1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_ddb.h" 33 #include "opt_kstack_usage_prof.h" 34 35 #include <sys/param.h> 36 #include <sys/bus.h> 37 #include <sys/conf.h> 38 #include <sys/cpuset.h> 39 #include <sys/rtprio.h> 40 #include <sys/systm.h> 41 #include <sys/interrupt.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/ktr.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/random.h> 52 #include <sys/resourcevar.h> 53 #include <sys/sched.h> 54 #include <sys/smp.h> 55 #include <sys/sysctl.h> 56 #include <sys/syslog.h> 57 #include <sys/unistd.h> 58 #include <sys/vmmeter.h> 59 #include <machine/atomic.h> 60 #include <machine/cpu.h> 61 #include <machine/md_var.h> 62 #include <machine/stdarg.h> 63 #ifdef DDB 64 #include <ddb/ddb.h> 65 #include <ddb/db_sym.h> 66 #endif 67 68 /* 69 * Describe an interrupt thread. There is one of these per interrupt event. 70 */ 71 struct intr_thread { 72 struct intr_event *it_event; 73 struct thread *it_thread; /* Kernel thread. */ 74 int it_flags; /* (j) IT_* flags. */ 75 int it_need; /* Needs service. */ 76 }; 77 78 /* Interrupt thread flags kept in it_flags */ 79 #define IT_DEAD 0x000001 /* Thread is waiting to exit. */ 80 #define IT_WAIT 0x000002 /* Thread is waiting for completion. */ 81 82 struct intr_entropy { 83 struct thread *td; 84 uintptr_t event; 85 }; 86 87 struct intr_event *clk_intr_event; 88 struct intr_event *tty_intr_event; 89 void *vm_ih; 90 struct proc *intrproc; 91 92 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads"); 93 94 static int intr_storm_threshold = 1000; 95 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN, 96 &intr_storm_threshold, 0, 97 "Number of consecutive interrupts before storm protection is enabled"); 98 static TAILQ_HEAD(, intr_event) event_list = 99 TAILQ_HEAD_INITIALIZER(event_list); 100 static struct mtx event_lock; 101 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF); 102 103 static void intr_event_update(struct intr_event *ie); 104 static int intr_event_schedule_thread(struct intr_event *ie); 105 static struct intr_thread *ithread_create(const char *name); 106 static void ithread_destroy(struct intr_thread *ithread); 107 static void ithread_execute_handlers(struct proc *p, 108 struct intr_event *ie); 109 static void ithread_loop(void *); 110 static void ithread_update(struct intr_thread *ithd); 111 static void start_softintr(void *); 112 113 /* Map an interrupt type to an ithread priority. */ 114 u_char 115 intr_priority(enum intr_type flags) 116 { 117 u_char pri; 118 119 flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET | 120 INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV); 121 switch (flags) { 122 case INTR_TYPE_TTY: 123 pri = PI_TTY; 124 break; 125 case INTR_TYPE_BIO: 126 pri = PI_DISK; 127 break; 128 case INTR_TYPE_NET: 129 pri = PI_NET; 130 break; 131 case INTR_TYPE_CAM: 132 pri = PI_DISK; 133 break; 134 case INTR_TYPE_AV: 135 pri = PI_AV; 136 break; 137 case INTR_TYPE_CLK: 138 pri = PI_REALTIME; 139 break; 140 case INTR_TYPE_MISC: 141 pri = PI_DULL; /* don't care */ 142 break; 143 default: 144 /* We didn't specify an interrupt level. */ 145 panic("intr_priority: no interrupt type in flags"); 146 } 147 148 return pri; 149 } 150 151 /* 152 * Update an ithread based on the associated intr_event. 153 */ 154 static void 155 ithread_update(struct intr_thread *ithd) 156 { 157 struct intr_event *ie; 158 struct thread *td; 159 u_char pri; 160 161 ie = ithd->it_event; 162 td = ithd->it_thread; 163 mtx_assert(&ie->ie_lock, MA_OWNED); 164 165 /* Determine the overall priority of this event. */ 166 if (CK_SLIST_EMPTY(&ie->ie_handlers)) 167 pri = PRI_MAX_ITHD; 168 else 169 pri = CK_SLIST_FIRST(&ie->ie_handlers)->ih_pri; 170 171 /* Update name and priority. */ 172 strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name)); 173 #ifdef KTR 174 sched_clear_tdname(td); 175 #endif 176 thread_lock(td); 177 sched_prio(td, pri); 178 thread_unlock(td); 179 } 180 181 /* 182 * Regenerate the full name of an interrupt event and update its priority. 183 */ 184 static void 185 intr_event_update(struct intr_event *ie) 186 { 187 struct intr_handler *ih; 188 char *last; 189 int missed, space; 190 191 /* Start off with no entropy and just the name of the event. */ 192 mtx_assert(&ie->ie_lock, MA_OWNED); 193 strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); 194 ie->ie_flags &= ~IE_ENTROPY; 195 missed = 0; 196 space = 1; 197 198 /* Run through all the handlers updating values. */ 199 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 200 if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 < 201 sizeof(ie->ie_fullname)) { 202 strcat(ie->ie_fullname, " "); 203 strcat(ie->ie_fullname, ih->ih_name); 204 space = 0; 205 } else 206 missed++; 207 if (ih->ih_flags & IH_ENTROPY) 208 ie->ie_flags |= IE_ENTROPY; 209 } 210 211 /* 212 * If the handler names were too long, add +'s to indicate missing 213 * names. If we run out of room and still have +'s to add, change 214 * the last character from a + to a *. 