xref: /freebsd/sys/kern/kern_intr.c (revision d8a0fe102c0cfdfcd5b818f850eff09d8536c9bc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_ddb.h"
33 #include "opt_kstack_usage_prof.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/cpuset.h>
39 #include <sys/rtprio.h>
40 #include <sys/systm.h>
41 #include <sys/interrupt.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/ktr.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mutex.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/random.h>
52 #include <sys/resourcevar.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/sysctl.h>
56 #include <sys/syslog.h>
57 #include <sys/unistd.h>
58 #include <sys/vmmeter.h>
59 #include <machine/atomic.h>
60 #include <machine/cpu.h>
61 #include <machine/md_var.h>
62 #include <machine/stdarg.h>
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #include <ddb/db_sym.h>
66 #endif
67 
68 /*
69  * Describe an interrupt thread.  There is one of these per interrupt event.
70  */
71 struct intr_thread {
72 	struct intr_event *it_event;
73 	struct thread *it_thread;	/* Kernel thread. */
74 	int	it_flags;		/* (j) IT_* flags. */
75 	int	it_need;		/* Needs service. */
76 };
77 
78 /* Interrupt thread flags kept in it_flags */
79 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
80 #define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
81 
82 struct	intr_entropy {
83 	struct	thread *td;
84 	uintptr_t event;
85 };
86 
87 struct	intr_event *clk_intr_event;
88 struct	intr_event *tty_intr_event;
89 void	*vm_ih;
90 struct proc *intrproc;
91 
92 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
93 
94 static int intr_storm_threshold = 1000;
95 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN,
96     &intr_storm_threshold, 0,
97     "Number of consecutive interrupts before storm protection is enabled");
98 static TAILQ_HEAD(, intr_event) event_list =
99     TAILQ_HEAD_INITIALIZER(event_list);
100 static struct mtx event_lock;
101 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
102 
103 static void	intr_event_update(struct intr_event *ie);
104 #ifdef INTR_FILTER
105 static int	intr_event_schedule_thread(struct intr_event *ie,
106 		    struct intr_thread *ithd);
107 static int	intr_filter_loop(struct intr_event *ie,
108 		    struct trapframe *frame, struct intr_thread **ithd);
109 static struct intr_thread *ithread_create(const char *name,
110 			      struct intr_handler *ih);
111 #else
112 static int	intr_event_schedule_thread(struct intr_event *ie);
113 static struct intr_thread *ithread_create(const char *name);
114 #endif
115 static void	ithread_destroy(struct intr_thread *ithread);
116 static void	ithread_execute_handlers(struct proc *p,
117 		    struct intr_event *ie);
118 #ifdef INTR_FILTER
119 static void	priv_ithread_execute_handler(struct proc *p,
120 		    struct intr_handler *ih);
121 #endif
122 static void	ithread_loop(void *);
123 static void	ithread_update(struct intr_thread *ithd);
124 static void	start_softintr(void *);
125 
126 /* Map an interrupt type to an ithread priority. */
127 u_char
128 intr_priority(enum intr_type flags)
129 {
130 	u_char pri;
131 
132 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
133 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
134 	switch (flags) {
135 	case INTR_TYPE_TTY:
136 		pri = PI_TTY;
137 		break;
138 	case INTR_TYPE_BIO:
139 		pri = PI_DISK;
140 		break;
141 	case INTR_TYPE_NET:
142 		pri = PI_NET;
143 		break;
144 	case INTR_TYPE_CAM:
145 		pri = PI_DISK;
146 		break;
147 	case INTR_TYPE_AV:
148 		pri = PI_AV;
149 		break;
150 	case INTR_TYPE_CLK:
151 		pri = PI_REALTIME;
152 		break;
153 	case INTR_TYPE_MISC:
154 		pri = PI_DULL;          /* don't care */
155 		break;
156 	default:
157 		/* We didn't specify an interrupt level. */
158 		panic("intr_priority: no interrupt type in flags");
159 	}
160 
161 	return pri;
162 }
163 
164 /*
165  * Update an ithread based on the associated intr_event.
166  */
167 static void
168 ithread_update(struct intr_thread *ithd)
169 {
170 	struct intr_event *ie;
171 	struct thread *td;
172 	u_char pri;
173 
174 	ie = ithd->it_event;
175 	td = ithd->it_thread;
176 
177 	/* Determine the overall priority of this event. */
178 	if (TAILQ_EMPTY(&ie->ie_handlers))
179 		pri = PRI_MAX_ITHD;
180 	else
181 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
182 
183 	/* Update name and priority. */
184 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
185 #ifdef KTR
186 	sched_clear_tdname(td);
187 #endif
188 	thread_lock(td);
189 	sched_prio(td, pri);
190 	thread_unlock(td);
191 }
192 
193 /*
194  * Regenerate the full name of an interrupt event and update its priority.
195  */
196 static void
197 intr_event_update(struct intr_event *ie)
198 {
199 	struct intr_handler *ih;
200 	char *last;
201 	int missed, space;
202 
203 	/* Start off with no entropy and just the name of the event. */
204 	mtx_assert(&ie->ie_lock, MA_OWNED);
205 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
206 	ie->ie_flags &= ~IE_ENTROPY;
207 	missed = 0;
208 	space = 1;
209 
210 	/* Run through all the handlers updating values. */
211 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
212 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
213 		    sizeof(ie->ie_fullname)) {
214 			strcat(ie->ie_fullname, " ");
215 			strcat(ie->ie_fullname, ih->ih_name);
216 			space = 0;
217 		} else
218 			missed++;
219 		if (ih->ih_flags & IH_ENTROPY)
220 			ie->ie_flags |= IE_ENTROPY;
221 	}
222 
223 	/*
224 	 * If the handler names were too long, add +'s to indicate missing
225 	 * names. If we run out of room and still have +'s to add, change
226 	 * the last character from a + to a *.
227 	 */
228 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
229 	while (missed-- > 0) {
230 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
231 			if (*last == '+') {
232 				*last = '*';
233 				break;
234 			} else
235 				*last = '+';
236 		} else if (space) {
237 			strcat(ie->ie_fullname, " +");
238 			space = 0;
239 		} else
240 			strcat(ie->ie_fullname, "+");
241 	}
242 
243 	/*
244 	 * If this event has an ithread, update it's priority and
245 	 * name.
246 	 */
247 	if (ie->ie_thread != NULL)
248 		ithread_update(ie->ie_thread);
249 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
250 }
251 
252 int
253 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
254     void (*pre_ithread)(void *), void (*post_ithread)(void *),
255     void (*post_filter)(void *), int (*assign_cpu)(void *, int),
256     const char *fmt, ...)
257 {
258 	struct intr_event *ie;
259 	va_list ap;
260 
261 	/* The only valid flag during creation is IE_SOFT. */
262 	if ((flags & ~IE_SOFT) != 0)
263 		return (EINVAL);
264 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
265 	ie->ie_source = source;
266 	ie->ie_pre_ithread = pre_ithread;
267 	ie->ie_post_ithread = post_ithread;
268 	ie->ie_post_filter = post_filter;
269 	ie->ie_assign_cpu = assign_cpu;
270 	ie->ie_flags = flags;
271 	ie->ie_irq = irq;
272 	ie->ie_cpu = NOCPU;
273 	TAILQ_INIT(&ie->ie_handlers);
274 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
275 
276 	va_start(ap, fmt);
277 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
278 	va_end(ap);
279 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
280 	mtx_lock(&event_lock);
281 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
282 	mtx_unlock(&event_lock);
283 	if (event != NULL)
284 		*event = ie;
285 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
286 	return (0);
287 }
288 
289 /*
290  * Bind an interrupt event to the specified CPU.  Note that not all
291  * platforms support binding an interrupt to a CPU.  For those
292  * platforms this request will fail.  Using a cpu id of NOCPU unbinds
293  * the interrupt event.
