xref: /freebsd/sys/kern/kern_intr.c (revision cacdd70cc751fb68dec4b86c5e5b8c969b6e26ef)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_ddb.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/cpuset.h>
36 #include <sys/rtprio.h>
37 #include <sys/systm.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/random.h>
48 #include <sys/resourcevar.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/sysctl.h>
52 #include <sys/unistd.h>
53 #include <sys/vmmeter.h>
54 #include <machine/atomic.h>
55 #include <machine/cpu.h>
56 #include <machine/md_var.h>
57 #include <machine/stdarg.h>
58 #ifdef DDB
59 #include <ddb/ddb.h>
60 #include <ddb/db_sym.h>
61 #endif
62 
63 /*
64  * Describe an interrupt thread.  There is one of these per interrupt event.
65  */
66 struct intr_thread {
67 	struct intr_event *it_event;
68 	struct thread *it_thread;	/* Kernel thread. */
69 	int	it_flags;		/* (j) IT_* flags. */
70 	int	it_need;		/* Needs service. */
71 };
72 
73 /* Interrupt thread flags kept in it_flags */
74 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
75 
76 struct	intr_entropy {
77 	struct	thread *td;
78 	uintptr_t event;
79 };
80 
81 struct	intr_event *clk_intr_event;
82 struct	intr_event *tty_intr_event;
83 void	*vm_ih;
84 struct proc *intrproc;
85 
86 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
87 
88 static int intr_storm_threshold = 1000;
89 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
90 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
91     &intr_storm_threshold, 0,
92     "Number of consecutive interrupts before storm protection is enabled");
93 static TAILQ_HEAD(, intr_event) event_list =
94     TAILQ_HEAD_INITIALIZER(event_list);
95 static struct mtx event_lock;
96 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
97 
98 static void	intr_event_update(struct intr_event *ie);
99 #ifdef INTR_FILTER
100 static int	intr_event_schedule_thread(struct intr_event *ie,
101 		    struct intr_thread *ithd);
102 static int	intr_filter_loop(struct intr_event *ie,
103 		    struct trapframe *frame, struct intr_thread **ithd);
104 static struct intr_thread *ithread_create(const char *name,
105 			      struct intr_handler *ih);
106 #else
107 static int	intr_event_schedule_thread(struct intr_event *ie);
108 static struct intr_thread *ithread_create(const char *name);
109 #endif
110 static void	ithread_destroy(struct intr_thread *ithread);
111 static void	ithread_execute_handlers(struct proc *p,
112 		    struct intr_event *ie);
113 #ifdef INTR_FILTER
114 static void	priv_ithread_execute_handler(struct proc *p,
115 		    struct intr_handler *ih);
116 #endif
117 static void	ithread_loop(void *);
118 static void	ithread_update(struct intr_thread *ithd);
119 static void	start_softintr(void *);
120 
121 /* Map an interrupt type to an ithread priority. */
122 u_char
123 intr_priority(enum intr_type flags)
124 {
125 	u_char pri;
126 
127 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
128 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
129 	switch (flags) {
130 	case INTR_TYPE_TTY:
131 		pri = PI_TTYLOW;
132 		break;
133 	case INTR_TYPE_BIO:
134 		/*
135 		 * XXX We need to refine this.  BSD/OS distinguishes
136 		 * between tape and disk priorities.
137 		 */
138 		pri = PI_DISK;
139 		break;
140 	case INTR_TYPE_NET:
141 		pri = PI_NET;
142 		break;
143 	case INTR_TYPE_CAM:
144 		pri = PI_DISK;          /* XXX or PI_CAM? */
145 		break;
146 	case INTR_TYPE_AV:		/* Audio/video */
147 		pri = PI_AV;
148 		break;
149 	case INTR_TYPE_CLK:
150 		pri = PI_REALTIME;
151 		break;
152 	case INTR_TYPE_MISC:
153 		pri = PI_DULL;          /* don't care */
154 		break;
155 	default:
156 		/* We didn't specify an interrupt level. */
157 		panic("intr_priority: no interrupt type in flags");
158 	}
159 
160 	return pri;
161 }
162 
163 /*
164  * Update an ithread based on the associated intr_event.