215 */ 216 last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2]; 217 while (missed-- > 0) { 218 if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) { 219 if (*last == '+') { 220 *last = '*'; 221 break; 222 } else 223 *last = '+'; 224 } else if (space) { 225 strcat(ie->ie_fullname, " +"); 226 space = 0; 227 } else 228 strcat(ie->ie_fullname, "+"); 229 } 230 231 /* 232 * If this event has an ithread, update it's priority and 233 * name. 234 */ 235 if (ie->ie_thread != NULL) 236 ithread_update(ie->ie_thread); 237 CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname); 238 } 239 240 int 241 intr_event_create(struct intr_event **event, void *source, int flags, int irq, 242 void (*pre_ithread)(void *), void (*post_ithread)(void *), 243 void (*post_filter)(void *), int (*assign_cpu)(void *, int), 244 const char *fmt, ...) 245 { 246 struct intr_event *ie; 247 va_list ap; 248 249 /* The only valid flag during creation is IE_SOFT. */ 250 if ((flags & ~IE_SOFT) != 0) 251 return (EINVAL); 252 ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO); 253 ie->ie_source = source; 254 ie->ie_pre_ithread = pre_ithread; 255 ie->ie_post_ithread = post_ithread; 256 ie->ie_post_filter = post_filter; 257 ie->ie_assign_cpu = assign_cpu; 258 ie->ie_flags = flags; 259 ie->ie_irq = irq; 260 ie->ie_cpu = NOCPU; 261 CK_SLIST_INIT(&ie->ie_handlers); 262 mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF); 263 264 va_start(ap, fmt); 265 vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap); 266 va_end(ap); 267 strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); 268 mtx_lock(&event_lock); 269 TAILQ_INSERT_TAIL(&event_list, ie, ie_list); 270 mtx_unlock(&event_lock); 271 if (event != NULL) 272 *event = ie; 273 CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name); 274 return (0); 275 } 276 277 /* 278 * Bind an interrupt event to the specified CPU. Note that not all 279 * platforms support binding an interrupt to a CPU. For those 280 * platforms this request will fail. Using a cpu id of NOCPU unbinds 281 * the interrupt event. 282 */ 283 static int 284 _intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread) 285 { 286 lwpid_t id; 287 int error; 288 289 /* Need a CPU to bind to. */ 290 if (cpu != NOCPU && CPU_ABSENT(cpu)) 291 return (EINVAL); 292 293 if (ie->ie_assign_cpu == NULL) 294 return (EOPNOTSUPP); 295 296 error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR); 297 if (error) 298 return (error); 299 300 /* 301 * If we have any ithreads try to set their mask first to verify 302 * permissions, etc. 303 */ 304 if (bindithread) { 305 mtx_lock(&ie->ie_lock); 306 if (ie->ie_thread != NULL) { 307 id = ie->ie_thread->it_thread->td_tid; 308 mtx_unlock(&ie->ie_lock); 309 error = cpuset_setithread(id, cpu); 310 if (error) 311 return (error); 312 } else 313 mtx_unlock(&ie->ie_lock); 314 } 315 if (bindirq) 316 error = ie->ie_assign_cpu(ie->ie_source, cpu); 317 if (error) { 318 if (bindithread) { 319 mtx_lock(&ie->ie_lock); 320 if (ie->ie_thread != NULL) { 321 cpu = ie->ie_cpu; 322 id = ie->ie_thread->it_thread->td_tid; 323 mtx_unlock(&ie->ie_lock); 324 (void)cpuset_setithread(id, cpu); 325 } else 326 mtx_unlock(&ie->ie_lock); 327 } 328 return (error); 329 } 330 331 if (bindirq) { 332 mtx_lock(&ie->ie_lock); 333 ie->ie_cpu = cpu; 334 mtx_unlock(&ie->ie_lock); 335 } 336 337 return (error); 338 } 339 340 /* 341 * Bind an interrupt event to the specified CPU. For supported platforms, any 342 * associated ithreads as well as the primary interrupt context will be bound 343 * to the specificed CPU. 344 */ 345 int 346 intr_event_bind(struct intr_event *ie, int cpu) 347 { 348 349 return (_intr_event_bind(ie, cpu, true, true)); 350 } 351 352 /* 353 * Bind an interrupt event to the specified CPU, but do not bind associated 354 * ithreads. 355 */ 356 int 357 intr_event_bind_irqonly(struct intr_event *ie, int cpu) 358 { 359 360 return (_intr_event_bind(ie, cpu, true, false)); 361 } 362 363 /* 364 * Bind an interrupt event's ithread to the specified CPU. 365 */ 366 int 367 intr_event_bind_ithread(struct intr_event *ie, int cpu) 368 { 369 370 return (_intr_event_bind(ie, cpu, false, true)); 371 } 372 373 static struct intr_event * 374 intr_lookup(int irq) 375 { 376 struct intr_event *ie; 377 378 mtx_lock(&event_lock); 379 TAILQ_FOREACH(ie, &event_list, ie_list) 380 if (ie->ie_irq == irq && 381 (ie->ie_flags & IE_SOFT) == 0 && 382 CK_SLIST_FIRST(&ie->ie_handlers) != NULL) 383 break; 384 mtx_unlock(&event_lock); 385 return (ie); 386 } 387 388 int 389 intr_setaffinity(int irq, int mode, void *m) 390 { 391 struct intr_event *ie; 392 cpuset_t *mask; 393 int cpu, n; 394 395 mask = m; 396 cpu = NOCPU; 397 /* 398 * If we're setting all cpus we can unbind. Otherwise make sure 399 * only one cpu is in the set. 400 */ 401 if (CPU_CMP(cpuset_root, mask)) { 402 for (n = 0; n < CPU_SETSIZE; n++) { 403 if (!CPU_ISSET(n, mask)) 404 continue; 405 if (cpu != NOCPU) 406 return (EINVAL); 407 cpu = n; 408 } 409 } 410 ie = intr_lookup(irq); 411 if (ie == NULL) 412 return (ESRCH); 413 switch (mode) { 414 case CPU_WHICH_IRQ: 415 return (intr_event_bind(ie, cpu)); 416 case CPU_WHICH_INTRHANDLER: 417 return (intr_event_bind_irqonly(ie, cpu)); 418 case CPU_WHICH_ITHREAD: 419 return (intr_event_bind_ithread(ie, cpu)); 420 default: 421 return (EINVAL); 422 } 423 } 424 425 int 426 intr_getaffinity(int irq, int mode, void *m) 427 { 428 struct intr_event *ie; 429 struct thread *td; 430 struct proc *p; 431 cpuset_t *mask; 432 lwpid_t id; 433 int error; 434 435 mask = m; 436 ie = intr_lookup(irq); 437 if (ie == NULL) 438 return (ESRCH); 439 440 error = 0; 441 CPU_ZERO(mask); 442 switch (mode) { 443 case CPU_WHICH_IRQ: 444 case CPU_WHICH_INTRHANDLER: 445 mtx_lock(&ie->ie_lock); 446 if (ie->ie_cpu == NOCPU) 447 CPU_COPY(cpuset_root, mask); 448 else 449 CPU_SET(ie->ie_cpu, mask); 450 mtx_unlock(&ie->ie_lock); 451 break; 452 case CPU_WHICH_ITHREAD: 453 mtx_lock(&ie->ie_lock); 454 if (ie->ie_thread == NULL) { 455 mtx_unlock(&ie->ie_lock); 456 CPU_COPY(cpuset_root, mask); 457 } else { 458 id = ie->ie_thread->it_thread->td_tid; 459 mtx_unlock(&ie->ie_lock); 460 error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL); 461 if (error != 0) 462 return (error); 463 CPU_COPY(&td->td_cpuset->cs_mask, mask); 464 PROC_UNLOCK(p); 465 } 466 default: 467 return (EINVAL); 468 } 469 return (0); 470 } 471 472 int 473 intr_event_destroy(struct intr_event *ie) 474 { 475 476 mtx_lock(&event_lock); 477 mtx_lock(&ie->ie_lock); 478 if (!CK_SLIST_EMPTY(&ie->ie_handlers)) { 479 mtx_unlock(&ie->ie_lock); 480 mtx_unlock(&event_lock); 481 return (EBUSY); 482 } 483 TAILQ_REMOVE(&event_list, ie, ie_list); 484 #ifndef notyet 485 if (ie->ie_thread != NULL) { 486 ithread_destroy(ie->ie_thread); 487 ie->ie_thread = NULL; 488 } 489 #endif 490 mtx_unlock(&ie->ie_lock); 491 mtx_unlock(&event_lock); 492 mtx_destroy(&ie->ie_lock); 493 free(ie, M_ITHREAD); 494 return (0); 495 } 496 497 static struct intr_thread * 498 ithread_create(const char *name) 499 { 500 struct intr_thread *ithd; 501 struct thread *td; 502 int error; 503 504 ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO); 505 506 error = kproc_kthread_add(ithread_loop, ithd, &intrproc, 507 &td, RFSTOPPED | RFHIGHPID, 508 0, "intr", "%s", name); 509 if (error) 510 panic("kproc_create() failed with %d", error); 511 thread_lock(td); 512 sched_class(td, PRI_ITHD); 513 TD_SET_IWAIT(td); 514 thread_unlock(td); 515 td->td_pflags |= TDP_ITHREAD; 516 ithd->it_thread = td; 517 CTR2(KTR_INTR, "%s: created %s", __func__, name); 518 return (ithd); 519 } 520 521 static void 522 ithread_destroy(struct intr_thread *ithread) 523 { 524 struct thread *td; 525 526 CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name); 527 td = ithread->it_thread; 528 thread_lock(td); 529 ithread->it_flags |= IT_DEAD; 530 if (TD_AWAITING_INTR(td)) { 531 TD_CLR_IWAIT(td); 532 sched_add(td, SRQ_INTR); 533 } 534 thread_unlock(td); 535 } 536 537 int 538 intr_event_add_handler(struct intr_event *ie, const char *name, 539 driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri, 540 enum intr_type flags, void **cookiep) 541 { 542 struct intr_handler *ih, *temp_ih; 543 struct intr_handler **prevptr; 544 struct intr_thread *it; 545 546 if (ie == NULL || name == NULL || (handler == NULL && filter == NULL)) 547 return (EINVAL); 548 549 /* Allocate and populate an interrupt handler structure. */ 550 ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO); 551 ih->ih_filter = filter; 552 ih->ih_handler = handler; 553 ih->ih_argument = arg; 554 strlcpy(ih->ih_name, name, sizeof(ih->ih_name)); 555 ih->ih_event = ie; 556 ih->ih_pri = pri; 557 if (flags & INTR_EXCL) 558 ih->ih_flags = IH_EXCLUSIVE; 559 if (flags & INTR_MPSAFE) 560 ih->ih_flags |= IH_MPSAFE; 561 if (flags & INTR_ENTROPY) 562 ih->ih_flags |= IH_ENTROPY; 563 564 /* We can only have one exclusive handler in a event. */ 565 mtx_lock(&ie->ie_lock); 566 if (!CK_SLIST_EMPTY(&ie->ie_handlers)) { 567 if ((flags & INTR_EXCL) || 568 (CK_SLIST_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) { 569 mtx_unlock(&ie->ie_lock); 570 free(ih, M_ITHREAD); 571 return (EINVAL); 572 } 573 } 574 575 /* Create a thread if we need one. */ 576 while (ie->ie_thread == NULL && handler != NULL) { 577 if (ie->ie_flags & IE_ADDING_THREAD) 578 msleep(ie, &ie->ie_lock, 0, "ithread", 0); 579 else { 580 ie->ie_flags |= IE_ADDING_THREAD; 581 mtx_unlock(&ie->ie_lock); 582 it = ithread_create("intr: newborn"); 583 mtx_lock(&ie->ie_lock); 584 ie->ie_flags &= ~IE_ADDING_THREAD; 585 ie->ie_thread = it; 586 it->it_event = ie; 587 ithread_update(it); 588 wakeup(ie); 589 } 590 } 591 592 /* Add the new handler to the event in priority order. */ 593 CK_SLIST_FOREACH_PREVPTR(temp_ih, prevptr, &ie->ie_handlers, ih_next) { 594 if (temp_ih->ih_pri > ih->ih_pri) 595 break; 596 } 597 CK_SLIST_INSERT_PREVPTR(prevptr, temp_ih, ih, ih_next); 598 599 intr_event_update(ie); 600 601 CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, 602 ie->ie_name); 603 mtx_unlock(&ie->ie_lock); 604 605 if (cookiep != NULL) 606 *cookiep = ih; 607 return (0); 608 } 609 610 /* 611 * Append a description preceded by a ':' to the name of the specified 612 * interrupt handler. 