294  */
295 static int
296 _intr_event_bind(struct intr_event *ie, int cpu, bool bindirq, bool bindithread)
297 {
298 	lwpid_t id;
299 	int error;
300 
301 	/* Need a CPU to bind to. */
302 	if (cpu != NOCPU && CPU_ABSENT(cpu))
303 		return (EINVAL);
304 
305 	if (ie->ie_assign_cpu == NULL)
306 		return (EOPNOTSUPP);
307 
308 	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
309 	if (error)
310 		return (error);
311 
312 	/*
313 	 * If we have any ithreads try to set their mask first to verify
314 	 * permissions, etc.
315 	 */
316 	if (bindithread) {
317 		mtx_lock(&ie->ie_lock);
318 		if (ie->ie_thread != NULL) {
319 			id = ie->ie_thread->it_thread->td_tid;
320 			mtx_unlock(&ie->ie_lock);
321 			error = cpuset_setithread(id, cpu);
322 			if (error)
323 				return (error);
324 		} else
325 			mtx_unlock(&ie->ie_lock);
326 	}
327 	if (bindirq)
328 		error = ie->ie_assign_cpu(ie->ie_source, cpu);
329 	if (error) {
330 		if (bindithread) {
331 			mtx_lock(&ie->ie_lock);
332 			if (ie->ie_thread != NULL) {
333 				cpu = ie->ie_cpu;
334 				id = ie->ie_thread->it_thread->td_tid;
335 				mtx_unlock(&ie->ie_lock);
336 				(void)cpuset_setithread(id, cpu);
337 			} else
338 				mtx_unlock(&ie->ie_lock);
339 		}
340 		return (error);
341 	}
342 
343 	if (bindirq) {
344 		mtx_lock(&ie->ie_lock);
345 		ie->ie_cpu = cpu;
346 		mtx_unlock(&ie->ie_lock);
347 	}
348 
349 	return (error);
350 }
351 
352 /*
353  * Bind an interrupt event to the specified CPU.  For supported platforms, any
354  * associated ithreads as well as the primary interrupt context will be bound
355  * to the specificed CPU.
356  */
357 int
358 intr_event_bind(struct intr_event *ie, int cpu)
359 {
360 
361 	return (_intr_event_bind(ie, cpu, true, true));
362 }
363 
364 /*
365  * Bind an interrupt event to the specified CPU, but do not bind associated
366  * ithreads.
367  */
368 int
369 intr_event_bind_irqonly(struct intr_event *ie, int cpu)
370 {
371 
372 	return (_intr_event_bind(ie, cpu, true, false));
373 }
374 
375 /*
376  * Bind an interrupt event's ithread to the specified CPU.
377  */
378 int
379 intr_event_bind_ithread(struct intr_event *ie, int cpu)
380 {
381 
382 	return (_intr_event_bind(ie, cpu, false, true));
383 }
384 
385 static struct intr_event *
386 intr_lookup(int irq)
387 {
388 	struct intr_event *ie;
389 
390 	mtx_lock(&event_lock);
391 	TAILQ_FOREACH(ie, &event_list, ie_list)
392 		if (ie->ie_irq == irq &&
393 		    (ie->ie_flags & IE_SOFT) == 0 &&
394 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
395 			break;
396 	mtx_unlock(&event_lock);
397 	return (ie);
398 }
399 
400 int
401 intr_setaffinity(int irq, int mode, void *m)
402 {
403 	struct intr_event *ie;
404 	cpuset_t *mask;
405 	int cpu, n;
406 
407 	mask = m;
408 	cpu = NOCPU;
409 	/*
410 	 * If we're setting all cpus we can unbind.  Otherwise make sure
411 	 * only one cpu is in the set.
412 	 */
413 	if (CPU_CMP(cpuset_root, mask)) {
414 		for (n = 0; n < CPU_SETSIZE; n++) {
415 			if (!CPU_ISSET(n, mask))
416 				continue;
417 			if (cpu != NOCPU)
418 				return (EINVAL);
419 			cpu = n;
420 		}
421 	}
422 	ie = intr_lookup(irq);
423 	if (ie == NULL)
424 		return (ESRCH);
425 	switch (mode) {
426 	case CPU_WHICH_IRQ:
427 		return (intr_event_bind(ie, cpu));
428 	case CPU_WHICH_INTRHANDLER:
429 		return (intr_event_bind_irqonly(ie, cpu));
430 	case CPU_WHICH_ITHREAD:
431 		return (intr_event_bind_ithread(ie, cpu));
432 	default:
433 		return (EINVAL);
434 	}
435 }
436 
437 int
438 intr_getaffinity(int irq, int mode, void *m)
439 {
440 	struct intr_event *ie;
441 	struct thread *td;
442 	struct proc *p;
443 	cpuset_t *mask;
444 	lwpid_t id;
445 	int error;
446 
447 	mask = m;
448 	ie = intr_lookup(irq);
449 	if (ie == NULL)
450 		return (ESRCH);
451 
452 	error = 0;
453 	CPU_ZERO(mask);
454 	switch (mode) {
455 	case CPU_WHICH_IRQ:
456 	case CPU_WHICH_INTRHANDLER:
457 		mtx_lock(&ie->ie_lock);
458 		if (ie->ie_cpu == NOCPU)
459 			CPU_COPY(cpuset_root, mask);
460 		else
461 			CPU_SET(ie->ie_cpu, mask);
462 		mtx_unlock(&ie->ie_lock);
463 		break;
464 	case CPU_WHICH_ITHREAD:
465 		mtx_lock(&ie->ie_lock);
466 		if (ie->ie_thread == NULL) {
467 			mtx_unlock(&ie->ie_lock);
468 			CPU_COPY(cpuset_root, mask);
469 		} else {
470 			id = ie->ie_thread->it_thread->td_tid;
471 			mtx_unlock(&ie->ie_lock);
472 			error = cpuset_which(CPU_WHICH_TID, id, &p, &td, NULL);
473 			if (error != 0)
474 				return (error);
475 			CPU_COPY(&td->td_cpuset->cs_mask, mask);
476 			PROC_UNLOCK(p);
477 		}
478 	default:
479 		return (EINVAL);
480 	}
481 	return (0);
482 }
483 
484 int
485 intr_event_destroy(struct intr_event *ie)
486 {
487 
488 	mtx_lock(&event_lock);
489 	mtx_lock(&ie->ie_lock);
490 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
491 		mtx_unlock(&ie->ie_lock);
492 		mtx_unlock(&event_lock);
493 		return (EBUSY);
494 	}
495 	TAILQ_REMOVE(&event_list, ie, ie_list);
496 #ifndef notyet
497 	if (ie->ie_thread != NULL) {
498 		ithread_destroy(ie->ie_thread);
499 		ie->ie_thread = NULL;
500 	}
501 #endif
502 	mtx_unlock(&ie->ie_lock);
503 	mtx_unlock(&event_lock);
504 	mtx_destroy(&ie->ie_lock);
505 	free(ie, M_ITHREAD);
506 	return (0);
507 }
508 
509 #ifndef INTR_FILTER
510 static struct intr_thread *
511 ithread_create(const char *name)
512 {
513 	struct intr_thread *ithd;
514 	struct thread *td;
515 	int error;
516 
517 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
518 
519 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
520 		    &td, RFSTOPPED | RFHIGHPID,
521 	    	    0, "intr", "%s", name);
522 	if (error)
523 		panic("kproc_create() failed with %d", error);
524 	thread_lock(td);
525 	sched_class(td, PRI_ITHD);
526 	TD_SET_IWAIT(td);
527 	thread_unlock(td);
528 	td->td_pflags |= TDP_ITHREAD;
529 	ithd->it_thread = td;
530 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
531 	return (ithd);
532 }
533 #else
534 static struct intr_thread *
535 ithread_create(const char *name, struct intr_handler *ih)
536 {
537 	struct intr_thread *ithd;
538 	struct thread *td;
539 	int error;
540 
541 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
542 
543 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
544 		    &td, RFSTOPPED | RFHIGHPID,
545 	    	    0, "intr", "%s", name);
546 	if (error)
547 		panic("kproc_create() failed with %d", error);
548 	thread_lock(td);
549 	sched_class(td, PRI_ITHD);
550 	TD_SET_IWAIT(td);
551 	thread_unlock(td);
552 	td->td_pflags |= TDP_ITHREAD;
553 	ithd->it_thread = td;
554 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
555 	return (ithd);
556 }
557 #endif
558 
559 static void
