1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ddb.h" 33 #include "opt_kstack_usage_prof.h" 34 35 #include <sys/param.h> 36 #include <sys/bus.h> 37 #include <sys/conf.h> 38 #include <sys/cpuset.h> 39 #include <sys/rtprio.h> 40 #include <sys/systm.h> 41 #include <sys/interrupt.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/ktr.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/random.h> 52 #include <sys/resourcevar.h> 53 #include <sys/sched.h> 54 #include <sys/smp.h> 55 #include <sys/sysctl.h> 56 #include <sys/syslog.h> 57 #include <sys/unistd.h> 58 #include <sys/vmmeter.h> 59 #include <machine/atomic.h> 60 #include <machine/cpu.h> 61 #include <machine/md_var.h> 62 #include <machine/stdarg.h> 63 #ifdef DDB 64 #include <ddb/ddb.h> 65 #include <ddb/db_sym.h> 66 #endif 67 68 /* 69 * Describe an interrupt thread. There is one of these per interrupt event. 70 */ 71 struct intr_thread { 72 struct intr_event *it_event; 73 struct thread *it_thread; /* Kernel thread. */ 74 int it_flags; /* (j) IT_* flags. */ 75 int it_need; /* Needs service. */ 76 }; 77 78 /* Interrupt thread flags kept in it_flags */ 79 #define IT_DEAD 0x000001 /* Thread is waiting to exit. */ 80 #define IT_WAIT 0x000002 /* Thread is waiting for completion. */ 81 82 struct intr_entropy { 83 struct thread *td; 84 uintptr_t event; 85 }; 86 87 struct intr_event *clk_intr_event; 88 struct intr_event *tty_intr_event; 89 void *vm_ih; 90 struct proc *intrproc; 91 92 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads"); 93 94 static int intr_storm_threshold = 0; 95 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN, 96 &intr_storm_threshold, 0, 97 "Number of consecutive interrupts before storm protection is enabled"); 98 static TAILQ_HEAD(, intr_event) event_list = 99 TAILQ_HEAD_INITIALIZER(event_list); 100 static struct mtx event_lock; 101 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF); 102 103 static void intr_event_update(struct intr_event *ie); 104 static int intr_event_schedule_thread(struct intr_event *ie); 105 static struct intr_thread *ithread_create(const char *name); 106 static void ithread_destroy(struct intr_thread *ithread); 107 static void ithread_execute_handlers(struct proc *p, 108 struct intr_event *ie); 109 static void ithread_loop(void *); 110 static void ithread_update(struct intr_thread *ithd); 111 static void start_softintr(void *); 112 113 /* Map an interrupt type to an ithread priority. */ 114 u_char 115 intr_priority(enum intr_type flags) 116 { 117 u_char pri; 118 119 flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET | 120 INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV); 121 switch (flags) { 122 case INTR_TYPE_TTY: 123 pri = PI_TTY; 124 break; 125 case INTR_TYPE_BIO: 126 pri = PI_DISK; 127 break; 128 case INTR_TYPE_NET: 129 pri = PI_NET; 130 break; 131 case INTR_TYPE_CAM: 132 pri = PI_DISK; 133 break; 134 case INTR_TYPE_AV: 135 pri = PI_AV; 136 break; 137 case INTR_TYPE_CLK: 138 pri = PI_REALTIME; 139 break; 140 case INTR_TYPE_MISC: 141 pri = PI_DULL; /* don't care */ 142 break; 143 default: 144 /* We didn't specify an interrupt level. */ 145 panic("intr_priority: no interrupt type in flags"); 146 } 147 148 return pri; 149 } 150 151 /* 152 * Update an ithread based on the associated intr_event. 153 */ 154 static void 155 ithread_update(struct intr_thread *ithd) 156 { 157 struct intr_event *ie; 158 struct thread *td; 159 u_char pri; 160 161 ie = ithd->it_event; 162 td = ithd->it_thread; 163 mtx_assert(&ie->ie_lock, MA_OWNED); 164 165 /* Determine the overall priority of this event. */ 166 if (CK_SLIST_EMPTY(&ie->ie_handlers)) 167 pri = PRI_MAX_ITHD; 168 else 169 pri = CK_SLIST_FIRST(&ie->ie_handlers)->ih_pri; 170 171 /* Update name and priority. */ 172 strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name)); 173 #ifdef KTR 174 sched_clear_tdname(td); 175 #endif 176 thread_lock(td); 177 sched_prio(td, pri); 178 thread_unlock(td); 179 } 180 181 /* 182 * Regenerate the full name of an interrupt event and update its priority. 183 */ 184 static void 185 intr_event_update(struct intr_event *ie) 186 { 187 struct intr_handler *ih; 188 char *last; 189 int missed, space; 190 191 /* Start off with no entropy and just the name of the event. */ 192 mtx_assert(&ie->ie_lock, MA_OWNED); 193 strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); 194 ie->ie_flags &= ~IE_ENTROPY; 195 missed = 0; 196 space = 1; 197 198 /* Run through all the handlers updating values. */ 199 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 200 if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 < 201 sizeof(ie->ie_fullname)) { 202 strcat(ie->ie_fullname, " "); 203 strcat(ie->ie_fullname, ih->ih_name); 204 space = 0; 205 } else 206 missed++; 207 if (ih->ih_flags & IH_ENTROPY) 208 ie->ie_flags |= IE_ENTROPY; 209 } 210 211 /* 212 * If there is only one handler and its name is too long, just copy in 213 * as much of the end of the name (includes the unit number) as will 214 * fit. Otherwise, we have multiple handlers and not all of the names 215 * will fit. Add +'s to indicate missing names. If we run out of room 216 * and still have +'s to add, change the last character from a + to a *. 