613 */ 614 int 615 intr_event_describe_handler(struct intr_event *ie, void *cookie, 616 const char *descr) 617 { 618 struct intr_handler *ih; 619 size_t space; 620 char *start; 621 622 mtx_lock(&ie->ie_lock); 623 #ifdef INVARIANTS 624 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 625 if (ih == cookie) 626 break; 627 } 628 if (ih == NULL) { 629 mtx_unlock(&ie->ie_lock); 630 panic("handler %p not found in interrupt event %p", cookie, ie); 631 } 632 #endif 633 ih = cookie; 634 635 /* 636 * Look for an existing description by checking for an 637 * existing ":". This assumes device names do not include 638 * colons. If one is found, prepare to insert the new 639 * description at that point. If one is not found, find the 640 * end of the name to use as the insertion point. 641 */ 642 start = strchr(ih->ih_name, ':'); 643 if (start == NULL) 644 start = strchr(ih->ih_name, 0); 645 646 /* 647 * See if there is enough remaining room in the string for the 648 * description + ":". The "- 1" leaves room for the trailing 649 * '\0'. The "+ 1" accounts for the colon. 650 */ 651 space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1; 652 if (strlen(descr) + 1 > space) { 653 mtx_unlock(&ie->ie_lock); 654 return (ENOSPC); 655 } 656 657 /* Append a colon followed by the description. */ 658 *start = ':'; 659 strcpy(start + 1, descr); 660 intr_event_update(ie); 661 mtx_unlock(&ie->ie_lock); 662 return (0); 663 } 664 665 /* 666 * Return the ie_source field from the intr_event an intr_handler is 667 * associated with. 668 */ 669 void * 670 intr_handler_source(void *cookie) 671 { 672 struct intr_handler *ih; 673 struct intr_event *ie; 674 675 ih = (struct intr_handler *)cookie; 676 if (ih == NULL) 677 return (NULL); 678 ie = ih->ih_event; 679 KASSERT(ie != NULL, 680 ("interrupt handler \"%s\" has a NULL interrupt event", 681 ih->ih_name)); 682 return (ie->ie_source); 683 } 684 685 /* 686 * Sleep until an ithread finishes executing an interrupt handler. 687 * 688 * XXX Doesn't currently handle interrupt filters or fast interrupt 689 * handlers. This is intended for compatibility with linux drivers 690 * only. Do not use in BSD code. 691 */ 692 void 693 _intr_drain(int irq) 694 { 695 struct intr_event *ie; 696 struct intr_thread *ithd; 697 struct thread *td; 698 699 ie = intr_lookup(irq); 700 if (ie == NULL) 701 return; 702 if (ie->ie_thread == NULL) 703 return; 704 ithd = ie->ie_thread; 705 td = ithd->it_thread; 706 /* 707 * We set the flag and wait for it to be cleared to avoid 708 * long delays with potentially busy interrupt handlers 709 * were we to only sample TD_AWAITING_INTR() every tick. 710 */ 711 thread_lock(td); 712 if (!TD_AWAITING_INTR(td)) { 713 ithd->it_flags |= IT_WAIT; 714 while (ithd->it_flags & IT_WAIT) { 715 thread_unlock(td); 716 pause("idrain", 1); 717 thread_lock(td); 718 } 719 } 720 thread_unlock(td); 721 return; 722 } 723 724 int 725 intr_event_remove_handler(void *cookie) 726 { 727 struct intr_handler *handler = (struct intr_handler *)cookie; 728 struct intr_event *ie; 729 struct intr_handler *ih; 730 struct intr_handler **prevptr; 731 #ifdef notyet 732 int dead; 733 #endif 734 735 if (handler == NULL) 736 return (EINVAL); 737 ie = handler->ih_event; 738 KASSERT(ie != NULL, 739 ("interrupt handler \"%s\" has a NULL interrupt event", 740 handler->ih_name)); 741 742 mtx_lock(&ie->ie_lock); 743 CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, 744 ie->ie_name); 745 CK_SLIST_FOREACH_PREVPTR(ih, prevptr, &ie->ie_handlers, ih_next) { 746 if (ih == handler) 747 break; 748 } 749 if (ih == NULL) { 750 panic("interrupt handler \"%s\" not found in " 751 "interrupt event \"%s\"", handler->ih_name, ie->ie_name); 752 } 753 754 /* 755 * If there is no ithread, then just remove the handler and return. 756 * XXX: Note that an INTR_FAST handler might be running on another 757 * CPU! 758 */ 759 if (ie->ie_thread == NULL) { 760 CK_SLIST_REMOVE_PREVPTR(prevptr, ih, ih_next); 761 mtx_unlock(&ie->ie_lock); 762 free(handler, M_ITHREAD); 763 return (0); 764 } 765 766 /* 767 * If the interrupt thread is already running, then just mark this 768 * handler as being dead and let the ithread do the actual removal. 