560 ithread_destroy(struct intr_thread *ithread)
561 {
562 	struct thread *td;
563 
564 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
565 	td = ithread->it_thread;
566 	thread_lock(td);
567 	ithread->it_flags |= IT_DEAD;
568 	if (TD_AWAITING_INTR(td)) {
569 		TD_CLR_IWAIT(td);
570 		sched_add(td, SRQ_INTR);
571 	}
572 	thread_unlock(td);
573 }
574 
575 #ifndef INTR_FILTER
576 int
577 intr_event_add_handler(struct intr_event *ie, const char *name,
578     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
579     enum intr_type flags, void **cookiep)
580 {
581 	struct intr_handler *ih, *temp_ih;
582 	struct intr_thread *it;
583 
584 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
585 		return (EINVAL);
586 
587 	/* Allocate and populate an interrupt handler structure. */
588 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
589 	ih->ih_filter = filter;
590 	ih->ih_handler = handler;
591 	ih->ih_argument = arg;
592 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
593 	ih->ih_event = ie;
594 	ih->ih_pri = pri;
595 	if (flags & INTR_EXCL)
596 		ih->ih_flags = IH_EXCLUSIVE;
597 	if (flags & INTR_MPSAFE)
598 		ih->ih_flags |= IH_MPSAFE;
599 	if (flags & INTR_ENTROPY)
600 		ih->ih_flags |= IH_ENTROPY;
601 
602 	/* We can only have one exclusive handler in a event. */
603 	mtx_lock(&ie->ie_lock);
604 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
605 		if ((flags & INTR_EXCL) ||
606 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
607 			mtx_unlock(&ie->ie_lock);
608 			free(ih, M_ITHREAD);
609 			return (EINVAL);
610 		}
611 	}
612 
613 	/* Create a thread if we need one. */
614 	while (ie->ie_thread == NULL && handler != NULL) {
615 		if (ie->ie_flags & IE_ADDING_THREAD)
616 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
617 		else {
618 			ie->ie_flags |= IE_ADDING_THREAD;
619 			mtx_unlock(&ie->ie_lock);
620 			it = ithread_create("intr: newborn");
621 			mtx_lock(&ie->ie_lock);
622 			ie->ie_flags &= ~IE_ADDING_THREAD;
623 			ie->ie_thread = it;
624 			it->it_event = ie;
625 			ithread_update(it);
626 			wakeup(ie);
627 		}
628 	}
629 
630 	/* Add the new handler to the event in priority order. */
631 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
632 		if (temp_ih->ih_pri > ih->ih_pri)
633 			break;
634 	}
635 	if (temp_ih == NULL)
636 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
637 	else
638 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
639 	intr_event_update(ie);
640 
641 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
642 	    ie->ie_name);
643 	mtx_unlock(&ie->ie_lock);
644 
645 	if (cookiep != NULL)
646 		*cookiep = ih;
647 	return (0);
648 }
649 #else
650 int
651 intr_event_add_handler(struct intr_event *ie, const char *name,
652     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
653     enum intr_type flags, void **cookiep)
654 {
655 	struct intr_handler *ih, *temp_ih;
656 	struct intr_thread *it;
657 
658 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
659 		return (EINVAL);
660 
661 	/* Allocate and populate an interrupt handler structure. */
662 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
663 	ih->ih_filter = filter;
664 	ih->ih_handler = handler;
665 	ih->ih_argument = arg;
666 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
667 	ih->ih_event = ie;
668 	ih->ih_pri = pri;
669 	if (flags & INTR_EXCL)
670 		ih->ih_flags = IH_EXCLUSIVE;
671 	if (flags & INTR_MPSAFE)
672 		ih->ih_flags |= IH_MPSAFE;
673 	if (flags & INTR_ENTROPY)
674 		ih->ih_flags |= IH_ENTROPY;
675 
676 	/* We can only have one exclusive handler in a event. */
677 	mtx_lock(&ie->ie_lock);
678 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
679 		if ((flags & INTR_EXCL) ||
680 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
681 			mtx_unlock(&ie->ie_lock);
682 			free(ih, M_ITHREAD);
683 			return (EINVAL);
684 		}
685 	}
686 
687 	/* For filtered handlers, create a private ithread to run on. */
688 	if (filter != NULL && handler != NULL) {
689 		mtx_unlock(&ie->ie_lock);
690 		it = ithread_create("intr: newborn", ih);
691 		mtx_lock(&ie->ie_lock);
692 		it->it_event = ie;
693 		ih->ih_thread = it;
694 		ithread_update(it); /* XXX - do we really need this?!?!? */
695 	} else { /* Create the global per-event thread if we need one. */
696 		while (ie->ie_thread == NULL && handler != NULL) {
697 			if (ie->ie_flags & IE_ADDING_THREAD)
698 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
699 			else {
700 				ie->ie_flags |= IE_ADDING_THREAD;
701 				mtx_unlock(&ie->ie_lock);
702 				it = ithread_create("intr: newborn", ih);
703 				mtx_lock(&ie->ie_lock);
704 				ie->ie_flags &= ~IE_ADDING_THREAD;
705 				ie->ie_thread = it;
706 				it->it_event = ie;
707 				ithread_update(it);
708 				wakeup(ie);
709 			}
710 		}
711 	}
712 
713 	/* Add the new handler to the event in priority order. */
714 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
715 		if (temp_ih->ih_pri > ih->ih_pri)
716 			break;
717 	}
718 	if (temp_ih == NULL)
719 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
720 	else
721 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
722 	intr_event_update(ie);
723 
724 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
725 	    ie->ie_name);
726 	mtx_unlock(&ie->ie_lock);
727 
728 	if (cookiep != NULL)
729 		*cookiep = ih;
730 	return (0);
731 }
732 #endif
733 
734 /*
735  * Append a description preceded by a ':' to the name of the specified
736  * interrupt handler.
737  */
738 int
739 intr_event_describe_handler(struct intr_event *ie, void *cookie,
740     const char *descr)
741 {
742 	struct intr_handler *ih;
743 	size_t space;
744 	char *start;
745 
746 	mtx_lock(&ie->ie_lock);
747 #ifdef INVARIANTS
748 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
749 		if (ih == cookie)
750 			break;
751 	}
752 	if (ih == NULL) {
753 		mtx_unlock(&ie->ie_lock);
754 		panic("handler %p not found in interrupt event %p", cookie, ie);
755 	}
756 #endif
757 	ih = cookie;
758 
759 	/*
760 	 * Look for an existing description by checking for an
761 	 * existing ":".  This assumes device names do not include
762 	 * colons.  If one is found, prepare to insert the new
763 	 * description at that point.  If one is not found, find the
764 	 * end of the name to use as the insertion point.
765 	 */
766 	start = strchr(ih->ih_name, ':');
767 	if (start == NULL)
768 		start = strchr(ih->ih_name, 0);
769 
770 	/*
771 	 * See if there is enough remaining room in the string for the
772 	 * description + ":".  The "- 1" leaves room for the trailing
773 	 * '\0'.  The "+ 1" accounts for the colon.