217 */ 218 if (missed == 1 && space == 1) { 219 ih = CK_SLIST_FIRST(&ie->ie_handlers); 220 missed = strlen(ie->ie_fullname) + strlen(ih->ih_name) + 2 - 221 sizeof(ie->ie_fullname); 222 strcat(ie->ie_fullname, (missed == 0) ? " " : "-"); 223 strcat(ie->ie_fullname, &ih->ih_name[missed]); 224 missed = 0; 225 } 226 last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2]; 227 while (missed-- > 0) { 228 if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) { 229 if (*last == '+') { 230 *last = '*'; 231 break; 232 } else 233 *last = '+'; 234 } else if (space) { 235 strcat(ie->ie_fullname, " +"); 236 space = 0; 237 } else 238 strcat(ie->ie_fullname, "+"); 239 } 240 241 /* 242 * If this event has an ithread, update it's priority and 243 * name. 244 */ 245 if (ie->ie_thread != NULL) 246 ithread_update(ie->ie_thread); 247 CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname); 248 } 249 250 int 251 intr_event_create(struct intr_event **event, void *source, int flags, int irq, 252 void (*pre_ithread)(void *), void (*post_ithread)(void *), 253 void (*post_filter)(void *), int (*assign_cpu)(void *, int), 254 const char *fmt, ...) 255 { 256 struct intr_event *ie; 257 va_list ap; 258 259 /* The only valid flag during creation is IE_SOFT. */ 260 if ((flags & ~IE_SOFT) != 0) 261 return (EINVAL); 262 ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO); 263 ie->ie_source = source; 264 ie->ie_pre_ithread = pre_ithread; 265 ie->ie_post_ithread = post_ithread; 266 ie->ie_post_filter = post_filter; 267 ie->ie_assign_cpu = assign_cpu; 268 ie->ie_flags = flags; 269 ie->ie_irq = irq; 270 ie->ie_cpu = NOCPU; 271 CK_SLIST_INIT(&ie->ie_handlers); 272 mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF); 273 274 va_start(ap, fmt); 275 vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap); 276 va_end(ap); 277 strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); 278 mtx_lock(&event_lock); 279 TAILQ_INSERT_TAIL(&event_list, ie, ie_list); 280 mtx_unlock(&event_lock); 281 if (event != NULL) 282 *event = ie; 283 CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name); 284 return (0); 285 } 286 287 /* 288 * Bind an interrupt event to the specified CPU. Note that not all 289 * platforms support binding an interrupt to a CPU. For those 290 * platforms this request will fail. Using a cpu id of NOCPU unbinds 291 * the interrupt event. 292 */ 293 static int 294 _intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread) 295 { 296 lwpid_t id; 297 int error; 298 299 /* Need a CPU to bind to. */ 300 if (cpu != NOCPU && CPU_ABSENT(cpu)) 301 return (EINVAL); 302 303 if (ie->ie_assign_cpu == NULL) 304 return (EOPNOTSUPP); 305 306 error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR); 307 if (error) 308 return (error); 309 310 /* 311 * If we have any ithreads try to set their mask first to verify 312 * permissions, etc. 313 */ 314 if (bindithread) { 315 mtx_lock(&ie->ie_lock); 316 if (ie->ie_thread != NULL) { 317 id = ie->ie_thread->it_thread->td_tid; 318 mtx_unlock(&ie->ie_lock); 319 error = cpuset_setithread(id, cpu); 320 if (error) 321 return (error); 322 } else 323 mtx_unlock(&ie->ie_lock); 324 } 325 if (bindirq) 326 error = ie->ie_assign_cpu(ie->ie_source, cpu); 327 if (error) { 328 if (bindithread) { 329 mtx_lock(&ie->ie_lock); 330 if (ie->ie_thread != NULL) { 331 cpu = ie->ie_cpu; 332 id = ie->ie_thread->it_thread->td_tid; 333 mtx_unlock(&ie->ie_lock); 334 (void)cpuset_setithread(id, cpu); 335 } else 336 mtx_unlock(&ie->ie_lock); 337 } 338 return (error); 339 } 340 341 if (bindirq) { 342 mtx_lock(&ie->ie_lock); 343 ie->ie_cpu = cpu; 344 mtx_unlock(&ie->ie_lock); 345 } 346 347 return (error); 348 } 349 350 /* 351 * Bind an interrupt event to the specified CPU. For supported platforms, any 352 * associated ithreads as well as the primary interrupt context will be bound 353 * to the specificed CPU. 354 */ 355 int 356 intr_event_bind(struct intr_event *ie, int cpu) 357 { 358 359 return (_intr_event_bind(ie, cpu, true, true)); 360 } 361 362 /* 363 * Bind an interrupt event to the specified CPU, but do not bind associated 364 * ithreads. 365 */ 366 int 367 intr_event_bind_irqonly(struct intr_event *ie, int cpu) 368 { 369 370 return (_intr_event_bind(ie, cpu, true, false)); 371 } 372 373 /* 374 * Bind an interrupt event's ithread to the specified CPU. 375 */ 376 int 377 intr_event_bind_ithread(struct intr_event *ie, int cpu) 378 { 379 380 return (_intr_event_bind(ie, cpu, false, true)); 381 } 382 383 /* 384 * Bind an interrupt event's ithread to the specified cpuset. 385 */ 386 int 387 intr_event_bind_ithread_cpuset(struct intr_event *ie, cpuset_t *cs) 388 { 389 lwpid_t id; 390 391 mtx_lock(&ie->ie_lock); 392 if (ie->ie_thread != NULL) { 393 id = ie->ie_thread->it_thread->td_tid; 394 mtx_unlock(&ie->ie_lock); 395 return (cpuset_setthread(id, cs)); 396 } else { 397 mtx_unlock(&ie->ie_lock); 398 } 399 return (ENODEV); 400 } 401 402 static struct intr_event * 403 intr_lookup(int irq) 404 { 405 struct intr_event *ie; 406 407 mtx_lock(&event_lock); 408 TAILQ_FOREACH(ie, &event_list, ie_list) 409 if (ie->ie_irq == irq && 410 (ie->ie_flags & IE_SOFT) == 0 && 411 CK_SLIST_FIRST(&ie->ie_handlers) != NULL) 412 break; 413 mtx_unlock(&event_lock); 414 return (ie); 415 } 416 417 int 418 intr_setaffinity(int irq, int mode, void *m) 419 { 420 struct intr_event *ie; 421 cpuset_t *mask; 422 int cpu, n; 423 424 mask = m; 425 cpu = NOCPU; 426 /* 427 * If we're setting all cpus we can unbind. Otherwise make sure 428 * only one cpu is in the set. 429 */ 430 if (CPU_CMP(cpuset_root, mask)) { 431 for (n = 0; n < CPU_SETSIZE; n++) { 