165  */
166 static void
167 ithread_update(struct intr_thread *ithd)
168 {
169 	struct intr_event *ie;
170 	struct thread *td;
171 	u_char pri;
172 
173 	ie = ithd->it_event;
174 	td = ithd->it_thread;
175 
176 	/* Determine the overall priority of this event. */
177 	if (TAILQ_EMPTY(&ie->ie_handlers))
178 		pri = PRI_MAX_ITHD;
179 	else
180 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
181 
182 	/* Update name and priority. */
183 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
184 	thread_lock(td);
185 	sched_prio(td, pri);
186 	thread_unlock(td);
187 }
188 
189 /*
190  * Regenerate the full name of an interrupt event and update its priority.
191  */
192 static void
193 intr_event_update(struct intr_event *ie)
194 {
195 	struct intr_handler *ih;
196 	char *last;
197 	int missed, space;
198 
199 	/* Start off with no entropy and just the name of the event. */
200 	mtx_assert(&ie->ie_lock, MA_OWNED);
201 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
202 	ie->ie_flags &= ~IE_ENTROPY;
203 	missed = 0;
204 	space = 1;
205 
206 	/* Run through all the handlers updating values. */
207 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
208 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
209 		    sizeof(ie->ie_fullname)) {
210 			strcat(ie->ie_fullname, " ");
211 			strcat(ie->ie_fullname, ih->ih_name);
212 			space = 0;
213 		} else
214 			missed++;
215 		if (ih->ih_flags & IH_ENTROPY)
216 			ie->ie_flags |= IE_ENTROPY;
217 	}
218 
219 	/*
220 	 * If the handler names were too long, add +'s to indicate missing
221 	 * names. If we run out of room and still have +'s to add, change
222 	 * the last character from a + to a *.
223 	 */
224 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
225 	while (missed-- > 0) {
226 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
227 			if (*last == '+') {
228 				*last = '*';
229 				break;
230 			} else
231 				*last = '+';
232 		} else if (space) {
233 			strcat(ie->ie_fullname, " +");
234 			space = 0;
235 		} else
236 			strcat(ie->ie_fullname, "+");
237 	}
238 
239 	/*
240 	 * If this event has an ithread, update it's priority and
241 	 * name.
242 	 */
243 	if (ie->ie_thread != NULL)
244 		ithread_update(ie->ie_thread);
245 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
246 }
247 
248 int
249 intr_event_create(struct intr_event **event, void *source,int flags, int irq,
250     void (*pre_ithread)(void *), void (*post_ithread)(void *),
251     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
252     const char *fmt, ...)
253 {
254 	struct intr_event *ie;
255 	va_list ap;
256 
257 	/* The only valid flag during creation is IE_SOFT. */
258 	if ((flags & ~IE_SOFT) != 0)
259 		return (EINVAL);
260 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
261 	ie->ie_source = source;
262 	ie->ie_pre_ithread = pre_ithread;
263 	ie->ie_post_ithread = post_ithread;
264 	ie->ie_post_filter = post_filter;
265 	ie->ie_assign_cpu = assign_cpu;
266 	ie->ie_flags = flags;
267 	ie->ie_irq = irq;
268 	ie->ie_cpu = NOCPU;
269 	TAILQ_INIT(&ie->ie_handlers);
270 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
271 
272 	va_start(ap, fmt);
273 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
274 	va_end(ap);
275 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
276 	mtx_lock(&event_lock);
277 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
278 	mtx_unlock(&event_lock);
279 	if (event != NULL)
280 		*event = ie;
281 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
282 	return (0);
283 }
284 
285 /*
286  * Bind an interrupt event to the specified CPU.  Note that not all
287  * platforms support binding an interrupt to a CPU.  For those
288  * platforms this request will fail.  For supported platforms, any
289  * associated ithreads as well as the primary interrupt context will
290  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
291  * the interrupt event.
