xref: /freebsd/sys/kern/kern_kcov.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2018 The FreeBSD Foundation. All rights reserved.
5  * Copyright (C) 2018, 2019 Andrew Turner
6  *
7  * This software was developed by Mitchell Horne under sponsorship of
8  * the FreeBSD Foundation.
9  *
10  * This software was developed by SRI International and the University of
11  * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
12  * ("CTSRD"), as part of the DARPA CRASH research programme.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /* Interceptors are required for KMSAN. */
37 #if defined(KASAN) || defined(KCSAN)
38 #define	SAN_RUNTIME
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/conf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/kcov.h>
46 #include <sys/kernel.h>
47 #include <sys/limits.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mman.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/rwlock.h>
54 #include <sys/sysctl.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_object.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_param.h>
63 
64 MALLOC_DEFINE(M_KCOV_INFO, "kcovinfo", "KCOV info type");
65 
66 #define	KCOV_ELEMENT_SIZE	sizeof(uint64_t)
67 
68 /*
69  * To know what the code can safely perform at any point in time we use a
70  * state machine. In the normal case the state transitions are:
71  *
72  * OPEN -> READY -> RUNNING -> DYING
73  *  |       | ^        |        ^ ^
74  *  |       | +--------+        | |
75  *  |       +-------------------+ |
76  *  +-----------------------------+
77  *
78  * The states are:
79  *  OPEN:   The kcov fd has been opened, but no buffer is available to store
80  *          coverage data.
81  *  READY:  The buffer to store coverage data has been allocated. Userspace
82  *          can set this by using ioctl(fd, KIOSETBUFSIZE, entries);. When
83  *          this has been set the buffer can be written to by the kernel,
84  *          and mmaped by userspace.
85  * RUNNING: The coverage probes are able to store coverage data in the buffer.
86  *          This is entered with ioctl(fd, KIOENABLE, mode);. The READY state
87  *          can be exited by ioctl(fd, KIODISABLE); or exiting the thread to
88  *          return to the READY state to allow tracing to be reused, or by
89  *          closing the kcov fd to enter the DYING state.
90  * DYING:   The fd has been closed. All states can enter into this state when
91  *          userspace closes the kcov fd.
92  *
93  * We need to be careful when moving into and out of the RUNNING state. As
94  * an interrupt may happen while this is happening the ordering of memory
95  * operations is important so struct kcov_info is valid for the tracing
96  * functions.
97  *
98  * When moving into the RUNNING state prior stores to struct kcov_info need
99  * to be observed before the state is set. This allows for interrupts that
100  * may call into one of the coverage functions to fire at any point while
101  * being enabled and see a consistent struct kcov_info.
102  *
103  * When moving out of the RUNNING state any later stores to struct kcov_info
104  * need to be observed after the state is set. As with entering this is to
105  * present a consistent struct kcov_info to interrupts.
106  */
107 typedef enum {
108 	KCOV_STATE_INVALID,
109 	KCOV_STATE_OPEN,	/* The device is open, but with no buffer */
110 	KCOV_STATE_READY,	/* The buffer has been allocated */
111 	KCOV_STATE_RUNNING,	/* Recording trace data */
112 	KCOV_STATE_DYING,	/* The fd was closed */
113 } kcov_state_t;
114 
115 /*
116  * (l) Set while holding the kcov_lock mutex and not in the RUNNING state.
117  * (o) Only set once while in the OPEN state. Cleaned up while in the DYING
118  *     state, and with no thread associated with the struct kcov_info.
119  * (s) Set atomically to enter or exit the RUNNING state, non-atomically
120  *     otherwise. See above for a description of the other constraints while
121  *     moving into or out of the RUNNING state.