432 if (!CPU_ISSET(n, mask)) 433 continue; 434 if (cpu != NOCPU) 435 return (EINVAL); 436 cpu = n; 437 } 438 } 439 ie = intr_lookup(irq); 440 if (ie == NULL) 441 return (ESRCH); 442 switch (mode) { 443 case CPU_WHICH_IRQ: 444 return (intr_event_bind(ie, cpu)); 445 case CPU_WHICH_INTRHANDLER: 446 return (intr_event_bind_irqonly(ie, cpu)); 447 case CPU_WHICH_ITHREAD: 448 return (intr_event_bind_ithread(ie, cpu)); 449 default: 450 return (EINVAL); 451 } 452 } 453 454 int 455 intr_getaffinity(int irq, int mode, void *m) 456 { 457 struct intr_event *ie; 458 struct thread *td; 459 struct proc *p; 460 cpuset_t *mask; 461 lwpid_t id; 462 int error; 463 464 mask = m; 465 ie = intr_lookup(irq); 466 if (ie == NULL) 467 return (ESRCH); 468 469 error = 0; 470 CPU_ZERO(mask); 471 switch (mode) { 472 case CPU_WHICH_IRQ: 473 case CPU_WHICH_INTRHANDLER: 474 mtx_lock(&ie->ie_lock); 475 if (ie->ie_cpu == NOCPU) 476 CPU_COPY(cpuset_root, mask); 477 else 478 CPU_SET(ie->ie_cpu, mask); 479 mtx_unlock(&ie->ie_lock); 480 break; 481 case CPU_WHICH_ITHREAD: 482 mtx_lock(&ie->ie_lock); 483 if (ie->ie_thread == NULL) { 484 mtx_unlock(&ie->ie_lock); 485 CPU_COPY(cpuset_root, mask); 486 } else { 487 id = ie->ie_thread->it_thread->td_tid; 488 mtx_unlock(&ie->ie_lock); 489 error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL); 490 if (error != 0) 491 return (error); 492 CPU_COPY(&td->td_cpuset->cs_mask, mask); 493 PROC_UNLOCK(p); 494 } 495 default: 496 return (EINVAL); 497 } 498 return (0); 499 } 500 501 int 502 intr_event_destroy(struct intr_event *ie) 503 { 504 505 mtx_lock(&event_lock); 506 mtx_lock(&ie->ie_lock); 507 if (!CK_SLIST_EMPTY(&ie->ie_handlers)) { 508 mtx_unlock(&ie->ie_lock); 509 mtx_unlock(&event_lock); 510 return (EBUSY); 511 } 512 TAILQ_REMOVE(&event_list, ie, ie_list); 513 #ifndef notyet 514 if (ie->ie_thread != NULL) { 515 ithread_destroy(ie->ie_thread); 516 ie->ie_thread = NULL; 517 } 518 #endif 519 mtx_unlock(&ie->ie_lock); 520 mtx_unlock(&event_lock); 521 mtx_destroy(&ie->ie_lock); 522 free(ie, M_ITHREAD); 523 return (0); 524 } 525 526 static struct intr_thread * 527 ithread_create(const char *name) 528 { 529 struct intr_thread *ithd; 530 struct thread *td; 531 int error; 532 533 ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO); 534 535 error = kproc_kthread_add(ithread_loop, ithd, &intrproc, 536 &td, RFSTOPPED | RFHIGHPID, 537 0, "intr", "%s", name); 538 if (error) 539 panic("kproc_create() failed with %d", error); 540 thread_lock(td); 541 sched_class(td, PRI_ITHD); 542 TD_SET_IWAIT(td); 543 thread_unlock(td); 544 td->td_pflags |= TDP_ITHREAD; 545 ithd->it_thread = td; 546 CTR2(KTR_INTR, "%s: created %s", __func__, name); 547 return (ithd); 548 } 549 550 static void 551 ithread_destroy(struct intr_thread *ithread) 552 { 553 struct thread *td; 554 555 CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name); 556 td = ithread->it_thread; 557 thread_lock(td); 558 ithread->it_flags |= IT_DEAD; 559 if (TD_AWAITING_INTR(td)) { 560 TD_CLR_IWAIT(td); 561 sched_add(td, SRQ_INTR); 562 } 563 thread_unlock(td); 564 } 565 566 int 567 intr_event_add_handler(struct intr_event *ie, const char *name, 568 driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri, 569 enum intr_type flags, void **cookiep) 570 { 571 struct intr_handler *ih, *temp_ih; 572 struct intr_handler **prevptr; 573 struct intr_thread *it; 574 575 if (ie == NULL || name == NULL || (handler == NULL && filter == NULL)) 576 return (EINVAL); 577 578 /* Allocate and populate an interrupt handler structure. */ 579 ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO); 580 ih->ih_filter = filter; 581 ih->ih_handler = handler; 582 ih->ih_argument = arg; 583 strlcpy(ih->ih_name, name, sizeof(ih->ih_name)); 584 ih->ih_event = ie; 585 ih->ih_pri = pri; 586 if (flags & INTR_EXCL) 587 ih->ih_flags = IH_EXCLUSIVE; 588 if (flags & INTR_MPSAFE) 589 ih->ih_flags |= IH_MPSAFE; 590 if (flags & INTR_ENTROPY) 591 ih->ih_flags |= IH_ENTROPY; 592 593 /* We can only have one exclusive handler in a event. */ 594 mtx_lock(&ie->ie_lock); 595 if (!CK_SLIST_EMPTY(&ie->ie_handlers)) { 596 if ((flags & INTR_EXCL) || 597 (CK_SLIST_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) { 598 mtx_unlock(&ie->ie_lock); 599 free(ih, M_ITHREAD); 600 return (EINVAL); 601 } 602 } 603 604 /* Create a thread if we need one. */ 605 while (ie->ie_thread == NULL && handler != NULL) { 606 if (ie->ie_flags & IE_ADDING_THREAD) 607 msleep(ie, &ie->ie_lock, 0, "ithread", 0); 608 else { 609 ie->ie_flags |= IE_ADDING_THREAD; 610 mtx_unlock(&ie->ie_lock); 611 it = ithread_create("intr: newborn"); 612 mtx_lock(&ie->ie_lock); 613 ie->ie_flags &= ~IE_ADDING_THREAD; 614 ie->ie_thread = it; 615 it->it_event = ie; 616 ithread_update(it); 617 wakeup(ie); 618 } 619 } 620 621 /* Add the new handler to the event in priority order. */ 622 CK_SLIST_FOREACH_PREVPTR(temp_ih, prevptr, &ie->ie_handlers, ih_next) { 623 if (temp_ih->ih_pri > ih->ih_pri) 624 break; 625 } 626 CK_SLIST_INSERT_PREVPTR(prevptr, temp_ih, ih, ih_next); 627 628 intr_event_update(ie); 629 630 CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, 631 ie->ie_name); 632 mtx_unlock(&ie->ie_lock); 633 634 if (cookiep != NULL) 635 *cookiep = ih; 636 return (0); 637 } 638 639 /* 640 * Append a description preceded by a ':' to the name of the specified 641 * interrupt handler. 