774 	 */
775 	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
776 	if (strlen(descr) + 1 > space) {
777 		mtx_unlock(&ie->ie_lock);
778 		return (ENOSPC);
779 	}
780 
781 	/* Append a colon followed by the description. */
782 	*start = ':';
783 	strcpy(start + 1, descr);
784 	intr_event_update(ie);
785 	mtx_unlock(&ie->ie_lock);
786 	return (0);
787 }
788 
789 /*
790  * Return the ie_source field from the intr_event an intr_handler is
791  * associated with.
792  */
793 void *
794 intr_handler_source(void *cookie)
795 {
796 	struct intr_handler *ih;
797 	struct intr_event *ie;
798 
799 	ih = (struct intr_handler *)cookie;
800 	if (ih == NULL)
801 		return (NULL);
802 	ie = ih->ih_event;
803 	KASSERT(ie != NULL,
804 	    ("interrupt handler \"%s\" has a NULL interrupt event",
805 	    ih->ih_name));
806 	return (ie->ie_source);
807 }
808 
809 /*
810  * Sleep until an ithread finishes executing an interrupt handler.
811  *
812  * XXX Doesn't currently handle interrupt filters or fast interrupt
813  * handlers.  This is intended for compatibility with linux drivers
814  * only.  Do not use in BSD code.
815  */
816 void
817 _intr_drain(int irq)
818 {
819 	struct intr_event *ie;
820 	struct intr_thread *ithd;
821 	struct thread *td;
822 
823 	ie = intr_lookup(irq);
824 	if (ie == NULL)
825 		return;
826 	if (ie->ie_thread == NULL)
827 		return;
828 	ithd = ie->ie_thread;
829 	td = ithd->it_thread;
830 	/*
831 	 * We set the flag and wait for it to be cleared to avoid
832 	 * long delays with potentially busy interrupt handlers
833 	 * were we to only sample TD_AWAITING_INTR() every tick.
834 	 */
835 	thread_lock(td);
836 	if (!TD_AWAITING_INTR(td)) {
837 		ithd->it_flags |= IT_WAIT;
838 		while (ithd->it_flags & IT_WAIT) {
839 			thread_unlock(td);
840 			pause("idrain", 1);
841 			thread_lock(td);
842 		}
843 	}
844 	thread_unlock(td);
845 	return;
846 }
847 
848 
849 #ifndef INTR_FILTER
850 int
851 intr_event_remove_handler(void *cookie)
852 {
853 	struct intr_handler *handler = (struct intr_handler *)cookie;
854 	struct intr_event *ie;
855 #ifdef INVARIANTS
856 	struct intr_handler *ih;
857 #endif
858 #ifdef notyet
859 	int dead;
860 #endif
861 
862 	if (handler == NULL)
863 		return (EINVAL);
864 	ie = handler->ih_event;
865 	KASSERT(ie != NULL,
866 	    ("interrupt handler \"%s\" has a NULL interrupt event",
867 	    handler->ih_name));
868 	mtx_lock(&ie->ie_lock);
869 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
870 	    ie->ie_name);
871 #ifdef INVARIANTS
872 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
873 		if (ih == handler)
874 			goto ok;
875 	mtx_unlock(&ie->ie_lock);
876 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
877 	    ih->ih_name, ie->ie_name);
878 ok:
879 #endif
880 	/*
881 	 * If there is no ithread, then just remove the handler and return.
882 	 * XXX: Note that an INTR_FAST handler might be running on another
883 	 * CPU!
884 	 */
885 	if (ie->ie_thread == NULL) {
886 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
887 		mtx_unlock(&ie->ie_lock);
888 		free(handler, M_ITHREAD);
889 		return (0);
890 	}
891 
892 	/*
893 	 * If the interrupt thread is already running, then just mark this
894 	 * handler as being dead and let the ithread do the actual removal.
895 	 *
896 	 * During a cold boot while cold is set, msleep() does not sleep,
897 	 * so we have to remove the handler here rather than letting the
898 	 * thread do it.
899 	 */
900 	thread_lock(ie->ie_thread->it_thread);
901 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
902 		handler->ih_flags |= IH_DEAD;
903 
904 		/*
905 		 * Ensure that the thread will process the handler list
906 		 * again and remove this handler if it has already passed
907 		 * it on the list.
908 		 *
909 		 * The release part of the following store ensures
910 		 * that the update of ih_flags is ordered before the
911 		 * it_need setting.  See the comment before
912 		 * atomic_cmpset_acq(&ithd->it_need, ...) operation in
913 		 * the ithread_execute_handlers().
914 		 */
915 		atomic_store_rel_int(&ie->ie_thread->it_need, 1);
916 	} else
917 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
918 	thread_unlock(ie->ie_thread->it_thread);
919 	while (handler->ih_flags & IH_DEAD)
920 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
921 	intr_event_update(ie);
922 #ifdef notyet
923 	/*
924 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
925 	 * this could lead to races of stale data when servicing an
926 	 * interrupt.
927 	 */
928 	dead = 1;
929 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
930 		if (!(ih->ih_flags & IH_FAST)) {
931 			dead = 0;
932 			break;
933 		}
934 	}
935 	if (dead) {
936 		ithread_destroy(ie->ie_thread);
937 		ie->ie_thread = NULL;
938 	}
939 #endif
940 	mtx_unlock(&ie->ie_lock);
941 	free(handler, M_ITHREAD);
942 	return (0);
943 }
944 
945 static int
946 intr_event_schedule_thread(struct intr_event *ie)
947 {
948 	struct intr_entropy entropy;
949 	struct intr_thread *it;
950 	struct thread *td;
951 	struct thread *ctd;
952 	struct proc *p;
953 
954 	/*
955 	 * If no ithread or no handlers, then we have a stray interrupt.
956 	 */
957 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
958 	    ie->ie_thread == NULL)
959 		return (EINVAL);
960 
961 	ctd = curthread;
962 	it = ie->ie_thread;
963 	td = it->it_thread;
964 	p = td->td_proc;
965 
966 	/*
967 	 * If any of the handlers for this ithread claim to be good
968 	 * sources of entropy, then gather some.
969 	 */
970 	if (ie->ie_flags & IE_ENTROPY) {
971 		entropy.event = (uintptr_t)ie;
972 		entropy.td = ctd;
973 		random_harvest_queue(&entropy, sizeof(entropy), 2, RANDOM_INTERRUPT);
974 	}
975 
976 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
977 
978 	/*
979 	 * Set it_need to tell the thread to keep running if it is already
980 	 * running.  Then, lock the thread and see if we actually need to
981 	 * put it on the runqueue.
982 	 *
983 	 * Use store_rel to arrange that the store to ih_need in
984 	 * swi_sched() is before the store to it_need and prepare for
985 	 * transfer of this order to loads in the ithread.
986 	 */
987 	atomic_store_rel_int(&it->it_need, 1);
988 	thread_lock(td);
989 	if (TD_AWAITING_INTR(td)) {
990 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
991 		    td->td_name);
992 		TD_CLR_IWAIT(td);
993 		sched_add(td, SRQ_INTR);
994 	} else {
995 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
996 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
997 	}
998 	thread_unlock(td);
999 
1000 	return (0);
1001 }
1002 #else
1003 int
1004 intr_event_remove_handler(void *cookie)
1005 {
1006 	struct intr_handler *handler = (struct intr_handler *)cookie;
1007 	struct intr_event *ie;
1008 	struct intr_thread *it;
1009 #ifdef INVARIANTS
1010 	struct intr_handler *ih;
1011 #endif
1012 #ifdef notyet
1013 	int dead;
1014 #endif
1015 
1016 	if (handler == NULL)
1017 		return (EINVAL);
1018 	ie = handler->ih_event;
1019 	KASSERT(ie != NULL,
1020 	    ("interrupt handler \"%s\" has a NULL interrupt event",
1021 	    handler->ih_name));
1022 	mtx_lock(&ie->ie_lock);
1023 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
1024 	    ie->ie_name);
1025 #ifdef INVARIANTS
1026 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1027 		if (ih == handler)
1028 			goto ok;
1029 	mtx_unlock(&ie->ie_lock);
1030 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
1031 	    ih->ih_name, ie->ie_name);
1032 ok:
1033 #endif
1034 	/*
1035 	 * If there are no ithreads (per event and per handler), then
1036 	 * just remove the handler and return.