769 * 770 * During a cold boot while cold is set, msleep() does not sleep, 771 * so we have to remove the handler here rather than letting the 772 * thread do it. 773 */ 774 thread_lock(ie->ie_thread->it_thread); 775 if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) { 776 handler->ih_flags |= IH_DEAD; 777 778 /* 779 * Ensure that the thread will process the handler list 780 * again and remove this handler if it has already passed 781 * it on the list. 782 * 783 * The release part of the following store ensures 784 * that the update of ih_flags is ordered before the 785 * it_need setting. See the comment before 786 * atomic_cmpset_acq(&ithd->it_need, ...) operation in 787 * the ithread_execute_handlers(). 788 */ 789 atomic_store_rel_int(&ie->ie_thread->it_need, 1); 790 } else 791 CK_SLIST_REMOVE_PREVPTR(prevptr, ih, ih_next); 792 thread_unlock(ie->ie_thread->it_thread); 793 while (handler->ih_flags & IH_DEAD) 794 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0); 795 intr_event_update(ie); 796 797 #ifdef notyet 798 /* 799 * XXX: This could be bad in the case of ppbus(8). Also, I think 800 * this could lead to races of stale data when servicing an 801 * interrupt. 802 */ 803 dead = 1; 804 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 805 if (ih->ih_handler != NULL) { 806 dead = 0; 807 break; 808 } 809 } 810 if (dead) { 811 ithread_destroy(ie->ie_thread); 812 ie->ie_thread = NULL; 813 } 814 #endif 815 mtx_unlock(&ie->ie_lock); 816 free(handler, M_ITHREAD); 817 return (0); 818 } 819 820 static int 821 intr_event_schedule_thread(struct intr_event *ie) 822 { 823 struct intr_entropy entropy; 824 struct intr_thread *it; 825 struct thread *td; 826 struct thread *ctd; 827 828 /* 829 * If no ithread or no handlers, then we have a stray interrupt. 830 */ 831 if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers) || 832 ie->ie_thread == NULL) 833 return (EINVAL); 834 835 ctd = curthread; 836 it = ie->ie_thread; 837 td = it->it_thread; 838 839 /* 840 * If any of the handlers for this ithread claim to be good 841 * sources of entropy, then gather some. 842 */ 843 if (ie->ie_flags & IE_ENTROPY) { 844 entropy.event = (uintptr_t)ie; 845 entropy.td = ctd; 846 random_harvest_queue(&entropy, sizeof(entropy), 2, RANDOM_INTERRUPT); 847 } 848 849 KASSERT(td->td_proc != NULL, ("ithread %s has no process", ie->ie_name)); 850 851 /* 852 * Set it_need to tell the thread to keep running if it is already 853 * running. Then, lock the thread and see if we actually need to 854 * put it on the runqueue. 855 * 856 * Use store_rel to arrange that the store to ih_need in 857 * swi_sched() is before the store to it_need and prepare for 858 * transfer of this order to loads in the ithread. 859 */ 860 atomic_store_rel_int(&it->it_need, 1); 861 thread_lock(td); 862 if (TD_AWAITING_INTR(td)) { 863 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, td->td_proc->p_pid, 864 td->td_name); 865 TD_CLR_IWAIT(td); 866 sched_add(td, SRQ_INTR); 867 } else { 868 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d", 869 __func__, td->td_proc->p_pid, td->td_name, it->it_need, td->td_state); 870 } 871 thread_unlock(td); 872 873 return (0); 874 } 875 876 /* 877 * Allow interrupt event binding for software interrupt handlers -- a no-op, 878 * since interrupts are generated in software rather than being directed by 879 * a PIC. 880 */ 881 static int 882 swi_assign_cpu(void *arg, int cpu) 883 { 884 885 return (0); 886 } 887 888 /* 889 * Add a software interrupt handler to a specified event. If a given event 890 * is not specified, then a new event is created. 891 */ 892 int 893 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler, 894 void *arg, int pri, enum intr_type flags, void **cookiep) 895 { 896 struct intr_event *ie; 897 int error; 898 899 if (flags & INTR_ENTROPY) 900 return (EINVAL); 901 902 ie = (eventp != NULL) ? *eventp : NULL; 903 904 if (ie != NULL) { 905 if (!(ie->ie_flags & IE_SOFT)) 906 return (EINVAL); 907 } else { 908 error = intr_event_create(&ie, NULL, IE_SOFT, 0, 909 NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri); 910 if (error) 911 return (error); 912 if (eventp != NULL) 913 *eventp = ie; 914 } 915 error = intr_event_add_handler(ie, name, NULL, handler, arg, 916 PI_SWI(pri), flags, cookiep); 917 return (error); 918 } 919 920 /* 921 * Schedule a software interrupt thread. 922 */ 923 void 924 swi_sched(void *cookie, int flags) 925 { 926 struct intr_handler *ih = (struct intr_handler *)cookie; 927 struct intr_event *ie = ih->ih_event; 928 struct intr_entropy entropy; 929 int error __unused; 930 931 CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name, 932 ih->ih_need); 933 934 entropy.event = (uintptr_t)ih; 935 entropy.td = curthread; 936 random_harvest_queue(&entropy, sizeof(entropy), 1, RANDOM_SWI); 937 938 /* 939 * Set ih_need for this handler so that if the ithread is already 940 * running it will execute this handler on the next pass. Otherwise, 941 * it will execute it the next time it runs. 942 */ 943 ih->ih_need = 1; 944 945 if (!