642 */ 643 int 644 intr_event_describe_handler(struct intr_event *ie, void *cookie, 645 const char *descr) 646 { 647 struct intr_handler *ih; 648 size_t space; 649 char *start; 650 651 mtx_lock(&ie->ie_lock); 652 #ifdef INVARIANTS 653 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 654 if (ih == cookie) 655 break; 656 } 657 if (ih == NULL) { 658 mtx_unlock(&ie->ie_lock); 659 panic("handler %p not found in interrupt event %p", cookie, ie); 660 } 661 #endif 662 ih = cookie; 663 664 /* 665 * Look for an existing description by checking for an 666 * existing ":". This assumes device names do not include 667 * colons. If one is found, prepare to insert the new 668 * description at that point. If one is not found, find the 669 * end of the name to use as the insertion point. 670 */ 671 start = strchr(ih->ih_name, ':'); 672 if (start == NULL) 673 start = strchr(ih->ih_name, 0); 674 675 /* 676 * See if there is enough remaining room in the string for the 677 * description + ":". The "- 1" leaves room for the trailing 678 * '\0'. The "+ 1" accounts for the colon. 679 */ 680 space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1; 681 if (strlen(descr) + 1 > space) { 682 mtx_unlock(&ie->ie_lock); 683 return (ENOSPC); 684 } 685 686 /* Append a colon followed by the description. */ 687 *start = ':'; 688 strcpy(start + 1, descr); 689 intr_event_update(ie); 690 mtx_unlock(&ie->ie_lock); 691 return (0); 692 } 693 694 /* 695 * Return the ie_source field from the intr_event an intr_handler is 696 * associated with. 697 */ 698 void * 699 intr_handler_source(void *cookie) 700 { 701 struct intr_handler *ih; 702 struct intr_event *ie; 703 704 ih = (struct intr_handler *)cookie; 705 if (ih == NULL) 706 return (NULL); 707 ie = ih->ih_event; 708 KASSERT(ie != NULL, 709 ("interrupt handler \"%s\" has a NULL interrupt event", 710 ih->ih_name)); 711 return (ie->ie_source); 712 } 713 714 /* 715 * If intr_event_handle() is running in the ISR context at the time of the call, 716 * then wait for it to complete. 717 */ 718 static void 719 intr_event_barrier(struct intr_event *ie) 720 { 721 int phase; 722 723 mtx_assert(&ie->ie_lock, MA_OWNED); 724 phase = ie->ie_phase; 725 726 /* 727 * Switch phase to direct future interrupts to the other active counter. 728 * Make sure that any preceding stores are visible before the switch. 729 */ 730 KASSERT(ie->ie_active[!phase] == 0, ("idle phase has activity")); 731 atomic_store_rel_int(&ie->ie_phase, !phase); 732 733 /* 734 * This code cooperates with wait-free iteration of ie_handlers 735 * in intr_event_handle. 736 * Make sure that the removal and the phase update are not reordered 737 * with the active count check. 738 * Note that no combination of acquire and release fences can provide 739 * that guarantee as Store->Load sequences can always be reordered. 740 */ 741 atomic_thread_fence_seq_cst(); 742 743 /* 744 * Now wait on the inactive phase. 745 * The acquire fence is needed so that that all post-barrier accesses 746 * are after the check. 747 */ 748 while (ie->ie_active[phase] > 0) 749 cpu_spinwait(); 750 atomic_thread_fence_acq(); 751 } 752 753 static void 754 intr_handler_barrier(struct intr_handler *handler) 755 { 756 struct intr_event *ie; 757 758 ie = handler->ih_event; 759 mtx_assert(&ie->ie_lock, MA_OWNED); 760 KASSERT((handler->ih_flags & IH_DEAD) == 0, 761 ("update for a removed handler")); 762 763 if (ie->ie_thread == NULL) { 764 intr_event_barrier(ie); 765 return; 766 } 767 if ((handler->ih_flags & IH_CHANGED) == 0) { 768 handler->ih_flags |= IH_CHANGED; 769 intr_event_schedule_thread(ie); 770 } 771 while ((handler->ih_flags & IH_CHANGED) != 0) 772 msleep(handler, &ie->ie_lock, 0, "ih_barr", 0); 773 } 774 775 /* 776 * Sleep until an ithread finishes executing an interrupt handler. 777 * 778 * XXX Doesn't currently handle interrupt filters or fast interrupt 779 * handlers. This is intended for compatibility with linux drivers 780 * only. Do not use in BSD code. 781 */ 782 void 783 _intr_drain(int irq) 784 { 785 struct intr_event *ie; 786 struct intr_thread *ithd; 787 struct thread *td; 788 789 ie = intr_lookup(irq); 790 if (ie == NULL) 791 return; 792 if (ie->ie_thread == NULL) 793 return; 794 ithd = ie->ie_thread; 795 td = ithd->it_thread; 796 /* 797 * We set the flag and wait for it to be cleared to avoid 798 * long delays with potentially busy interrupt handlers 799 * were we to only sample TD_AWAITING_INTR() every tick. 800 */ 801 thread_lock(td); 802 if (!TD_AWAITING_INTR(td)) { 803 ithd->it_flags |= IT_WAIT; 804 while (ithd->it_flags & IT_WAIT) { 805 thread_unlock(td); 806 pause("idrain", 1); 807 thread_lock(td); 808 } 809 } 810 thread_unlock(td); 811 return; 812 } 813 814 int 815 intr_event_remove_handler(void *cookie) 816 { 817 struct intr_handler *handler = (struct intr_handler *)cookie; 818 struct intr_event *ie; 819 struct intr_handler *ih; 820 struct intr_handler **prevptr; 821 #ifdef notyet 822 int dead; 823 #endif 824 825 if (handler == NULL) 826 return (EINVAL); 827 ie = handler->ih_event; 828 KASSERT(ie != NULL, 829 ("interrupt handler \"%s\" has a NULL interrupt event", 830 handler->ih_name)); 831 832 mtx_lock(&ie->ie_lock); 833 CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, 834 ie->ie_name); 835 CK_SLIST_FOREACH_PREVPTR(ih, prevptr, &ie->ie_handlers, ih_next) { 836 if (ih == handler) 837 break; 838 } 839 if (ih == NULL) { 840 panic("interrupt handler \"%s\" not found in " 841 "interrupt event \"%s\"", handler->ih_name, ie->ie_name); 842 } 843 844 /* 845 * If there is no ithread, then directly remove the handler. Note that 846 * intr_event_handle() iterates ie_handlers in a lock-less fashion, so 847 * care needs to be taken to keep ie_handlers consistent and to free 848 * the removed handler only when ie_handlers is quiescent. 