();
285 	thread = info->thread;
286 	mtx_unlock_spin(&kcov_lock);
287 
288 	if (thread != NULL)
289 		return;
290 
291 	/*
292 	 * We can safely clean up the info struct as it is in the
293 	 * KCOV_STATE_DYING state with no thread associated.
294 	 *
295 	 * The KCOV_STATE_DYING stops new threads from using it.
296 	 * The lack of a thread means nothing is currently using the buffers.
297 	 */
298 	kcov_free(info);
299 }
300 
301 static int
302 kcov_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
303 {
304 	struct kcov_info *info;
305 	int error;
306 
307 	info = malloc(sizeof(struct kcov_info), M_KCOV_INFO, M_ZERO | M_WAITOK);
308 	info->state = KCOV_STATE_OPEN;
309 	info->thread = NULL;
310 	info->mode = -1;
311 
312 	if ((error = devfs_set_cdevpriv(info, kcov_mmap_cleanup)) != 0)
313 		kcov_mmap_cleanup(info);
314 
315 	return (error);
316 }
317 
318 static int
319 kcov_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
320 {
321 	struct kcov_info *info;
322 	int error;
323 
324 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
325 		return (error);
326 
327 	KASSERT(info != NULL, ("kcov_close with no kcov_info structure"));
328 
329 	/* Trying to close, but haven't disabled */
330 	if (info->state == KCOV_STATE_RUNNING)
331 		return (EBUSY);
332 
333 	return (0);
334 }
335 
336 static int
337 kcov_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size,
338     struct vm_object **object, int nprot)
339 {
340 	struct kcov_info *info;
341 	int error;
342 
343 	if ((nprot & (PROT_EXEC | PROT_READ | PROT_WRITE)) !=
344 	    (PROT_READ | PROT_WRITE))
345 		return (EINVAL);
346 
347 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
348 		return (error);
349 
350 	if (info->kvaddr == 0 || size / KCOV_ELEMENT_SIZE != info->entries)
351 		return (EINVAL);
352 
353 	vm_object_reference(info->bufobj);
354 	*offset = 0;
355 	*object = info->bufobj;
356 	return (0);
357 }
358 
359 static int
360 kcov_alloc(struct kcov_info *info, size_t entries)
361 {
362 	size_t n, pages;
363 	vm_page_t m;
364 
365 	KASSERT(info->kvaddr == 0, ("kcov_alloc: Already have a buffer"));
366 	KASSERT(info->state == KCOV_STATE_OPEN,
367 	    ("kcov_alloc: Not in open state (%x)", info->state));
368 
369 	if (entries < 2 || entries > kcov_max_entries)
370 		return (EINVAL);
371 
372 	/* Align to page size so mmap can't access other kernel memory */
373 	info->bufsize = roundup2(entries * KCOV_ELEMENT_SIZE, PAGE_SIZE);
374 	pages = info->bufsize / PAGE_SIZE;
375 
376 	if ((info->kvaddr = kva_alloc(info->bufsize)) == 0)
377 		return (ENOMEM);
378 
379 	info->bufobj = vm_pager_allocate(OBJT_PHYS, 0, info->bufsize,
380 	    PROT_READ | PROT_WRITE, 0, curthread->td_ucred);
381 
382 	VM_OBJECT_WLOCK(info->bufobj);
383 	for (n = 0; n < pages; n++) {
384 		m = vm_page_grab(info->bufobj, n,
385 		    VM_ALLOC_ZERO | VM_ALLOC_WIRED);
386 		vm_page_valid(m);
387 		vm_page_xunbusy(m);
388 		pmap_qenter(info->kvaddr + n * PAGE_SIZE, &m, 1);
389 	}
390 	VM_OBJECT_WUNLOCK(info->bufobj);
391 
392 	info->entries = entries;
393 
394 	return (0);
395 }
396 
397 static void
398 kcov_free(struct kcov_info *info)
399 {
400 	vm_page_t m;
401 	size_t i;
402 
403 	if (info->kvaddr != 0) {
404 		pmap_qremove(info->kvaddr, info->bufsize / PAGE_SIZE);
405 		kva_free(info->kvaddr, info->bufsize);
406 	}
407 	if (info->bufobj != NULL) {
408 		VM_OBJECT_WLOCK(info->bufobj);
409 		m = vm_page_lookup(info->bufobj, 0);
410 		for (i = 0; i < info->bufsize / PAGE_SIZE; i++) {
411 			vm_page_unwire_noq(m);
412 			m = vm_page_next(m);
413 		}
414 		VM_OBJECT_WUNLOCK(info->bufobj);
415 		vm_object_deallocate(info->bufobj);
416 	}
417 	free(info, M_KCOV_INFO);
418 }
419 
420 static int
421 kcov_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag __unused,
422     struct thread *td)
423 {
424 	struct kcov_info *info;
425 	int mode, error;
426 
427 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
428 		return (error);
429 
430 	if (cmd == KIOSETBUFSIZE) {
431 		/*
432 		 * Set the size of the coverage buffer. Should be called
433 		 * before enabling coverage collection for that thread.