122  */
123 struct kcov_info {
124 	struct thread	*thread;	/* (l) */
125 	vm_object_t	bufobj;		/* (o) */
126 	vm_offset_t	kvaddr;		/* (o) */
127 	size_t		entries;	/* (o) */
128 	size_t		bufsize;	/* (o) */
129 	kcov_state_t	state;		/* (s) */
130 	int		mode;		/* (l) */
131 };
132 
133 /* Prototypes */
134 static d_open_t		kcov_open;
135 static d_close_t	kcov_close;
136 static d_mmap_single_t	kcov_mmap_single;
137 static d_ioctl_t	kcov_ioctl;
138 
139 static int  kcov_alloc(struct kcov_info *info, size_t entries);
140 static void kcov_free(struct kcov_info *info);
141 static void kcov_init(const void *unused);
142 
143 static struct cdevsw kcov_cdevsw = {
144 	.d_version =	D_VERSION,
145 	.d_open =	kcov_open,
146 	.d_close =	kcov_close,
147 	.d_mmap_single = kcov_mmap_single,
148 	.d_ioctl =	kcov_ioctl,
149 	.d_name =	"kcov",
150 };
151 
152 SYSCTL_NODE(_kern, OID_AUTO, kcov, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
153     "Kernel coverage");
154 
155 static u_int kcov_max_entries = KCOV_MAXENTRIES;
156 SYSCTL_UINT(_kern_kcov, OID_AUTO, max_entries, CTLFLAG_RW,
157     &kcov_max_entries, 0,
158     "Maximum number of entries in the kcov buffer");
159 
160 static struct mtx kcov_lock;
161 static int active_count;
162 
163 static struct kcov_info * __nosanitizeaddress __nosanitizememory
164 get_kinfo(struct thread *td)
165 {
166 	struct kcov_info *info;
167 
168 	/* We might have a NULL thread when releasing the secondary CPUs */
169 	if (td == NULL)
170 		return (NULL);
171 
172 	/*
173 	 * We are in an interrupt, stop tracing as it is not explicitly
174 	 * part of a syscall.
175 	 */
176 	if (td->td_intr_nesting_level > 0 || td->td_intr_frame != NULL)
177 		return (NULL);
178 
179 	/*
180 	 * If info is NULL or the state is not running we are not tracing.
181 	 */
182 	info = td->td_kcov_info;
183 	if (info == NULL ||
184 	    atomic_load_acq_int(&info->state) != KCOV_STATE_RUNNING)
185 		return (NULL);
186 
187 	return (info);
188 }
189 
190 static void __nosanitizeaddress __nosanitizememory
191 trace_pc(uintptr_t ret)
192 {
193 	struct thread *td;
194 	struct kcov_info *info;
195 	uint64_t *buf, index;
196 
197 	td = curthread;
198 	info = get_kinfo(td);
199 	if (info == NULL)
200 		return;
201 
202 	/*
203 	 * Check we are in the PC-trace mode.
204 	 */
205 	if (info->mode != KCOV_MODE_TRACE_PC)
206 		return;
207 
208 	KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__));
209 
210 	buf = (uint64_t *)info->kvaddr;
211 
212 	/* The first entry of the buffer holds the index */
213 	index = buf[0];
214 	if (index + 2 > info->entries)
215 		return;
216 
217 	buf[index + 1] = ret;
218 	buf[0] = index + 1;
219 }
220 
221 static bool __nosanitizeaddress __nosanitizememory
222 trace_cmp(uint64_t type, uint64_t arg1, uint64_t arg2, uint64_t ret)
223 {
224 	struct thread *td;
225 	struct kcov_info *info;
226 	uint64_t *buf, index;
227 
228 	td = curthread;
229 	info = get_kinfo(td);
230 	if (info == NULL)
231 		return (false);
232 
233 	/*
234 	 * Check we are in the comparison-trace mode.