849 */ 850 if (ie->ie_thread == NULL) { 851 CK_SLIST_REMOVE_PREVPTR(prevptr, ih, ih_next); 852 intr_event_barrier(ie); 853 intr_event_update(ie); 854 mtx_unlock(&ie->ie_lock); 855 free(handler, M_ITHREAD); 856 return (0); 857 } 858 859 /* 860 * Let the interrupt thread do the job. 861 * The interrupt source is disabled when the interrupt thread is 862 * running, so it does not have to worry about interaction with 863 * intr_event_handle(). 864 */ 865 KASSERT((handler->ih_flags & IH_DEAD) == 0, 866 ("duplicate handle remove")); 867 handler->ih_flags |= IH_DEAD; 868 intr_event_schedule_thread(ie); 869 while (handler->ih_flags & IH_DEAD) 870 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0); 871 intr_event_update(ie); 872 873 #ifdef notyet 874 /* 875 * XXX: This could be bad in the case of ppbus(8). Also, I think 876 * this could lead to races of stale data when servicing an 877 * interrupt. 878 */ 879 dead = 1; 880 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 881 if (ih->ih_handler != NULL) { 882 dead = 0; 883 break; 884 } 885 } 886 if (dead) { 887 ithread_destroy(ie->ie_thread); 888 ie->ie_thread = NULL; 889 } 890 #endif 891 mtx_unlock(&ie->ie_lock); 892 free(handler, M_ITHREAD); 893 return (0); 894 } 895 896 int 897 intr_event_suspend_handler(void *cookie) 898 { 899 struct intr_handler *handler = (struct intr_handler *)cookie; 900 struct intr_event *ie; 901 902 if (handler == NULL) 903 return (EINVAL); 904 ie = handler->ih_event; 905 KASSERT(ie != NULL, 906 ("interrupt handler \"%s\" has a NULL interrupt event", 907 handler->ih_name)); 908 mtx_lock(&ie->ie_lock); 909 handler->ih_flags |= IH_SUSP; 910 intr_handler_barrier(handler); 911 mtx_unlock(&ie->ie_lock); 912 return (0); 913 } 914 915 int 916 intr_event_resume_handler(void *cookie) 917 { 918 struct intr_handler *handler = (struct intr_handler *)cookie; 919 struct intr_event *ie; 920 921 if (handler == NULL) 922 return (EINVAL); 923 ie = handler->ih_event; 924 KASSERT(ie != NULL, 925 ("interrupt handler \"%s\" has a NULL interrupt event", 926 handler->ih_name)); 927 928 /* 929 * intr_handler_barrier() acts not only as a barrier, 930 * it also allows to check for any pending interrupts. 931 */ 932 mtx_lock(&ie->ie_lock); 933 handler->ih_flags &= ~IH_SUSP; 934 intr_handler_barrier(handler); 935 mtx_unlock(&ie->ie_lock); 936 return (0); 937 } 938 939 static int 940 intr_event_schedule_thread(struct intr_event *ie) 941 { 942 struct intr_entropy entropy; 943 struct intr_thread *it; 944 struct thread *td; 945 struct thread *ctd; 946 947 /* 948 * If no ithread or no handlers, then we have a stray interrupt. 949 */ 950 if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers) || 951 ie->ie_thread == NULL) 952 return (EINVAL); 953 954 ctd = curthread; 955 it = ie->ie_thread; 956 td = it->it_thread; 957 958 /* 959 * If any of the handlers for this ithread claim to be good 960 * sources of entropy, then gather some. 961 */ 962 if (ie->ie_flags & IE_ENTROPY) { 963 entropy.event = (uintptr_t)ie; 964 entropy.td = ctd; 965 random_harvest_queue(&entropy, sizeof(entropy), RANDOM_INTERRUPT); 966 } 967 968 KASSERT(td->td_proc != NULL, ("ithread %s has no process", ie->ie_name)); 969 970 /* 971 * Set it_need to tell the thread to keep running if it is already 972 * running. Then, lock the thread and see if we actually need to 973 * put it on the runqueue. 974 * 975 * Use store_rel to arrange that the store to ih_need in 976 * swi_sched() is before the store to it_need and prepare for 977 * transfer of this order to loads in the ithread. 978 */ 979 atomic_store_rel_int(&it->it_need, 1); 980 thread_lock(td); 981 if (TD_AWAITING_INTR(td)) { 982 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, td->td_proc->p_pid, 983 td->td_name); 984 TD_CLR_IWAIT(td); 985 sched_add(td, SRQ_INTR); 986 } else { 987 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d", 988 __func__, td->td_proc->p_pid, td->td_name, it->it_need, td->td_state); 989 } 990 thread_unlock(td); 991 992 return (0); 993 } 994 995 /* 996 * Allow interrupt event binding for software interrupt handlers -- a no-op, 997 * since interrupts are generated in software rather than being directed by 998 * a PIC. 999 */ 1000 static int 1001 swi_assign_cpu(void *arg, int cpu) 1002 { 1003 1004 return (0); 1005 } 1006 1007 /* 1008 * Add a software interrupt handler to a specified event. If a given event 1009 * is not specified, then a new event is created. 1010 */ 1011 int 1012 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler, 1013 void *arg, int pri, enum intr_type flags, void **cookiep) 1014 { 1015 struct intr_event *ie; 1016 int error; 1017 1018 if (flags & INTR_ENTROPY) 1019 return (EINVAL); 1020 1021 ie = (eventp != NULL) ? *eventp : NULL; 1022 1023 if (ie != NULL) { 1024 if (!(ie->ie_flags & IE_SOFT)) 1025 return (EINVAL); 1026 } else { 1027 error = intr_event_create(&ie, NULL, IE_SOFT, 0, 1028 NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri); 1029 if (error) 1030 return (error); 1031 if (eventp != NULL) 1032 *eventp = ie; 1033 } 1034 error = intr_event_add_handler(ie, name, NULL, handler, arg, 1035 PI_SWI(pri), flags, cookiep); 1036 return (error); 1037 } 1038 1039 /* 1040 * Schedule a software interrupt thread. 