292  */
293 int
294 intr_event_bind(struct intr_event *ie, u_char cpu)
295 {
296 	cpuset_t mask;
297 	lwpid_t id;
298 	int error;
299 
300 	/* Need a CPU to bind to. */
301 	if (cpu != NOCPU && CPU_ABSENT(cpu))
302 		return (EINVAL);
303 
304 	if (ie->ie_assign_cpu == NULL)
305 		return (EOPNOTSUPP);
306 	/*
307 	 * If we have any ithreads try to set their mask first since this
308 	 * can fail.
309 	 */
310 	mtx_lock(&ie->ie_lock);
311 	if (ie->ie_thread != NULL) {
312 		CPU_ZERO(&mask);
313 		if (cpu == NOCPU)
314 			CPU_COPY(cpuset_root, &mask);
315 		else
316 			CPU_SET(cpu, &mask);
317 		id = ie->ie_thread->it_thread->td_tid;
318 		mtx_unlock(&ie->ie_lock);
319 		error = cpuset_setthread(id, &mask);
320 		if (error)
321 			return (error);
322 	} else
323 		mtx_unlock(&ie->ie_lock);
324 	error = ie->ie_assign_cpu(ie->ie_source, cpu);
325 	if (error)
326 		return (error);
327 	mtx_lock(&ie->ie_lock);
328 	ie->ie_cpu = cpu;
329 	mtx_unlock(&ie->ie_lock);
330 
331 	return (error);
332 }
333 
334 static struct intr_event *
335 intr_lookup(int irq)
336 {
337 	struct intr_event *ie;
338 
339 	mtx_lock(&event_lock);
340 	TAILQ_FOREACH(ie, &event_list, ie_list)
341 		if (ie->ie_irq == irq &&
342 		    (ie->ie_flags & IE_SOFT) == 0 &&
343 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
344 			break;
345 	mtx_unlock(&event_lock);
346 	return (ie);
347 }
348 
349 int
350 intr_setaffinity(int irq, void *m)
351 {
352 	struct intr_event *ie;
353 	cpuset_t *mask;
354 	u_char cpu;
355 	int n;
356 
357 	mask = m;
358 	cpu = NOCPU;
359 	/*
360 	 * If we're setting all cpus we can unbind.  Otherwise make sure
361 	 * only one cpu is in the set.
362 	 */
363 	if (CPU_CMP(cpuset_root, mask)) {
364 		for (n = 0; n < CPU_SETSIZE; n++) {
365 			if (!CPU_ISSET(n, mask))
366 				continue;
367 			if (cpu != NOCPU)
368 				return (EINVAL);
369 			cpu = (u_char)n;
370 		}
371 	}
372 	ie = intr_lookup(irq);
373 	if (ie == NULL)
374 		return (ESRCH);
375 	intr_event_bind(ie, cpu);
376 	return (0);
377 }
378 
379 int
380 intr_getaffinity(int irq, void *m)
381 {
382 	struct intr_event *ie;
383 	cpuset_t *mask;
384 
385 	mask = m;
386 	ie = intr_lookup(irq);
387 	if (ie == NULL)
388 		return (ESRCH);
389 	CPU_ZERO(mask);
390 	mtx_lock(&ie->ie_lock);
391 	if (ie->ie_cpu == NOCPU)
392 		CPU_COPY(cpuset_root, mask);
393 	else
394 		CPU_SET(ie->ie_cpu, mask);
395 	mtx_unlock(&ie->ie_lock);
396 	return (0);
397 }
398 
399 int
400 intr_event_destroy(struct intr_event *ie)
401 {
402 
403 	mtx_lock(&event_lock);
404 	mtx_lock(&ie->ie_lock);
405 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
406 		mtx_unlock(&ie->ie_lock);
407 		mtx_unlock(&event_lock);
408 		return (EBUSY);
409 	}
410 	TAILQ_REMOVE(&event_list, ie, ie_list);
411 #ifndef notyet
412 	if (ie->ie_thread != NULL) {
413 		ithread_destroy(ie->ie_thread);
414 		ie->ie_thread = NULL;
415 	}
416 #endif
417 	mtx_unlock(&ie->ie_lock);
418 	mtx_unlock(&event_lock);
419 	mtx_destroy(&ie->ie_lock);
420 	free(ie, M_ITHREAD);
421 	return (0);
422 }
423 
424 #ifndef INTR_FILTER
425 static struct intr_thread *
426 ithread_create(const char *name)
427 {
428 	struct intr_thread *ithd;
429 	struct thread *td;
430 	int error;
431 
432 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
433 