(flags & SWI_DELAY)) { 946 VM_CNT_INC(v_soft); 947 error = intr_event_schedule_thread(ie); 948 KASSERT(error == 0, ("stray software interrupt")); 949 } 950 } 951 952 /* 953 * Remove a software interrupt handler. Currently this code does not 954 * remove the associated interrupt event if it becomes empty. Calling code 955 * may do so manually via intr_event_destroy(), but that's not really 956 * an optimal interface. 957 */ 958 int 959 swi_remove(void *cookie) 960 { 961 962 return (intr_event_remove_handler(cookie)); 963 } 964 965 static void 966 intr_event_execute_handlers(struct proc *p, struct intr_event *ie) 967 { 968 struct intr_handler *ih, *ihn, *ihp; 969 970 ihp = NULL; 971 CK_SLIST_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) { 972 /* 973 * If this handler is marked for death, remove it from 974 * the list of handlers and wake up the sleeper. 975 */ 976 if (ih->ih_flags & IH_DEAD) { 977 mtx_lock(&ie->ie_lock); 978 if (ihp == NULL) 979 CK_SLIST_REMOVE_HEAD(&ie->ie_handlers, ih_next); 980 else 981 CK_SLIST_REMOVE_AFTER(ihp, ih_next); 982 ih->ih_flags &= ~IH_DEAD; 983 wakeup(ih); 984 mtx_unlock(&ie->ie_lock); 985 continue; 986 } 987 988 /* 989 * Now that we know that the current element won't be removed 990 * update the previous element. 991 */ 992 ihp = ih; 993 994 /* Skip filter only handlers */ 995 if (ih->ih_handler == NULL) 996 continue; 997 998 /* 999 * For software interrupt threads, we only execute 1000 * handlers that have their need flag set. Hardware 1001 * interrupt threads always invoke all of their handlers. 1002 * 1003 * ih_need can only be 0 or 1. Failed cmpset below 1004 * means that there is no request to execute handlers, 1005 * so a retry of the cmpset is not needed. 1006 */ 1007 if ((ie->ie_flags & IE_SOFT) != 0 && 1008 atomic_cmpset_int(&ih->ih_need, 1, 0) == 0) 1009 continue; 1010 1011 /* Execute this handler. */ 1012 CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x", 1013 __func__, p->p_pid, (void *)ih->ih_handler, 1014 ih->ih_argument, ih->ih_name, ih->ih_flags); 1015 1016 if (!(ih->ih_flags & IH_MPSAFE)) 1017 mtx_lock(&Giant); 1018 ih->ih_handler(ih->ih_argument); 1019 if (!(ih->ih_flags & IH_MPSAFE)) 1020 mtx_unlock(&Giant); 1021 } 1022 } 1023 1024 static void 1025 ithread_execute_handlers(struct proc *p, struct intr_event *ie) 1026 { 1027 1028 /* Interrupt handlers should not sleep. */ 1029 if (!(ie->ie_flags & IE_SOFT)) 1030 THREAD_NO_SLEEPING(); 1031 intr_event_execute_handlers(p, ie); 1032 if (!(ie->ie_flags & IE_SOFT)) 1033 THREAD_SLEEPING_OK(); 1034 1035 /* 1036 * Interrupt storm handling: 1037 * 1038 * If this interrupt source is currently storming, then throttle 1039 * it to only fire the handler once per clock tick. 1040 * 1041 * If this interrupt source is not currently storming, but the 1042 * number of back to back interrupts exceeds the storm threshold, 1043 * then enter storming mode. 1044 */ 1045 if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold && 1046 !(ie->ie_flags & IE_SOFT)) { 1047 /* Report the message only once every second. */ 1048 if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) { 1049 printf( 1050 "interrupt storm detected on \"%s\"; throttling interrupt source\n", 1051 ie->ie_name); 1052 } 1053 pause("istorm", 1); 1054 } else 1055 ie->ie_count++; 1056 1057 /* 1058 * Now that all the handlers have had a chance to run, reenable 1059 * the interrupt source. 1060 */ 1061 if (ie->ie_post_ithread != NULL) 1062 ie->ie_post_ithread(ie->ie_source); 1063 } 1064 1065 /* 1066 * This is the main code for interrupt threads. 1067 */ 1068 static void 1069 ithread_loop(void *arg) 1070 { 1071 struct intr_thread *ithd; 1072 struct intr_event *ie; 1073 struct thread *td; 1074 struct proc *p; 1075 int wake; 1076 1077 td = curthread; 1078 p = td->td_proc; 1079 ithd = (struct intr_thread *)arg; 1080 KASSERT(ithd->it_thread == td, 1081 ("%s: ithread and proc linkage out of sync", __func__)); 1082 ie = ithd->it_event; 1083 ie->ie_count = 0; 1084 wake = 0; 1085 1086 /* 1087 * As long as we have interrupts outstanding, go through the 1088 * list of handlers, giving each one a go at it. 1089 */ 1090 for (;;) { 1091 /* 1092 * If we are an orphaned thread, then just die. 1093 */ 1094 if (ithd->it_flags & IT_DEAD) { 1095 CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__, 1096 p->p_pid, td->td_name); 1097 free(ithd, M_ITHREAD); 1098 kthread_exit(); 1099 } 1100 1101 /* 1102 * Service interrupts. If another interrupt arrives while 1103 * we are running, it will set it_need to note that we 1104 * should make another pass. 1105 * 1106 * The load_acq part of the following cmpset ensures 1107 * that the load of ih_need in ithread_execute_handlers() 1108 * is ordered after the load of it_need here. 1109 */ 1110 while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) 1111 ithread_execute_handlers(p, ie); 1112 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread"); 1113 mtx_assert(&Giant, MA_NOTOWNED); 1114 1115 /* 1116 * Processed all our interrupts. Now get the sched 1117 * lock. This may take a while and it_need may get 1118 * set again, so we have to check it again. 