1041 */ 1042 void 1043 swi_sched(void *cookie, int flags) 1044 { 1045 struct intr_handler *ih = (struct intr_handler *)cookie; 1046 struct intr_event *ie = ih->ih_event; 1047 struct intr_entropy entropy; 1048 int error __unused; 1049 1050 CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name, 1051 ih->ih_need); 1052 1053 entropy.event = (uintptr_t)ih; 1054 entropy.td = curthread; 1055 random_harvest_queue(&entropy, sizeof(entropy), RANDOM_SWI); 1056 1057 /* 1058 * Set ih_need for this handler so that if the ithread is already 1059 * running it will execute this handler on the next pass. Otherwise, 1060 * it will execute it the next time it runs. 1061 */ 1062 ih->ih_need = 1; 1063 1064 if (!(flags & SWI_DELAY)) { 1065 VM_CNT_INC(v_soft); 1066 error = intr_event_schedule_thread(ie); 1067 KASSERT(error == 0, ("stray software interrupt")); 1068 } 1069 } 1070 1071 /* 1072 * Remove a software interrupt handler. Currently this code does not 1073 * remove the associated interrupt event if it becomes empty. Calling code 1074 * may do so manually via intr_event_destroy(), but that's not really 1075 * an optimal interface. 1076 */ 1077 int 1078 swi_remove(void *cookie) 1079 { 1080 1081 return (intr_event_remove_handler(cookie)); 1082 } 1083 1084 static void 1085 intr_event_execute_handlers(struct proc *p, struct intr_event *ie) 1086 { 1087 struct intr_handler *ih, *ihn, *ihp; 1088 1089 ihp = NULL; 1090 CK_SLIST_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) { 1091 /* 1092 * If this handler is marked for death, remove it from 1093 * the list of handlers and wake up the sleeper. 1094 */ 1095 if (ih->ih_flags & IH_DEAD) { 1096 mtx_lock(&ie->ie_lock); 1097 if (ihp == NULL) 1098 CK_SLIST_REMOVE_HEAD(&ie->ie_handlers, ih_next); 1099 else 1100 CK_SLIST_REMOVE_AFTER(ihp, ih_next); 1101 ih->ih_flags &= ~IH_DEAD; 1102 wakeup(ih); 1103 mtx_unlock(&ie->ie_lock); 1104 continue; 1105 } 1106 1107 /* 1108 * Now that we know that the current element won't be removed 1109 * update the previous element. 1110 */ 1111 ihp = ih; 1112 1113 if ((ih->ih_flags & IH_CHANGED) != 0) { 1114 mtx_lock(&ie->ie_lock); 1115 ih->ih_flags &= ~IH_CHANGED; 1116 wakeup(ih); 1117 mtx_unlock(&ie->ie_lock); 1118 } 1119 1120 /* Skip filter only handlers */ 1121 if (ih->ih_handler == NULL) 1122 continue; 1123 1124 /* Skip suspended handlers */ 1125 if ((ih->ih_flags & IH_SUSP) != 0) 1126 continue; 1127 1128 /* 1129 * For software interrupt threads, we only execute 1130 * handlers that have their need flag set. Hardware 1131 * interrupt threads always invoke all of their handlers. 1132 * 1133 * ih_need can only be 0 or 1. Failed cmpset below 1134 * means that there is no request to execute handlers, 1135 * so a retry of the cmpset is not needed. 1136 */ 1137 if ((ie->ie_flags & IE_SOFT) != 0 && 1138 atomic_cmpset_int(&ih->ih_need, 1, 0) == 0) 1139 continue; 1140 1141 /* Execute this handler. */ 1142 CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x", 1143 __func__, p->p_pid, (void *)ih->ih_handler, 1144 ih->ih_argument, ih->ih_name, ih->ih_flags); 1145 1146 if (!(ih->ih_flags & IH_MPSAFE)) 1147 mtx_lock(&Giant); 1148 ih->ih_handler(ih->ih_argument); 1149 if (!(ih->ih_flags & IH_MPSAFE)) 1150 mtx_unlock(&Giant); 1151 } 1152 } 1153 1154 static void 1155 ithread_execute_handlers(struct proc *p, struct intr_event *ie) 1156 { 1157 1158 /* Interrupt handlers should not sleep. */ 1159 if (!(ie->ie_flags & IE_SOFT)) 1160 THREAD_NO_SLEEPING(); 1161 intr_event_execute_handlers(p, ie); 1162 if (!(ie->ie_flags & IE_SOFT)) 1163 THREAD_SLEEPING_OK(); 1164 1165 /* 1166 * Interrupt storm handling: 1167 * 1168 * If this interrupt source is currently storming, then throttle 1169 * it to only fire the handler once per clock tick. 1170 * 1171 * If this interrupt source is not currently storming, but the 1172 * number of back to back interrupts exceeds the storm threshold, 1173 * then enter storming mode. 1174 */ 1175 if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold && 1176 !(ie->ie_flags & IE_SOFT)) { 1177 /* Report the message only once every second. */ 1178 if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) { 1179 printf( 1180 "interrupt storm detected on \"%s\"; throttling interrupt source\n", 1181 ie->ie_name); 1182 } 1183 pause("istorm", 1); 1184 } else 1185 ie->ie_count++; 1186 1187 /* 1188 * Now that all the handlers have had a chance to run, reenable 1189 * the interrupt source. 1190 */ 1191 if (ie->ie_post_ithread != NULL) 1192 ie->ie_post_ithread(ie->ie_source); 1193 } 1194 1195 /* 1196 * This is the main code for interrupt threads. 