434 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
435 		    &td, RFSTOPPED | RFHIGHPID,
436 	    	    0, "intr", "%s", name);
437 	if (error)
438 		panic("kproc_create() failed with %d", error);
439 	thread_lock(td);
440 	sched_class(td, PRI_ITHD);
441 	TD_SET_IWAIT(td);
442 	thread_unlock(td);
443 	td->td_pflags |= TDP_ITHREAD;
444 	ithd->it_thread = td;
445 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
446 	return (ithd);
447 }
448 #else
449 static struct intr_thread *
450 ithread_create(const char *name, struct intr_handler *ih)
451 {
452 	struct intr_thread *ithd;
453 	struct thread *td;
454 	int error;
455 
456 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
457 
458 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
459 		    &td, RFSTOPPED | RFHIGHPID,
460 	    	    0, "intr", "%s", name);
461 	if (error)
462 		panic("kproc_create() failed with %d", error);
463 	thread_lock(td);
464 	sched_class(td, PRI_ITHD);
465 	TD_SET_IWAIT(td);
466 	thread_unlock(td);
467 	td->td_pflags |= TDP_ITHREAD;
468 	ithd->it_thread = td;
469 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
470 	return (ithd);
471 }
472 #endif
473 
474 static void
475 ithread_destroy(struct intr_thread *ithread)
476 {
477 	struct thread *td;
478 
479 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
480 	td = ithread->it_thread;
481 	thread_lock(td);
482 	ithread->it_flags |= IT_DEAD;
483 	if (TD_AWAITING_INTR(td)) {
484 		TD_CLR_IWAIT(td);
485 		sched_add(td, SRQ_INTR);
486 	}
487 	thread_unlock(td);
488 }
489 
490 #ifndef INTR_FILTER
491 int
492 intr_event_add_handler(struct intr_event *ie, const char *name,
493     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
494     enum intr_type flags, void **cookiep)
495 {
496 	struct intr_handler *ih, *temp_ih;
497 	struct intr_thread *it;
498 
499 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
500 		return (EINVAL);
501 
502 	/* Allocate and populate an interrupt handler structure. */
503 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
504 	ih->ih_filter = filter;
505 	ih->ih_handler = handler;
506 	ih->ih_argument = arg;
507 	ih->ih_name = name;
508 	ih->ih_event = ie;
509 	ih->ih_pri = pri;
510 	if (flags & INTR_EXCL)
511 		ih->ih_flags = IH_EXCLUSIVE;
512 	if (flags & INTR_MPSAFE)
513 		ih->ih_flags |= IH_MPSAFE;
514 	if (flags & INTR_ENTROPY)
515 		ih->ih_flags |= IH_ENTROPY;
516 
517 	/* We can only have one exclusive handler in a event. */
518 	mtx_lock(&ie->ie_lock);
519 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
520 		if ((flags & INTR_EXCL) ||
521 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
522 			mtx_unlock(&ie->ie_lock);
523 			free(ih, M_ITHREAD);
524 			return (EINVAL);
525 		}
526 	}
527 
528 	/* Add the new handler to the event in priority order. */
529 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
530 		if (temp_ih->ih_pri > ih->ih_pri)
531 			break;
532 	}
533 	if (temp_ih == NULL)
534 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
535 	else
536 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
537 	intr_event_update(ie);
538 
539 	/* Create a thread if we need one. */
540 	while (ie->ie_thread == NULL && handler != NULL) {
541 		if (ie->ie_flags & IE_ADDING_THREAD)
542 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