235 	 */
236 	if (info->mode != KCOV_MODE_TRACE_CMP)
237 		return (false);
238 
239 	KASSERT(info->kvaddr != 0, ("%s: NULL buf while running", __func__));
240 
241 	buf = (uint64_t *)info->kvaddr;
242 
243 	/* The first entry of the buffer holds the index */
244 	index = buf[0];
245 
246 	/* Check we have space to store all elements */
247 	if (index * 4 + 4 + 1 > info->entries)
248 		return (false);
249 
250 	while (1) {
251 		buf[index * 4 + 1] = type;
252 		buf[index * 4 + 2] = arg1;
253 		buf[index * 4 + 3] = arg2;
254 		buf[index * 4 + 4] = ret;
255 
256 		if (atomic_cmpset_64(&buf[0], index, index + 1))
257 			break;
258 		buf[0] = index;
259 	}
260 
261 	return (true);
262 }
263 
264 /*
265  * The fd is being closed, cleanup everything we can.
266  */
267 static void
268 kcov_mmap_cleanup(void *arg)
269 {
270 	struct kcov_info *info = arg;
271 	struct thread *thread;
272 
273 	mtx_lock_spin(&kcov_lock);
274 	/*
275 	 * Move to KCOV_STATE_DYING to stop adding new entries.
276 	 *
277 	 * If the thread is running we need to wait until thread exit to
278 	 * clean up as it may currently be adding a new entry. If this is
279 	 * the case being in KCOV_STATE_DYING will signal that the buffer
280 	 * needs to be cleaned up.
281 	 */
282 	atomic_store_int(&info->state, KCOV_STATE_DYING);
283 	atomic_thread_fence_seq_cst();
284 	thread = info->thread;
285 	mtx_unlock_spin(&kcov_lock);
286 
287 	if (thread != NULL)
288 		return;
289 
290 	/*
291 	 * We can safely clean up the info struct as it is in the
292 	 * KCOV_STATE_DYING state with no thread associated.
293 	 *
294 	 * The KCOV_STATE_DYING stops new threads from using it.
295 	 * The lack of a thread means nothing is currently using the buffers.
296 	 */
297 	kcov_free(info);
298 }
299 
300 static int
301 kcov_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
302 {
303 	struct kcov_info *info;
304 	int error;
305 
306 	info = malloc(sizeof(struct kcov_info), M_KCOV_INFO, M_ZERO | M_WAITOK);
307 	info->state = KCOV_STATE_OPEN;
308 	info->thread = NULL;
309 	info->mode = -1;
310 
311 	if ((error = devfs_set_cdevpriv(info, kcov_mmap_cleanup)) != 0)
312 		kcov_mmap_cleanup(info);
313 
314 	return (error);
315 }
316 
317 static int
318 kcov_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
319 {
320 	struct kcov_info *info;
321 	int error;
322 
323 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
324 		return (error);
325 
326 	KASSERT(info != NULL, ("kcov_close with no kcov_info structure"));
327 
328 	/* Trying to close, but haven't disabled */
329 	if (info->state == KCOV_STATE_RUNNING)
330 		return (EBUSY);
331 
332 	return (0);
333 }
334 
335 static int
336 kcov_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size,
337     struct vm_object **object, int nprot)
338 {
339 	struct kcov_info *info;
340 	int error;
341 
342 	if ((nprot & (PROT_EXEC | PROT_READ | PROT_WRITE)) !=
343 	    (PROT_READ | PROT_WRITE))
344 		return (EINVAL);
345 
346 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
347 		return (error);
348 
349 	if (info->kvaddr == 0 || size / KCOV_ELEMENT_SIZE != info->entries)
350 		return (EINVAL);
351 
352 	vm_object_reference(info->bufobj);
353 	*offset = 0;
354 	*object = info->bufobj;
355 	return (0);
356 }
357 
358 static int