1197 */ 1198 static void 1199 ithread_loop(void *arg) 1200 { 1201 struct intr_thread *ithd; 1202 struct intr_event *ie; 1203 struct thread *td; 1204 struct proc *p; 1205 int wake; 1206 1207 td = curthread; 1208 p = td->td_proc; 1209 ithd = (struct intr_thread *)arg; 1210 KASSERT(ithd->it_thread == td, 1211 ("%s: ithread and proc linkage out of sync", __func__)); 1212 ie = ithd->it_event; 1213 ie->ie_count = 0; 1214 wake = 0; 1215 1216 /* 1217 * As long as we have interrupts outstanding, go through the 1218 * list of handlers, giving each one a go at it. 1219 */ 1220 for (;;) { 1221 /* 1222 * If we are an orphaned thread, then just die. 1223 */ 1224 if (ithd->it_flags & IT_DEAD) { 1225 CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__, 1226 p->p_pid, td->td_name); 1227 free(ithd, M_ITHREAD); 1228 kthread_exit(); 1229 } 1230 1231 /* 1232 * Service interrupts. If another interrupt arrives while 1233 * we are running, it will set it_need to note that we 1234 * should make another pass. 1235 * 1236 * The load_acq part of the following cmpset ensures 1237 * that the load of ih_need in ithread_execute_handlers() 1238 * is ordered after the load of it_need here. 1239 */ 1240 while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) 1241 ithread_execute_handlers(p, ie); 1242 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread"); 1243 mtx_assert(&Giant, MA_NOTOWNED); 1244 1245 /* 1246 * Processed all our interrupts. Now get the sched 1247 * lock. This may take a while and it_need may get 1248 * set again, so we have to check it again. 1249 */ 1250 thread_lock(td); 1251 if (atomic_load_acq_int(&ithd->it_need) == 0 && 1252 (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) { 1253 TD_SET_IWAIT(td); 1254 ie->ie_count = 0; 1255 mi_switch(SW_VOL | SWT_IWAIT, NULL); 1256 } 1257 if (ithd->it_flags & IT_WAIT) { 1258 wake = 1; 1259 ithd->it_flags &= ~IT_WAIT; 1260 } 1261 thread_unlock(td); 1262 if (wake) { 1263 wakeup(ithd); 1264 wake = 0; 1265 } 1266 } 1267 } 1268 1269 /* 1270 * Main interrupt handling body. 1271 * 1272 * Input: 1273 * o ie: the event connected to this interrupt. 1274 * o frame: some archs (i.e. i386) pass a frame to some. 1275 * handlers as their main argument. 1276 * Return value: 1277 * o 0: everything ok. 1278 * o EINVAL: stray interrupt. 1279 */ 1280 int 1281 intr_event_handle(struct intr_event *ie, struct trapframe *frame) 1282 { 1283 struct intr_handler *ih; 1284 struct trapframe *oldframe; 1285 struct thread *td; 1286 int phase; 1287 int ret; 1288 bool filter, thread; 1289 1290 td = curthread; 1291 1292 #ifdef KSTACK_USAGE_PROF 1293 intr_prof_stack_use(td, frame); 1294 #endif 1295 1296 /* An interrupt with no event or handlers is a stray interrupt. */ 1297 if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers)) 1298 return (EINVAL); 1299 1300 /* 1301 * Execute fast interrupt handlers directly. 1302 * To support clock handlers, if a handler registers 1303 * with a NULL argument, then we pass it a pointer to 1304 * a trapframe as its argument. 1305 */ 1306 td->td_intr_nesting_level++; 1307 filter = false; 1308 thread = false; 1309 ret = 0; 1310 critical_enter(); 1311 oldframe = td->td_intr_frame; 1312 td->td_intr_frame = frame; 1313 1314 phase = ie->ie_phase; 1315 atomic_add_int(&ie->ie_active[phase], 1); 1316 1317 /* 1318 * This fence is required to ensure that no later loads are 1319 * re-ordered before the ie_active store. 1320 */ 1321 atomic_thread_fence_seq_cst(); 1322 1323 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 1324 if ((ih->ih_flags & IH_SUSP) != 0) 1325 continue; 1326 if (ih->ih_filter == NULL) { 1327 thread = true; 1328 continue; 1329 } 1330 CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__, 1331 ih->ih_filter, ih->ih_argument == NULL ? frame : 1332 ih->ih_argument, ih->ih_name); 1333 if (ih->ih_argument == NULL) 1334 ret = ih->ih_filter(frame); 1335 else 1336 ret = ih->ih_filter(ih->ih_argument); 1337 KASSERT(ret == FILTER_STRAY || 1338 ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 && 1339 (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0), 1340 ("%s: incorrect return value %#x from %s", __func__, ret, 1341 ih->ih_name)); 1342 filter = filter || ret == FILTER_HANDLED; 1343 1344 /* 1345 * Wrapper handler special handling: 1346 * 1347 * in some particular cases (like pccard and pccbb), 1348 * the _real_ device handler is wrapped in a couple of 1349 * functions - a filter wrapper and an ithread wrapper. 1350 * In this case (and just in this case), the filter wrapper 1351 * could ask the system to schedule the ithread and mask 1352 * the interrupt source if the wrapped handler is composed 1353 * of just an ithread handler. 1354 * 1355 * TODO: write a generic wrapper to avoid people rolling 1356 * their own. 1357 */ 1358 if (!thread) { 1359 if (ret == FILTER_SCHEDULE_THREAD) 1360 thread = true; 1361 } 1362 } 1363 atomic_add_rel_int(&ie->ie_active[phase], -1); 1364 1365 td->td_intr_frame = oldframe; 1366 1367 if (thread) { 1368 if (ie->ie_pre_ithread != NULL) 1369 ie->ie_pre_ithread(ie->ie_source); 1370 } else { 1371 if (ie->ie_post_filter != NULL) 1372 ie->ie_post_filter(ie->ie_source); 1373 } 1374 1375 /* Schedule the ithread if needed. */ 1376 if (thread) { 1377 int error __unused; 1378 1379 error = intr_event_schedule_thread(ie); 1380 KASSERT(error == 0, ("bad stray interrupt")); 1381 } 1382 critical_exit(); 1383 td->td_intr_nesting_level--; 1384 #ifdef notyet 1385 /* The interrupt is not aknowledged by any filter and has no ithread. */ 1386 if (!thread && !filter) 1387 return (EINVAL); 1388 #endif 1389 return (0); 1390 } 1391 1392 #ifdef DDB 1393 /* 1394 * Dump details about an interrupt handler 1395 */ 1396 static void 1397 db_dump_intrhand(struct intr_handler *ih) 1398 { 1399 int comma; 1400 1401 db_printf("\t%-10s ", ih->ih_name); 1402 switch (ih->ih_pri) { 1403 case PI_REALTIME: 1404 db_printf("CLK "); 1405 break; 1406 case PI_AV: 1407 db_printf("AV "); 1408 break; 1409 case PI_TTY: 1410 db_printf("TTY "); 1411 break; 