434 		 */
435 		if (info->state != KCOV_STATE_OPEN) {
436 			return (EBUSY);
437 		}
438 		error = kcov_alloc(info, *(u_int *)data);
439 		if (error == 0)
440 			info->state = KCOV_STATE_READY;
441 		return (error);
442 	}
443 
444 	mtx_lock_spin(&kcov_lock);
445 	switch (cmd) {
446 	case KIOENABLE:
447 		if (info->state != KCOV_STATE_READY) {
448 			error = EBUSY;
449 			break;
450 		}
451 		if (td->td_kcov_info != NULL) {
452 			error = EINVAL;
453 			break;
454 		}
455 		mode = *(int *)data;
456 		if (mode != KCOV_MODE_TRACE_PC && mode != KCOV_MODE_TRACE_CMP) {
457 			error = EINVAL;
458 			break;
459 		}
460 
461 		/* Lets hope nobody opens this 2 billion times */
462 		KASSERT(active_count < INT_MAX,
463 		    ("%s: Open too many times", __func__));
464 		active_count++;
465 		if (active_count == 1) {
466 			cov_register_pc(&trace_pc);
467 			cov_register_cmp(&trace_cmp);
468 		}
469 
470 		KASSERT(info->thread == NULL,
471 		    ("Enabling kcov when already enabled"));
472 		info->thread = td;
473 		info->mode = mode;
474 		/*
475 		 * Ensure the mode has been set before starting coverage
476 		 * tracing.
477 		 */
478 		atomic_store_rel_int(&info->state, KCOV_STATE_RUNNING);
479 		td->td_kcov_info = info;
480 		break;
481 	case KIODISABLE:
482 		/* Only the currently enabled thread may disable itself */
483 		if (info->state != KCOV_STATE_RUNNING ||
484 		    info != td->td_kcov_info) {
485 			error = EINVAL;
486 			break;
487 		}
488 		KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
489 		active_count--;
490 		if (active_count == 0) {
491 			cov_unregister_pc();
492 			cov_unregister_cmp();
493 		}
494 
495 		td->td_kcov_info = NULL;
496 		atomic_store_int(&info->state, KCOV_STATE_READY);
497 		/*
498 		 * Ensure we have exited the READY state before clearing the
499 		 * rest of the info struct.
500 		 */
501 		atomic_thread_fence_rel();
502 		info->mode = -1;
503 		info->thread = NULL;
504 		break;
505 	default:
506 		error = EINVAL;
507 		break;
508 	}
509 	mtx_unlock_spin(&kcov_lock);
510 
511 	return (error);
512 }
513 
514 static void
515 kcov_thread_dtor(void *arg __unused, struct thread *td)
516 {
517 	struct kcov_info *info;
518 
519 	info = td->td_kcov_info;
520 	if (info == NULL)
521 		return;
522 
523 	mtx_lock_spin(&kcov_lock);
524 	KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
525 	active_count--;
526 	if (active_count == 0) {
527 		cov_unregister_pc();
528 		cov_unregister_cmp();
529 	}
530 	td->td_kcov_info = NULL;
531 	if (info->state != KCOV_STATE_DYING) {
532 		/*
533 		 * The kcov file is still open. Mark it as unused and
534 		 * wait for it to be closed before cleaning up.
535 		 */
536 		atomic_store_int(&info->state, KCOV_STATE_READY);
537 		atomic_thread_fence_seq_cst();
538 		/* This info struct is unused */
539 		info->thread = NULL;
540 		mtx_unlock_spin(&kcov_lock);
541 		return;
542 	}
543 	mtx_unlock_spin(&kcov_lock);
544 
545 	/*
546 	 * We can safely clean up the info struct as it is in the
547 	 * KCOV_STATE_DYING state where the info struct is associated with
548 	 * the current thread that's about to exit.
549 	 *
550 	 * The KCOV_STATE_DYING stops new threads from using it.
551 	 * It also stops the current thread from trying to use the info struct.
552 	 */
553 	kcov_free(info);
554 }
555 
556 static void
557 kcov_init(const void *unused)
558 {
559 	struct make_dev_args args;
560 	struct cdev *dev;
561 
562 	mtx_init(&kcov_lock, "kcov lock", NULL, MTX_SPIN);
563 
564 	make_dev_args_init(&args);
565 	args.mda_devsw = &kcov_cdevsw;
566 	args.mda_uid = UID_ROOT;
567 	args.mda_gid = GID_WHEEL;
568 	args.mda_mode = 0600;
569 	if (make_dev_s(&args, &dev, "kcov") != 0) {
570 		printf("%s", "Failed to create kcov device");
571 		return;
572 	}
573 
574 	EVENTHANDLER_REGISTER(thread_dtor, kcov_thread_dtor, NULL,
575 	    EVENTHANDLER_PRI_ANY);
576 }
577 
578 SYSINIT(kcovdev, SI_SUB_LAST, SI_ORDER_ANY, kcov_init, NULL);
579