359 kcov_alloc(struct kcov_info *info, size_t entries)
360 {
361 	size_t n, pages;
362 	vm_page_t m;
363 
364 	KASSERT(info->kvaddr == 0, ("kcov_alloc: Already have a buffer"));
365 	KASSERT(info->state == KCOV_STATE_OPEN,
366 	    ("kcov_alloc: Not in open state (%x)", info->state));
367 
368 	if (entries < 2 || entries > kcov_max_entries)
369 		return (EINVAL);
370 
371 	/* Align to page size so mmap can't access other kernel memory */
372 	info->bufsize = roundup2(entries * KCOV_ELEMENT_SIZE, PAGE_SIZE);
373 	pages = info->bufsize / PAGE_SIZE;
374 
375 	if ((info->kvaddr = kva_alloc(info->bufsize)) == 0)
376 		return (ENOMEM);
377 
378 	info->bufobj = vm_pager_allocate(OBJT_PHYS, 0, info->bufsize,
379 	    PROT_READ | PROT_WRITE, 0, curthread->td_ucred);
380 
381 	VM_OBJECT_WLOCK(info->bufobj);
382 	for (n = 0; n < pages; n++) {
383 		m = vm_page_grab(info->bufobj, n,
384 		    VM_ALLOC_ZERO | VM_ALLOC_WIRED);
385 		vm_page_valid(m);
386 		vm_page_xunbusy(m);
387 		pmap_qenter(info->kvaddr + n * PAGE_SIZE, &m, 1);
388 	}
389 	VM_OBJECT_WUNLOCK(info->bufobj);
390 
391 	info->entries = entries;
392 
393 	return (0);
394 }
395 
396 static void
397 kcov_free(struct kcov_info *info)
398 {
399 	vm_page_t m;
400 	size_t i;
401 
402 	if (info->kvaddr != 0) {
403 		pmap_qremove(info->kvaddr, info->bufsize / PAGE_SIZE);
404 		kva_free(info->kvaddr, info->bufsize);
405 	}
406 	if (info->bufobj != NULL) {
407 		VM_OBJECT_WLOCK(info->bufobj);
408 		m = vm_page_lookup(info->bufobj, 0);
409 		for (i = 0; i < info->bufsize / PAGE_SIZE; i++) {
410 			vm_page_unwire_noq(m);
411 			m = vm_page_next(m);
412 		}
413 		VM_OBJECT_WUNLOCK(info->bufobj);
414 		vm_object_deallocate(info->bufobj);
415 	}
416 	free(info, M_KCOV_INFO);
417 }
418 
419 static int
420 kcov_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag __unused,
421     struct thread *td)
422 {
423 	struct kcov_info *info;
424 	int mode, error;
425 
426 	if ((error = devfs_get_cdevpriv((void **)&info)) != 0)
427 		return (error);
428 
429 	if (cmd == KIOSETBUFSIZE) {
430 		/*
431 		 * Set the size of the coverage buffer. Should be called
432 		 * before enabling coverage collection for that thread.
433 		 */
434 		if (info->state != KCOV_STATE_OPEN) {
435 			return (EBUSY);
436 		}
437 		error = kcov_alloc(info, *(u_int *)data);
438 		if (error == 0)
439 			info->state = KCOV_STATE_READY;
440 		return (error);
441 	}
442 
443 	mtx_lock_spin(&kcov_lock);
444 	switch (cmd) {
445 	case KIOENABLE:
446 		if (info->state != KCOV_STATE_READY) {
447 			error = EBUSY;
448 			break;
449 		}
450 		if (td->td_kcov_info != NULL) {
451 			error = EINVAL;
452 			break;
453 		}
454 		mode = *(int *)data;
455 		if (mode != KCOV_MODE_TRACE_PC && mode != KCOV_MODE_TRACE_CMP) {
456 			error = EINVAL;
457 			break;
458 		}
459 
460 		/* Lets hope nobody opens this 2 billion times */
461 		KASSERT(active_count < INT_MAX,
462 		    ("%s: Open too many times", __func__));
463 		active_count++;
464 		if (active_count == 1) {
465 			cov_register_pc(&trace_pc);
466 			cov_register_cmp(&trace_cmp);
467 		}
468 
469 		KASSERT(info->thread == NULL,
470 		    ("Enabling kcov when already enabled"));
471 		info->thread = td;
472 		info->mode = mode;
473 		/*
474 		 * Ensure the mode has been set before starting coverage
475 		 * tracing.