1412 case PI_NET: 1413 db_printf("NET "); 1414 break; 1415 case PI_DISK: 1416 db_printf("DISK"); 1417 break; 1418 case PI_DULL: 1419 db_printf("DULL"); 1420 break; 1421 default: 1422 if (ih->ih_pri >= PI_SOFT) 1423 db_printf("SWI "); 1424 else 1425 db_printf("%4u", ih->ih_pri); 1426 break; 1427 } 1428 db_printf(" "); 1429 if (ih->ih_filter != NULL) { 1430 db_printf("[F]"); 1431 db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC); 1432 } 1433 if (ih->ih_handler != NULL) { 1434 if (ih->ih_filter != NULL) 1435 db_printf(","); 1436 db_printf("[H]"); 1437 db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC); 1438 } 1439 db_printf("(%p)", ih->ih_argument); 1440 if (ih->ih_need || 1441 (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD | 1442 IH_MPSAFE)) != 0) { 1443 db_printf(" {"); 1444 comma = 0; 1445 if (ih->ih_flags & IH_EXCLUSIVE) { 1446 if (comma) 1447 db_printf(", "); 1448 db_printf("EXCL"); 1449 comma = 1; 1450 } 1451 if (ih->ih_flags & IH_ENTROPY) { 1452 if (comma) 1453 db_printf(", "); 1454 db_printf("ENTROPY"); 1455 comma = 1; 1456 } 1457 if (ih->ih_flags & IH_DEAD) { 1458 if (comma) 1459 db_printf(", "); 1460 db_printf("DEAD"); 1461 comma = 1; 1462 } 1463 if (ih->ih_flags & IH_MPSAFE) { 1464 if (comma) 1465 db_printf(", "); 1466 db_printf("MPSAFE"); 1467 comma = 1; 1468 } 1469 if (ih->ih_need) { 1470 if (comma) 1471 db_printf(", "); 1472 db_printf("NEED"); 1473 } 1474 db_printf("}"); 1475 } 1476 db_printf("\n"); 1477 } 1478 1479 /* 1480 * Dump details about a event. 1481 */ 1482 void 1483 db_dump_intr_event(struct intr_event *ie, int handlers) 1484 { 1485 struct intr_handler *ih; 1486 struct intr_thread *it; 1487 int comma; 1488 1489 db_printf("%s ", ie->ie_fullname); 1490 it = ie->ie_thread; 1491 if (it != NULL) 1492 db_printf("(pid %d)", it->it_thread->td_proc->p_pid); 1493 else 1494 db_printf("(no thread)"); 1495 if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 || 1496 (it != NULL && it->it_need)) { 1497 db_printf(" {"); 1498 comma = 0; 1499 if (ie->ie_flags & IE_SOFT) { 1500 db_printf("SOFT"); 1501 comma = 1; 1502 } 1503 if (ie->ie_flags & IE_ENTROPY) { 1504 if (comma) 1505 db_printf(", "); 1506 db_printf("ENTROPY"); 1507 comma = 1; 1508 } 1509 if (ie->ie_flags & IE_ADDING_THREAD) { 1510 if (comma) 1511 db_printf(", "); 1512 db_printf("ADDING_THREAD"); 1513 comma = 1; 1514 } 1515 if (it != NULL && it->it_need) { 1516 if (comma) 1517 db_printf(", "); 1518 db_printf("NEED"); 1519 } 1520 db_printf("}"); 1521 } 1522 db_printf("\n"); 1523 1524 if (handlers) 1525 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) 1526 db_dump_intrhand(ih); 1527 } 1528 1529 /* 1530 * Dump data about interrupt handlers 1531 */ 1532 DB_SHOW_COMMAND(intr, db_show_intr) 1533 { 1534 struct intr_event *ie; 1535 int all, verbose; 1536 1537 verbose = strchr(modif, 'v') != NULL; 1538 all = strchr(modif, 'a') != NULL; 1539 TAILQ_FOREACH(ie, &event_list, ie_list) { 1540 if (!all && CK_SLIST_EMPTY(&ie->ie_handlers)) 1541 continue; 1542 db_dump_intr_event(ie, verbose); 1543 if (db_pager_quit) 1544 break; 1545 } 1546 } 1547 #endif /* DDB */ 1548 1549 /* 1550 * Start standard software interrupt threads 1551 */ 1552 static void 1553 start_softintr(void *dummy) 1554 { 1555 1556 if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih)) 1557 panic("died while creating vm swi ithread"); 1558 } 1559 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, 1560 NULL); 1561 1562 /* 1563 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 1564 * The data for this machine dependent, and the declarations are in machine 1565 * dependent code. The layout of intrnames and intrcnt however is machine 1566 * independent. 1567 * 1568 * We do not know the length of intrcnt and intrnames at compile time, so 1569 * calculate things at run time. 1570 */ 1571 static int 1572 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 1573 { 1574 return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req)); 1575 } 1576 1577 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1578 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1579 1580 static int 1581 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1582 { 1583 #ifdef SCTL_MASK32 1584 uint32_t *intrcnt32; 1585 unsigned i; 1586 int error; 1587 1588 if (req->flags & SCTL_MASK32) { 1589 if (!req->oldptr) 1590 return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req)); 1591 intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT); 1592 if (intrcnt32 == NULL) 1593 return (ENOMEM); 1594 for (i = 0; i < sintrcnt / sizeof (u_long); i++) 1595 intrcnt32[i] = intrcnt[i]; 1596 error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req); 1597 free(intrcnt32, M_TEMP); 1598 return (error); 1599 } 1600 #endif 1601 return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req)); 1602 } 1603 1604 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1605 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1606 1607 #ifdef DDB 1608 /* 1609 * DDB command to dump the interrupt statistics. 1610 */ 1611 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt) 1612 { 1613 u_long *i; 1614 char *cp; 1615 u_int j; 1616 1617 cp = intrnames; 1618 j = 0; 1619 for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit; 1620 i++, j++) { 1621 if (*cp == '\0') 1622 break; 1623 if (*i != 0) 1624 db_printf("%s\t%lu\n", cp, *i); 1625 cp += strlen(cp) + 1; 1626 } 1627 } 1628 #endif 1629