1037 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
1038 	 */
1039 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
1040 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
1041 		mtx_unlock(&ie->ie_lock);
1042 		free(handler, M_ITHREAD);
1043 		return (0);
1044 	}
1045 
1046 	/* Private or global ithread? */
1047 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
1048 	/*
1049 	 * If the interrupt thread is already running, then just mark this
1050 	 * handler as being dead and let the ithread do the actual removal.
1051 	 *
1052 	 * During a cold boot while cold is set, msleep() does not sleep,
1053 	 * so we have to remove the handler here rather than letting the
1054 	 * thread do it.
1055 	 */
1056 	thread_lock(it->it_thread);
1057 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
1058 		handler->ih_flags |= IH_DEAD;
1059 
1060 		/*
1061 		 * Ensure that the thread will process the handler list
1062 		 * again and remove this handler if it has already passed
1063 		 * it on the list.
1064 		 *
1065 		 * The release part of the following store ensures
1066 		 * that the update of ih_flags is ordered before the
1067 		 * it_need setting.  See the comment before
1068 		 * atomic_cmpset_acq(&ithd->it_need, ...) operation in
1069 		 * the ithread_execute_handlers().
1070 		 */
1071 		atomic_store_rel_int(&it->it_need, 1);
1072 	} else
1073 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
1074 	thread_unlock(it->it_thread);
1075 	while (handler->ih_flags & IH_DEAD)
1076 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
1077 	/*
1078 	 * At this point, the handler has been disconnected from the event,
1079 	 * so we can kill the private ithread if any.
1080 	 */
1081 	if (handler->ih_thread) {
1082 		ithread_destroy(handler->ih_thread);
1083 		handler->ih_thread = NULL;
1084 	}
1085 	intr_event_update(ie);
1086 #ifdef notyet
1087 	/*
1088 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
1089 	 * this could lead to races of stale data when servicing an
1090 	 * interrupt.
1091 	 */
1092 	dead = 1;
1093 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1094 		if (handler != NULL) {
1095 			dead = 0;
1096 			break;
1097 		}
1098 	}
1099 	if (dead) {
1100 		ithread_destroy(ie->ie_thread);
1101 		ie->ie_thread = NULL;
1102 	}
1103 #endif
1104 	mtx_unlock(&ie->ie_lock);
1105 	free(handler, M_ITHREAD);
1106 	return (0);
1107 }
1108 
1109 static int
1110 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
1111 {
1112 	struct intr_entropy entropy;
1113 	struct thread *td;
1114 	struct thread *ctd;
1115 	struct proc *p;
1116 
1117 	/*
1118 	 * If no ithread or no handlers, then we have a stray interrupt.
1119 	 */
1120 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
1121 		return (EINVAL);
1122 
1123 	ctd = curthread;
1124 	td = it->it_thread;
1125 	p = td->td_proc;
1126 
1127 	/*
1128 	 * If any of the handlers for this ithread claim to be good
1129 	 * sources of entropy, then gather some.
1130 	 */
1131 	if (ie->ie_flags & IE_ENTROPY) {
1132 		entropy.event = (uintptr_t)ie;
1133 		entropy.td = ctd;
1134 		random_harvest_queue(&entropy, sizeof(entropy), 2, RANDOM_INTERRUPT);
1135 	}
1136 
1137 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
1138 
1139 	/*
1140 	 * Set it_need to tell the thread to keep running if it is already
1141 	 * running.  Then, lock the thread and see if we actually need to
1142 	 * put it on the runqueue.
1143 	 *
1144 	 * Use store_rel to arrange that the store to ih_need in
1145 	 * swi_sched() is before the store to it_need and prepare for
1146 	 * transfer of this order to loads in the ithread.
1147 	 */
1148 	atomic_store_rel_int(&it->it_need, 1);
1149 	thread_lock(td);
1150 	if (TD_AWAITING_INTR(td)) {
1151 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
1152 		    td->td_name);
1153 		TD_CLR_IWAIT(td);
1154 		sched_add(td, SRQ_INTR);
1155 	} else {
1156 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1157 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
1158 	}
1159 	thread_unlock(td);
1160 
1161 	return (0);
1162 }
1163 #endif
1164 
1165 /*
1166  * Allow interrupt event binding for software interrupt handlers -- a no-op,
1167  * since interrupts are generated in software rather than being directed by
1168  * a PIC.
1169  */
1170 static int
1171 swi_assign_cpu(void *arg, int cpu)
1172 {
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Add a software interrupt handler to a specified event.  If a given event
1179  * is not specified, then a new event is created.
1180  */
1181 int
1182 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1183 	    void *arg, int pri, enum intr_type flags, void **cookiep)
1184 {
1185 	struct intr_event *ie;
1186 	int error;
1187 
1188 	if (flags & INTR_ENTROPY)
1189 		return (EINVAL);
1190 
1191 	ie = (eventp != NULL) ? *eventp : NULL;
1192 
1193 	if (ie != NULL) {
1194 		if (!(ie->ie_flags & IE_SOFT))
1195 			return (EINVAL);
1196 	} else {
1197 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1198 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1199 		if (error)
1200 			return (error);
1201 		if (eventp != NULL)
1202 			*eventp = ie;
1203 	}
1204 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
1205 	    PI_SWI(pri), flags, cookiep);
1206 	return (error);
1207 }
1208 
1209 /*
1210  * Schedule a software interrupt thread.
1211  */
1212 void
1213 swi_sched(void *cookie, int flags)
1214 {
1215 	struct intr_handler *ih = (struct intr_handler *)cookie;
1216 	struct intr_event *ie = ih->ih_event;
1217 	struct intr_entropy entropy;
1218 	int error;
1219 
1220 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1221 	    ih->ih_need);
1222 
1223 	entropy.event = (uintptr_t)ih;
1224 	entropy.td = curthread;
1225 	random_harvest_queue(&entropy, sizeof(entropy), 1, RANDOM_SWI);
1226 
1227 	/*
1228 	 * Set ih_need for this handler so that if the ithread is already
1229 	 * running it will execute this handler on the next pass.  Otherwise,
1230 	 * it will execute it the next time it runs.
1231 	 */
1232 	ih->ih_need = 1;
1233 
1234 	if (!(flags & SWI_DELAY)) {
1235 		VM_CNT_INC(v_soft);
1236 #ifdef INTR_FILTER
1237 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1238 #else
1239 		error = intr_event_schedule_thread(ie);
1240 #endif
1241 		KASSERT(error == 0, ("stray software interrupt"));
1242 	}
1243 }
1244 
1245 /*
1246  * Remove a software interrupt handler.  Currently this code does not
1247  * remove the associated interrupt event if it becomes empty.  Calling code
1248  * may do so manually via intr_event_destroy(), but that's not really
1249  * an optimal interface.
1250  */
1251 int
1252 swi_remove(void *cookie)
1253 {
1254 
1255 	return (intr_event_remove_handler(cookie));
1256 }
1257 
1258 #ifdef INTR_FILTER
1259 static void
1260 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1261 {
1262 	struct intr_event *ie;
1263 
1264 	ie = ih->ih_event;
1265 	/*
1266 	 * If this handler is marked for death, remove it from
1267 	 * the list of handlers and wake up the sleeper.