1119 */ 1120 thread_lock(td); 1121 if (atomic_load_acq_int(&ithd->it_need) == 0 && 1122 (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) { 1123 TD_SET_IWAIT(td); 1124 ie->ie_count = 0; 1125 mi_switch(SW_VOL | SWT_IWAIT, NULL); 1126 } 1127 if (ithd->it_flags & IT_WAIT) { 1128 wake = 1; 1129 ithd->it_flags &= ~IT_WAIT; 1130 } 1131 thread_unlock(td); 1132 if (wake) { 1133 wakeup(ithd); 1134 wake = 0; 1135 } 1136 } 1137 } 1138 1139 /* 1140 * Main interrupt handling body. 1141 * 1142 * Input: 1143 * o ie: the event connected to this interrupt. 1144 * o frame: some archs (i.e. i386) pass a frame to some. 1145 * handlers as their main argument. 1146 * Return value: 1147 * o 0: everything ok. 1148 * o EINVAL: stray interrupt. 1149 */ 1150 int 1151 intr_event_handle(struct intr_event *ie, struct trapframe *frame) 1152 { 1153 struct intr_handler *ih; 1154 struct trapframe *oldframe; 1155 struct thread *td; 1156 int ret, thread; 1157 1158 td = curthread; 1159 1160 #ifdef KSTACK_USAGE_PROF 1161 intr_prof_stack_use(td, frame); 1162 #endif 1163 1164 /* An interrupt with no event or handlers is a stray interrupt. */ 1165 if (ie == NULL || CK_SLIST_EMPTY(&ie->ie_handlers)) 1166 return (EINVAL); 1167 1168 /* 1169 * Execute fast interrupt handlers directly. 1170 * To support clock handlers, if a handler registers 1171 * with a NULL argument, then we pass it a pointer to 1172 * a trapframe as its argument. 1173 */ 1174 td->td_intr_nesting_level++; 1175 thread = 0; 1176 ret = 0; 1177 critical_enter(); 1178 oldframe = td->td_intr_frame; 1179 td->td_intr_frame = frame; 1180 1181 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) { 1182 if (ih->ih_filter == NULL) { 1183 thread = 1; 1184 continue; 1185 } 1186 CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__, 1187 ih->ih_filter, ih->ih_argument == NULL ? frame : 1188 ih->ih_argument, ih->ih_name); 1189 if (ih->ih_argument == NULL) 1190 ret = ih->ih_filter(frame); 1191 else 1192 ret = ih->ih_filter(ih->ih_argument); 1193 KASSERT(ret == FILTER_STRAY || 1194 ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 && 1195 (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0), 1196 ("%s: incorrect return value %#x from %s", __func__, ret, 1197 ih->ih_name)); 1198 1199 /* 1200 * Wrapper handler special handling: 1201 * 1202 * in some particular cases (like pccard and pccbb), 1203 * the _real_ device handler is wrapped in a couple of 1204 * functions - a filter wrapper and an ithread wrapper. 1205 * In this case (and just in this case), the filter wrapper 1206 * could ask the system to schedule the ithread and mask 1207 * the interrupt source if the wrapped handler is composed 1208 * of just an ithread handler. 1209 * 1210 * TODO: write a generic wrapper to avoid people rolling 1211 * their own 1212 */ 1213 if (!thread) { 1214 if (ret == FILTER_SCHEDULE_THREAD) 1215 thread = 1; 1216 } 1217 } 1218 td->td_intr_frame = oldframe; 1219 1220 if (thread) { 1221 if (ie->ie_pre_ithread != NULL) 1222 ie->ie_pre_ithread(ie->ie_source); 1223 } else { 1224 if (ie->ie_post_filter != NULL) 1225 ie->ie_post_filter(ie->ie_source); 1226 } 1227 1228 /* Schedule the ithread if needed. */ 1229 if (thread) { 1230 int error __unused; 1231 1232 error = intr_event_schedule_thread(ie); 1233 KASSERT(error == 0, ("bad stray interrupt")); 1234 } 1235 critical_exit(); 1236 td->td_intr_nesting_level--; 1237 return (0); 1238 } 1239 1240 #ifdef DDB 1241 /* 1242 * Dump details about an interrupt handler 1243 */ 1244 static void 1245 db_dump_intrhand(struct intr_handler *ih) 1246 { 1247 int comma; 1248 1249 db_printf("\t%-10s ", ih->ih_name); 1250 switch (ih->ih_pri) { 1251 case PI_REALTIME: 1252 db_printf("CLK "); 1253 break; 1254 case PI_AV: 1255 db_printf("AV "); 1256 break; 1257 case PI_TTY: 1258 db_printf("TTY "); 1259 break; 1260 case PI_NET: 1261 db_printf("NET "); 1262 break; 1263 case PI_DISK: 1264 db_printf("DISK"); 1265 break; 1266 case PI_DULL: 1267 db_printf("DULL"); 1268 break; 1269 default: 1270 if (ih->ih_pri >= PI_SOFT) 1271 db_printf("SWI "); 1272 else 1273 db_printf("%4u", ih->ih_pri); 1274 break; 1275 } 1276 db_printf(" "); 1277 if (ih->ih_filter != NULL) { 1278 db_printf("[F]"); 1279 db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC); 1280 } 1281 if (ih->ih_handler != NULL) { 1282 if (ih->ih_filter != NULL) 1283 db_printf(","); 1284 