476 		 */
477 		atomic_store_rel_int(&info->state, KCOV_STATE_RUNNING);
478 		td->td_kcov_info = info;
479 		break;
480 	case KIODISABLE:
481 		/* Only the currently enabled thread may disable itself */
482 		if (info->state != KCOV_STATE_RUNNING ||
483 		    info != td->td_kcov_info) {
484 			error = EINVAL;
485 			break;
486 		}
487 		KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
488 		active_count--;
489 		if (active_count == 0) {
490 			cov_unregister_pc();
491 			cov_unregister_cmp();
492 		}
493 
494 		td->td_kcov_info = NULL;
495 		atomic_store_int(&info->state, KCOV_STATE_READY);
496 		/*
497 		 * Ensure we have exited the READY state before clearing the
498 		 * rest of the info struct.
499 		 */
500 		atomic_thread_fence_rel();
501 		info->mode = -1;
502 		info->thread = NULL;
503 		break;
504 	default:
505 		error = EINVAL;
506 		break;
507 	}
508 	mtx_unlock_spin(&kcov_lock);
509 
510 	return (error);
511 }
512 
513 static void
514 kcov_thread_dtor(void *arg __unused, struct thread *td)
515 {
516 	struct kcov_info *info;
517 
518 	info = td->td_kcov_info;
519 	if (info == NULL)
520 		return;
521 
522 	mtx_lock_spin(&kcov_lock);
523 	KASSERT(active_count > 0, ("%s: Open count is zero", __func__));
524 	active_count--;
525 	if (active_count == 0) {
526 		cov_unregister_pc();
527 		cov_unregister_cmp();
528 	}
529 	td->td_kcov_info = NULL;
530 	if (info->state != KCOV_STATE_DYING) {
531 		/*
532 		 * The kcov file is still open. Mark it as unused and
533 		 * wait for it to be closed before cleaning up.
534 		 */
535 		atomic_store_int(&info->state, KCOV_STATE_READY);
536 		atomic_thread_fence_seq_cst();
537 		/* This info struct is unused */
538 		info->thread = NULL;
539 		mtx_unlock_spin(&kcov_lock);
540 		return;
541 	}
542 	mtx_unlock_spin(&kcov_lock);
543 
544 	/*
545 	 * We can safely clean up the info struct as it is in the
546 	 * KCOV_STATE_DYING state where the info struct is associated with
547 	 * the current thread that's about to exit.
548 	 *
549 	 * The KCOV_STATE_DYING stops new threads from using it.
550 	 * It also stops the current thread from trying to use the info struct.
551 	 */
552 	kcov_free(info);
553 }
554 
555 static void
556 kcov_init(const void *unused)
557 {
558 	struct make_dev_args args;
559 	struct cdev *dev;
560 
561 	mtx_init(&kcov_lock, "kcov lock", NULL, MTX_SPIN);
562 
563 	make_dev_args_init(&args);
564 	args.mda_devsw = &kcov_cdevsw;
565 	args.mda_uid = UID_ROOT;
566 	args.mda_gid = GID_WHEEL;
567 	args.mda_mode = 0600;
568 	if (make_dev_s(&args, &dev, "kcov") != 0) {
569 		printf("%s", "Failed to create kcov device");
570 		return;
571 	}
572 
573 	EVENTHANDLER_REGISTER(thread_dtor, kcov_thread_dtor, NULL,
574 	    EVENTHANDLER_PRI_ANY);
575 }
576 
577 SYSINIT(kcovdev, SI_SUB_LAST, SI_ORDER_ANY, kcov_init, NULL);
578