1268 	 */
1269 	if (ih->ih_flags & IH_DEAD) {
1270 		mtx_lock(&ie->ie_lock);
1271 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1272 		ih->ih_flags &= ~IH_DEAD;
1273 		wakeup(ih);
1274 		mtx_unlock(&ie->ie_lock);
1275 		return;
1276 	}
1277 
1278 	/* Execute this handler. */
1279 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1280 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1281 	     ih->ih_name, ih->ih_flags);
1282 
1283 	if (!(ih->ih_flags & IH_MPSAFE))
1284 		mtx_lock(&Giant);
1285 	ih->ih_handler(ih->ih_argument);
1286 	if (!(ih->ih_flags & IH_MPSAFE))
1287 		mtx_unlock(&Giant);
1288 }
1289 #endif
1290 
1291 /*
1292  * This is a public function for use by drivers that mux interrupt
1293  * handlers for child devices from their interrupt handler.
1294  */
1295 void
1296 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1297 {
1298 	struct intr_handler *ih, *ihn;
1299 
1300 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1301 		/*
1302 		 * If this handler is marked for death, remove it from
1303 		 * the list of handlers and wake up the sleeper.
1304 		 */
1305 		if (ih->ih_flags & IH_DEAD) {
1306 			mtx_lock(&ie->ie_lock);
1307 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1308 			ih->ih_flags &= ~IH_DEAD;
1309 			wakeup(ih);
1310 			mtx_unlock(&ie->ie_lock);
1311 			continue;
1312 		}
1313 
1314 		/* Skip filter only handlers */
1315 		if (ih->ih_handler == NULL)
1316 			continue;
1317 
1318 		/*
1319 		 * For software interrupt threads, we only execute
1320 		 * handlers that have their need flag set.  Hardware
1321 		 * interrupt threads always invoke all of their handlers.
1322 		 *
1323 		 * ih_need can only be 0 or 1.  Failed cmpset below
1324 		 * means that there is no request to execute handlers,
1325 		 * so a retry of the cmpset is not needed.
1326 		 */
1327 		if ((ie->ie_flags & IE_SOFT) != 0 &&
1328 		    atomic_cmpset_int(&ih->ih_need, 1, 0) == 0)
1329 			continue;
1330 
1331 		/* Execute this handler. */
1332 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1333 		    __func__, p->p_pid, (void *)ih->ih_handler,
1334 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1335 
1336 		if (!(ih->ih_flags & IH_MPSAFE))
1337 			mtx_lock(&Giant);
1338 		ih->ih_handler(ih->ih_argument);
1339 		if (!(ih->ih_flags & IH_MPSAFE))
1340 			mtx_unlock(&Giant);
1341 	}
1342 }
1343 
1344 static void
1345 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1346 {
1347 
1348 	/* Interrupt handlers should not sleep. */
1349 	if (!(ie->ie_flags & IE_SOFT))
1350 		THREAD_NO_SLEEPING();
1351 	intr_event_execute_handlers(p, ie);
1352 	if (!(ie->ie_flags & IE_SOFT))
1353 		THREAD_SLEEPING_OK();
1354 
1355 	/*
1356 	 * Interrupt storm handling:
1357 	 *
1358 	 * If this interrupt source is currently storming, then throttle
1359 	 * it to only fire the handler once  per clock tick.
1360 	 *
1361 	 * If this interrupt source is not currently storming, but the
1362 	 * number of back to back interrupts exceeds the storm threshold,
1363 	 * then enter storming mode.
1364 	 */
1365 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1366 	    !(ie->ie_flags & IE_SOFT)) {
1367 		/* Report the message only once every second. */
1368 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1369 			printf(
1370 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1371 			    ie->ie_name);
1372 		}
1373 		pause("istorm", 1);
1374 	} else
1375 		ie->ie_count++;
1376 
1377 	/*
1378 	 * Now that all the handlers have had a chance to run, reenable
1379 	 * the interrupt source.
1380 	 */
1381 	if (ie->ie_post_ithread != NULL)
1382 		ie->ie_post_ithread(ie->ie_source);
1383 }
1384 
1385 #ifndef INTR_FILTER
1386 /*
1387  * This is the main code for interrupt threads.
1388  */
1389 static void
1390 ithread_loop(void *arg)
1391 {
1392 	struct intr_thread *ithd;
1393 	struct intr_event *ie;
1394 	struct thread *td;
1395 	struct proc *p;
1396 	int wake;
1397 
1398 	td = curthread;
1399 	p = td->td_proc;
1400 	ithd = (struct intr_thread *)arg;
1401 	KASSERT(ithd->it_thread == td,
1402 	    ("%s: ithread and proc linkage out of sync", __func__));
1403 	ie = ithd->it_event;
1404 	ie->ie_count = 0;
1405 	wake = 0;
1406 
1407 	/*
1408 	 * As long as we have interrupts outstanding, go through the
1409 	 * list of handlers, giving each one a go at it.
1410 	 */
1411 	for (;;) {
1412 		/*
1413 		 * If we are an orphaned thread, then just die.
1414 		 */
1415 		if (ithd->it_flags & IT_DEAD) {
1416 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1417 			    p->p_pid, td->td_name);
1418 			free(ithd, M_ITHREAD);
1419 			kthread_exit();
1420 		}
1421 
1422 		/*
1423 		 * Service interrupts.  If another interrupt arrives while
1424 		 * we are running, it will set it_need to note that we
1425 		 * should make another pass.
1426 		 *
1427 		 * The load_acq part of the following cmpset ensures
1428 		 * that the load of ih_need in ithread_execute_handlers()
1429 		 * is ordered after the load of it_need here.
1430 		 */
1431 		while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0)
1432 			ithread_execute_handlers(p, ie);
1433 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1434 		mtx_assert(&Giant, MA_NOTOWNED);
1435 
1436 		/*
1437 		 * Processed all our interrupts.  Now get the sched
1438 		 * lock.  This may take a while and it_need may get
1439 		 * set again, so we have to check it again.
1440 		 */
1441 		thread_lock(td);
1442 		if (atomic_load_acq_int(&ithd->it_need) == 0 &&
1443 		    (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
1444 			TD_SET_IWAIT(td);
1445 			ie->ie_count = 0;
1446 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1447 		}
1448 		if (ithd->it_flags & IT_WAIT) {
1449 			wake = 1;
1450 			ithd->it_flags &= ~IT_WAIT;
1451 		}
1452 		thread_unlock(td);
1453 		if (wake) {
1454 			wakeup(ithd);
1455 			wake = 0;
1456 		}
1457 	}
1458 }
1459 
1460 /*
1461  * Main interrupt handling body.
1462  *
1463  * Input:
1464  * o ie:                        the event connected to this interrupt.
1465  * o frame:                     some archs (i.e. i386) pass a frame to some.
1466  *                              handlers as their main argument.
1467  * Return value:
1468  * o 0:                         everything ok.
1469  * o EINVAL:                    stray interrupt.
1470  */
1471 int
1472 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1473 {
1474 	struct intr_handler *ih;
1475 	struct trapframe *oldframe;
1476 	struct thread *td;
1477 	int error, ret, thread;
1478 
1479 	td = curthread;
1480 
1481 #ifdef KSTACK_USAGE_PROF
1482 	intr_prof_stack_use(td, frame);
1483 #endif
1484 
1485 	/* An interrupt with no event or handlers is a stray interrupt. */
1486 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1487 		return (EINVAL);
1488 
1489 	/*
1490 	 * Execute fast interrupt handlers directly.
1491 	 * To support clock handlers, if a handler registers
1492 	 * with a NULL argument, then we pass it a pointer to
1493 	 * a trapframe as its argument.