543 		else {
544 			ie->ie_flags |= IE_ADDING_THREAD;
545 			mtx_unlock(&ie->ie_lock);
546 			it = ithread_create("intr: newborn");
547 			mtx_lock(&ie->ie_lock);
548 			ie->ie_flags &= ~IE_ADDING_THREAD;
549 			ie->ie_thread = it;
550 			it->it_event = ie;
551 			ithread_update(it);
552 			wakeup(ie);
553 		}
554 	}
555 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
556 	    ie->ie_name);
557 	mtx_unlock(&ie->ie_lock);
558 
559 	if (cookiep != NULL)
560 		*cookiep = ih;
561 	return (0);
562 }
563 #else
564 int
565 intr_event_add_handler(struct intr_event *ie, const char *name,
566     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
567     enum intr_type flags, void **cookiep)
568 {
569 	struct intr_handler *ih, *temp_ih;
570 	struct intr_thread *it;
571 
572 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
573 		return (EINVAL);
574 
575 	/* Allocate and populate an interrupt handler structure. */
576 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
577 	ih->ih_filter = filter;
578 	ih->ih_handler = handler;
579 	ih->ih_argument = arg;
580 	ih->ih_name = name;
581 	ih->ih_event = ie;
582 	ih->ih_pri = pri;
583 	if (flags & INTR_EXCL)
584 		ih->ih_flags = IH_EXCLUSIVE;
585 	if (flags & INTR_MPSAFE)
586 		ih->ih_flags |= IH_MPSAFE;
587 	if (flags & INTR_ENTROPY)
588 		ih->ih_flags |= IH_ENTROPY;
589 
590 	/* We can only have one exclusive handler in a event. */
591 	mtx_lock(&ie->ie_lock);
592 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
593 		if ((flags & INTR_EXCL) ||
594 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
595 			mtx_unlock(&ie->ie_lock);
596 			free(ih, M_ITHREAD);
597 			return (EINVAL);
598 		}
599 	}
600 
601 	/* Add the new handler to the event in priority order. */
602 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
603 		if (temp_ih->ih_pri > ih->ih_pri)
604 			break;
605 	}
606 	if (temp_ih == NULL)
607 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
608 	else
609 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
610 	intr_event_update(ie);
611 
612 	/* For filtered handlers, create a private ithread to run on. */
613 	if (filter != NULL && handler != NULL) {
614 		mtx_unlock(&ie->ie_lock);
615 		it = ithread_create("intr: newborn", ih);
616 		mtx_lock(&ie->ie_lock);
617 		it->it_event = ie;
618 		ih->ih_thread = it;
619 		ithread_update(it); // XXX - do we really need this?!?!?
620 	} else { /* Create the global per-event thread if we need one. */
621 		while (ie->ie_thread == NULL && handler != NULL) {
622 			if (ie->ie_flags & IE_ADDING_THREAD)
623 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
624 			else {
625 				ie->ie_flags |= IE_ADDING_THREAD;
626 				mtx_unlock(&ie->ie_lock);
627 				it = ithread_create("intr: newborn", ih);
628 				mtx_lock(&ie->ie_lock);
629 				ie->ie_flags &= ~IE_ADDING_THREAD;
630 				ie->ie_thread = it;
631 				it->it_event = ie;
632 				ithread_update(it);
633 				wakeup(ie);
634 			}
635 		}
636 	}
637 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
638 	    ie->ie_name);
639 	mtx_unlock(&ie->ie_lock);
640 
641 	if (cookiep != NULL)
642 		*cookiep = ih;
643 	return (0);
644 }
645 #endif
646 
647 /*
648  * Return the ie_source field from the intr_event an intr_handler is
649  * associated with.