db_printf("[H]"); 1285 db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC); 1286 } 1287 db_printf("(%p)", ih->ih_argument); 1288 if (ih->ih_need || 1289 (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD | 1290 IH_MPSAFE)) != 0) { 1291 db_printf(" {"); 1292 comma = 0; 1293 if (ih->ih_flags & IH_EXCLUSIVE) { 1294 if (comma) 1295 db_printf(", "); 1296 db_printf("EXCL"); 1297 comma = 1; 1298 } 1299 if (ih->ih_flags & IH_ENTROPY) { 1300 if (comma) 1301 db_printf(", "); 1302 db_printf("ENTROPY"); 1303 comma = 1; 1304 } 1305 if (ih->ih_flags & IH_DEAD) { 1306 if (comma) 1307 db_printf(", "); 1308 db_printf("DEAD"); 1309 comma = 1; 1310 } 1311 if (ih->ih_flags & IH_MPSAFE) { 1312 if (comma) 1313 db_printf(", "); 1314 db_printf("MPSAFE"); 1315 comma = 1; 1316 } 1317 if (ih->ih_need) { 1318 if (comma) 1319 db_printf(", "); 1320 db_printf("NEED"); 1321 } 1322 db_printf("}"); 1323 } 1324 db_printf("\n"); 1325 } 1326 1327 /* 1328 * Dump details about a event. 1329 */ 1330 void 1331 db_dump_intr_event(struct intr_event *ie, int handlers) 1332 { 1333 struct intr_handler *ih; 1334 struct intr_thread *it; 1335 int comma; 1336 1337 db_printf("%s ", ie->ie_fullname); 1338 it = ie->ie_thread; 1339 if (it != NULL) 1340 db_printf("(pid %d)", it->it_thread->td_proc->p_pid); 1341 else 1342 db_printf("(no thread)"); 1343 if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 || 1344 (it != NULL && it->it_need)) { 1345 db_printf(" {"); 1346 comma = 0; 1347 if (ie->ie_flags & IE_SOFT) { 1348 db_printf("SOFT"); 1349 comma = 1; 1350 } 1351 if (ie->ie_flags & IE_ENTROPY) { 1352 if (comma) 1353 db_printf(", "); 1354 db_printf("ENTROPY"); 1355 comma = 1; 1356 } 1357 if (ie->ie_flags & IE_ADDING_THREAD) { 1358 if (comma) 1359 db_printf(", "); 1360 db_printf("ADDING_THREAD"); 1361 comma = 1; 1362 } 1363 if (it != NULL && it->it_need) { 1364 if (comma) 1365 db_printf(", "); 1366 db_printf("NEED"); 1367 } 1368 db_printf("}"); 1369 } 1370 db_printf("\n"); 1371 1372 if (handlers) 1373 CK_SLIST_FOREACH(ih, &ie->ie_handlers, ih_next) 1374 db_dump_intrhand(ih); 1375 } 1376 1377 /* 1378 * Dump data about interrupt handlers 1379 */ 1380 DB_SHOW_COMMAND(intr, db_show_intr) 1381 { 1382 struct intr_event *ie; 1383 int all, verbose; 1384 1385 verbose = strchr(modif, 'v') != NULL; 1386 all = strchr(modif, 'a') != NULL; 1387 TAILQ_FOREACH(ie, &event_list, ie_list) { 1388 if (!all && CK_SLIST_EMPTY(&ie->ie_handlers)) 1389 continue; 1390 db_dump_intr_event(ie, verbose); 1391 if (db_pager_quit) 1392 break; 1393 } 1394 } 1395 #endif /* DDB */ 1396 1397 /* 1398 * Start standard software interrupt threads 1399 */ 1400 static void 1401 start_softintr(void *dummy) 1402 { 1403 1404 if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih)) 1405 panic("died while creating vm swi ithread"); 1406 } 1407 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, 1408 NULL); 1409 1410 /* 1411 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 1412 * The data for this machine dependent, and the declarations are in machine 1413 * dependent code. The layout of intrnames and intrcnt however is machine 1414 * independent. 1415 * 1416 * We do not know the length of intrcnt and intrnames at compile time, so 1417 * calculate things at run time. 1418 */ 1419 static int 1420 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 1421 { 1422 return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req)); 1423 } 1424 1425 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1426 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1427 1428 static int 1429 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1430 { 1431 #ifdef SCTL_MASK32 1432 uint32_t *intrcnt32; 1433 unsigned i; 1434 int error; 1435 1436 if (req->flags & SCTL_MASK32) { 1437 if (!req->oldptr) 1438 return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req)); 1439 intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT); 1440 if (intrcnt32 == NULL) 1441 return (ENOMEM); 1442 for (i = 0; i < sintrcnt / sizeof (u_long); i++) 1443 intrcnt32[i] = intrcnt[i]; 1444 error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req); 1445 free(intrcnt32, M_TEMP); 1446 return (error); 1447 } 1448 #endif 1449 return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req)); 1450 } 1451 1452 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1453 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1454 1455 #ifdef DDB 1456 /* 1457 * DDB command to dump the interrupt statistics. 1458 */ 1459 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt) 1460 { 1461 u_long *i; 1462 char *cp; 1463 u_int j; 1464 1465 cp = intrnames; 1466 j = 0; 1467 for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit; 1468 i++, j++) { 1469 if (*cp == '\0') 1470 break; 1471 if (*i != 0) 1472 db_printf("%s\t%lu\n", cp, *i); 1473 cp += strlen(cp) + 1; 1474 } 1475 } 1476 #endif 1477