1494 	 */
1495 	td->td_intr_nesting_level++;
1496 	thread = 0;
1497 	ret = 0;
1498 	critical_enter();
1499 	oldframe = td->td_intr_frame;
1500 	td->td_intr_frame = frame;
1501 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1502 		if (ih->ih_filter == NULL) {
1503 			thread = 1;
1504 			continue;
1505 		}
1506 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1507 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1508 		    ih->ih_argument, ih->ih_name);
1509 		if (ih->ih_argument == NULL)
1510 			ret = ih->ih_filter(frame);
1511 		else
1512 			ret = ih->ih_filter(ih->ih_argument);
1513 		KASSERT(ret == FILTER_STRAY ||
1514 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1515 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1516 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1517 		    ih->ih_name));
1518 
1519 		/*
1520 		 * Wrapper handler special handling:
1521 		 *
1522 		 * in some particular cases (like pccard and pccbb),
1523 		 * the _real_ device handler is wrapped in a couple of
1524 		 * functions - a filter wrapper and an ithread wrapper.
1525 		 * In this case (and just in this case), the filter wrapper
1526 		 * could ask the system to schedule the ithread and mask
1527 		 * the interrupt source if the wrapped handler is composed
1528 		 * of just an ithread handler.
1529 		 *
1530 		 * TODO: write a generic wrapper to avoid people rolling
1531 		 * their own
1532 		 */
1533 		if (!thread) {
1534 			if (ret == FILTER_SCHEDULE_THREAD)
1535 				thread = 1;
1536 		}
1537 	}
1538 	td->td_intr_frame = oldframe;
1539 
1540 	if (thread) {
1541 		if (ie->ie_pre_ithread != NULL)
1542 			ie->ie_pre_ithread(ie->ie_source);
1543 	} else {
1544 		if (ie->ie_post_filter != NULL)
1545 			ie->ie_post_filter(ie->ie_source);
1546 	}
1547 
1548 	/* Schedule the ithread if needed. */
1549 	if (thread) {
1550 		error = intr_event_schedule_thread(ie);
1551 		KASSERT(error == 0, ("bad stray interrupt"));
1552 	}
1553 	critical_exit();
1554 	td->td_intr_nesting_level--;
1555 	return (0);
1556 }
1557 #else
1558 /*
1559  * This is the main code for interrupt threads.
1560  */
1561 static void
1562 ithread_loop(void *arg)
1563 {
1564 	struct intr_thread *ithd;
1565 	struct intr_handler *ih;
1566 	struct intr_event *ie;
1567 	struct thread *td;
1568 	struct proc *p;
1569 	int priv;
1570 	int wake;
1571 
1572 	td = curthread;
1573 	p = td->td_proc;
1574 	ih = (struct intr_handler *)arg;
1575 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1576 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1577 	KASSERT(ithd->it_thread == td,
1578 	    ("%s: ithread and proc linkage out of sync", __func__));
1579 	ie = ithd->it_event;
1580 	ie->ie_count = 0;
1581 	wake = 0;
1582 
1583 	/*
1584 	 * As long as we have interrupts outstanding, go through the
1585 	 * list of handlers, giving each one a go at it.
1586 	 */
1587 	for (;;) {
1588 		/*
1589 		 * If we are an orphaned thread, then just die.
1590 		 */
1591 		if (ithd->it_flags & IT_DEAD) {
1592 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1593 			    p->p_pid, td->td_name);
1594 			free(ithd, M_ITHREAD);
1595 			kthread_exit();
1596 		}
1597 
1598 		/*
1599 		 * Service interrupts.  If another interrupt arrives while
1600 		 * we are running, it will set it_need to note that we
1601 		 * should make another pass.
1602 		 *
1603 		 * The load_acq part of the following cmpset ensures
1604 		 * that the load of ih_need in ithread_execute_handlers()
1605 		 * is ordered after the load of it_need here.
1606 		 */
1607 		while (atomic_cmpset_acq_int(&ithd->it_need, 1, 0) != 0) {
1608 			if (priv)
1609 				priv_ithread_execute_handler(p, ih);
1610 			else
1611 				ithread_execute_handlers(p, ie);
1612 		}
1613 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1614 		mtx_assert(&Giant, MA_NOTOWNED);
1615 
1616 		/*
1617 		 * Processed all our interrupts.  Now get the sched
1618 		 * lock.  This may take a while and it_need may get
1619 		 * set again, so we have to check it again.
1620 		 */
1621 		thread_lock(td);
1622 		if (atomic_load_acq_int(&ithd->it_need) == 0 &&
1623 		    (ithd->it_flags & (IT_DEAD | IT_WAIT)) == 0) {
1624 			TD_SET_IWAIT(td);
1625 			ie->ie_count = 0;
1626 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1627 		}
1628 		if (ithd->it_flags & IT_WAIT) {
1629 			wake = 1;
1630 			ithd->it_flags &= ~IT_WAIT;
1631 		}
1632 		thread_unlock(td);
1633 		if (wake) {
1634 			wakeup(ithd);
1635 			wake = 0;
1636 		}
1637 	}
1638 }
1639 
1640 /*
1641  * Main loop for interrupt filter.
1642  *
1643  * Some architectures (i386, amd64 and arm) require the optional frame
1644  * parameter, and use it as the main argument for fast handler execution
1645  * when ih_argument == NULL.
1646  *
1647  * Return value:
1648  * o FILTER_STRAY:              No filter recognized the event, and no
1649  *                              filter-less handler is registered on this
1650  *                              line.
1651  * o FILTER_HANDLED:            A filter claimed the event and served it.
1652  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1653  *                              least one filter-less handler on this line.
1654  * o FILTER_HANDLED |
1655  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1656  *                              scheduling the per-handler ithread.
1657  *
1658  * In case an ithread has to be scheduled, in *ithd there will be a
1659  * pointer to a struct intr_thread containing the thread to be
1660  * scheduled.
1661  */
1662 
1663 static int
1664 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1665 		 struct intr_thread **ithd)
1666 {
1667 	struct intr_handler *ih;
1668 	void *arg;
1669 	int ret, thread_only;
1670 
1671 	ret = 0;
1672 	thread_only = 0;
1673 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1674 		/*
1675 		 * Execute fast interrupt handlers directly.
1676 		 * To support clock handlers, if a handler registers
1677 		 * with a NULL argument, then we pass it a pointer to
1678 		 * a trapframe as its argument.
1679 		 */
1680 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1681 
1682 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1683 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1684 
1685 		if (ih->ih_filter != NULL)
1686 			ret = ih->ih_filter(arg);
1687 		else {
1688 			thread_only = 1;
1689 			continue;
1690 		}
1691 		KASSERT(ret == FILTER_STRAY ||
1692 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1693 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1694 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1695 		    ih->ih_name));
1696 		if (ret & FILTER_STRAY)
1697 			continue;
1698 		else {
1699 			*ithd = ih->ih_thread;
1700 			return (ret);
1701 		}
1702 	}
1703 
1704 	/*
1705 	 * No filters handled the interrupt and we have at least
1706 	 * one handler without a filter.  In this case, we schedule
1707 	 * all of the filter-less handlers to run in the ithread.
1708 	 */
1709 	if (thread_only) {
1710 		*ithd = ie->ie_thread;
1711 		return (FILTER_SCHEDULE_THREAD);
1712 	}
1713 	return (FILTER_STRAY);
1714 }
1715 
1716 /*
1717  * Main interrupt handling body.
1718  *
1719  * Input:
1720  * o ie:                        the event connected to this interrupt.
1721  * o frame:                     some archs (i.e. i386) pass a frame to some.
1722  *                              handlers as their main argument.
1723  * Return value:
1724  * o 0:                         everything ok.
1725  * o EINVAL:                    stray interrupt.
1726  */
1727 int
1728 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1729 {
1730 	struct intr_thread *ithd;
1731 	struct trapframe *oldframe;
1732 	struct thread *td;
1733 	int thread;
1734 
1735 	ithd = NULL;
1736 	td = curthread;
1737 
1738 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1739 		return (EINVAL);
1740 
1741 	td->td_intr_nesting_level++;
1742 	thread = 0;
1743 	critical_enter();
1744 	oldframe = td->td_intr_frame;
1745 	td->td_intr_frame = frame;
1746 	thread = intr_filter_loop(ie, frame, &ithd);
1747 	if (thread & FILTER_HANDLED) {
1748 		if (ie->ie_post_filter != NULL)
1749 			ie->ie_post_filter(ie->ie_source);
1750 	} else {
1751 		if (ie->ie_pre_ithread != NULL)
1752 			ie->ie_pre_ithread(ie->ie_source);
1753 	}
1754 	td->td_intr_frame = oldframe;
1755 	critical_exit();
1756 
1757 	/* Interrupt storm logic */
1758 	if (thread & FILTER_STRAY) {
1759 		ie->ie_count++;
1760 		if (ie->ie_count < intr_storm_threshold)
1761 			printf("Interrupt stray detection not present\n");
1762 	}
1763 
1764 	/* Schedule an ithread if needed. */
1765 	if (thread & FILTER_SCHEDULE_THREAD) {
1766 		if (intr_event_schedule_thread(ie, ithd) != 0)
1767 			panic("%s: impossible stray interrupt", __func__);
1768 	}
1769 	td->td_intr_nesting_level--;
1770 	return (0);
1771 }
1772 #endif
1773 
1774 #ifdef DDB
1775 /*
1776  * Dump details about an interrupt handler
1777  */
1778 static void
1779 db_dump_intrhand(struct intr_handler *ih)
1780 {
1781 	int comma;
1782 
1783 	db_printf("\t%-10s ", ih->ih_name);
1784 	switch (ih->ih_pri) {
1785 	case PI_REALTIME:
1786 		db_printf("CLK ");
1787 		break;
1788 	case PI_AV:
1789 		db_printf("AV  ");
1790 		break;
1791 	case PI_TTY:
1792 		db_printf("TTY ");
1793 		break;
1794 	case PI_NET:
1795 		db_printf("NET ");
1796 		break;
1797 	case PI_DISK:
1798 		db_printf("DISK");
1799 		break;
1800 	case PI_DULL:
1801 		db_printf("DULL");
1802 		break;
1803 	default:
1804 		if (ih->ih_pri >= PI_SOFT)
1805 			db_printf("SWI ");
1806 		else
1807 			db_printf("%4u", ih->ih_pri);
1808 		break;
1809 	}
1810 	db_printf(" ");
1811 	if (ih->ih_filter != NULL) {
1812 		db_printf("[F]");
1813 		db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC);
1814 	}
1815 	if (ih->ih_handler != NULL) {
1816 		if (ih->ih_filter != NULL)
1817 			db_printf(",");
1818 		db_printf("[H]");
1819 		db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1820 	}
1821 	db_printf("(%p)", ih->ih_argument);
1822 	if (ih->ih_need ||
1823 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1824 	    IH_MPSAFE)) != 0) {
1825 		db_printf(" {");
1826 		comma = 0;
1827 		if (ih->ih_flags & IH_EXCLUSIVE) {
1828 			if (comma)
1829 				db_printf(", ");
1830 			db_printf("EXCL");
1831 			comma = 1;
1832 		}
1833 		if (ih->ih_flags & IH_ENTROPY) {
1834 			if (comma)
1835 				db_printf(", ");
1836 			db_printf("ENTROPY");
1837 			comma = 1;
1838 		}
1839 		if (ih->ih_flags & IH_DEAD) {
1840 			if (comma)
1841 				db_printf(", ");
1842 			db_printf("DEAD");
1843 			comma = 1;
1844 		}
1845 		if (ih->ih_flags & IH_MPSAFE) {
1846 			if (comma)
1847 				db_printf(", ");
1848 			db_printf("MPSAFE");
1849 			comma = 1;
1850 		}
1851 		if (ih->ih_need) {
1852 			if (comma)
1853 				db_printf(", ");
1854 			db_printf("NEED");
1855 		}
1856 		db_printf("}");
1857 	}
1858 	db_printf("\n");
1859 }
1860 
1861 /*
1862  * Dump details about a event.
1863  */
1864 void
1865 db_dump_intr_event(struct intr_event *ie, int handlers)
1866 {
1867 	struct intr_handler *ih;
1868 	struct intr_thread *it;
1869 	int comma;
1870 
1871 	db_printf("%s ", ie->ie_fullname);
1872 	it = ie->ie_thread;
1873 	if (it != NULL)
1874 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1875 	else
1876 		db_printf("(no thread)");
1877 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1878 	    (it != NULL && it->it_need)) {
1879 		db_printf(" {");
1880 		comma = 0;
1881 		if (ie->ie_flags & IE_SOFT) {
1882 			db_printf("SOFT");
1883 			comma = 1;
1884 		}
1885 		if (ie->ie_flags & IE_ENTROPY) {
1886 			if (comma)
1887 				db_printf(", ");
1888 			db_printf("ENTROPY");
1889 			comma = 1;
1890 		}
1891 		if (ie->ie_flags & IE_ADDING_THREAD) {
1892 			if (comma)
1893 				db_printf(", ");
1894 			db_printf("ADDING_THREAD");
1895 			comma = 1;
1896 		}
1897 		if (it != NULL && it->it_need) {
1898 			if (comma)
1899 				db_printf(", ");
1900 			db_printf("NEED");
1901 		}
1902 		db_printf("}");
1903 	}
1904 	db_printf("\n");
1905 
1906 	if (handlers)
1907 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1908 		    db_dump_intrhand(ih);
1909 }
1910 
1911 /*
1912  * Dump data about interrupt handlers
1913  */
1914 DB_SHOW_COMMAND(intr, db_show_intr)
1915 {
1916 	struct intr_event *ie;
1917 	int all, verbose;
1918 
1919 	verbose = strchr(modif, 'v') != NULL;
1920 	all = strchr(modif, 'a') != NULL;
1921 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1922 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1923 			continue;
1924 		db_dump_intr_event(ie, verbose);
1925 		if (db_pager_quit)
1926 			break;
1927 	}
1928 }
1929 #endif /* DDB */
1930 
1931 /*
1932  * Start standard software interrupt threads
1933  */
1934 static void
1935 start_softintr(void *dummy)
1936 {
1937 
1938 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1939 		panic("died while creating vm swi ithread");
1940 }
1941 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1942     NULL);
1943 
1944 /*
1945  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1946  * The data for this machine dependent, and the declarations are in machine
1947  * dependent code.  The layout of intrnames and intrcnt however is machine
1948  * independent.
1949  *
1950  * We do not know the length of intrcnt and intrnames at compile time, so
1951  * calculate things at run time.
1952  */
1953 static int
1954 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1955 {
1956 	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1957 }
1958 
1959 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1960     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1961 
1962 static int
1963 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1964 {
1965 #ifdef SCTL_MASK32
1966 	uint32_t *intrcnt32;
1967 	unsigned i;
1968 	int error;
1969 
1970 	if (req->flags & SCTL_MASK32) {
1971 		if (!req->oldptr)
1972 			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1973 		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1974 		if (intrcnt32 == NULL)
1975 			return (ENOMEM);
1976 		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1977 			intrcnt32[i] = intrcnt[i];
1978 		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1979 		free(intrcnt32, M_TEMP);
1980 		return (error);
1981 	}
1982 #endif
1983 	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1984 }
1985 
1986 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1987     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1988 
1989 #ifdef DDB
1990 /*
1991  * DDB command to dump the interrupt statistics.
1992  */
1993 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1994 {
1995 	u_long *i;
1996 	char *cp;
1997 	u_int j;
1998 
1999 	cp = intrnames;
2000 	j = 0;
2001 	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
2002 	    i++, j++) {
2003 		if (*cp == '\0')
2004 			break;
2005 		if (*i != 0)
2006 			db_printf("%s\t%lu\n", cp, *i);
2007 		cp += strlen(cp) + 1;
2008 	}
2009 }
2010 #endif
2011