650  */
651 void *
652 intr_handler_source(void *cookie)
653 {
654 	struct intr_handler *ih;
655 	struct intr_event *ie;
656 
657 	ih = (struct intr_handler *)cookie;
658 	if (ih == NULL)
659 		return (NULL);
660 	ie = ih->ih_event;
661 	KASSERT(ie != NULL,
662 	    ("interrupt handler \"%s\" has a NULL interrupt event",
663 	    ih->ih_name));
664 	return (ie->ie_source);
665 }
666 
667 #ifndef INTR_FILTER
668 int
669 intr_event_remove_handler(void *cookie)
670 {
671 	struct intr_handler *handler = (struct intr_handler *)cookie;
672 	struct intr_event *ie;
673 #ifdef INVARIANTS
674 	struct intr_handler *ih;
675 #endif
676 #ifdef notyet
677 	int dead;
678 #endif
679 
680 	if (handler == NULL)
681 		return (EINVAL);
682 	ie = handler->ih_event;
683 	KASSERT(ie != NULL,
684 	    ("interrupt handler \"%s\" has a NULL interrupt event",
685 	    handler->ih_name));
686 	mtx_lock(&ie->ie_lock);
687 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
688 	    ie->ie_name);
689 #ifdef INVARIANTS
690 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
691 		if (ih == handler)
692 			goto ok;
693 	mtx_unlock(&ie->ie_lock);
694 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
695 	    ih->ih_name, ie->ie_name);
696 ok:
697 #endif
698 	/*
699 	 * If there is no ithread, then just remove the handler and return.
700 	 * XXX: Note that an INTR_FAST handler might be running on another
701 	 * CPU!
702 	 */
703 	if (ie->ie_thread == NULL) {
704 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
705 		mtx_unlock(&ie->ie_lock);
706 		free(handler, M_ITHREAD);
707 		return (0);
708 	}
709 
710 	/*
711 	 * If the interrupt thread is already running, then just mark this
712 	 * handler as being dead and let the ithread do the actual removal.
713 	 *
714 	 * During a cold boot while cold is set, msleep() does not sleep,
715 	 * so we have to remove the handler here rather than letting the
716 	 * thread do it.
717 	 */
718 	thread_lock(ie->ie_thread->it_thread);
719 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
720 		handler->ih_flags |= IH_DEAD;
721 
722 		/*
723 		 * Ensure that the thread will process the handler list
724 		 * again and remove this handler if it has already passed
725 		 * it on the list.
726 		 */
727 		ie->ie_thread->it_need = 1;
728 	} else
729 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
730 	thread_unlock(ie->ie_thread->it_thread);
731 	while (handler->ih_flags & IH_DEAD)
732 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
733 	intr_event_update(ie);
734 #ifdef notyet
735 	/*
736 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
737 	 * this could lead to races of stale data when servicing an
738 	 * interrupt.
739 	 */
740 	dead = 1;
741 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
742 		if (!(ih->ih_flags & IH_FAST)) {
743 			dead = 0;
744 			break;
745 		}
746 	}
747 	if (dead) {
748 		ithread_destroy(ie->ie_thread);
749 		ie->ie_thread = NULL;
750 	}
751 #endif
752 	mtx_unlock(&ie->ie_lock);
753 	free(handler, M_ITHREAD);
754 	return (0);
755 }
756 
757 static int
758 intr_event_schedule_thread(struct intr_event *ie)
759 {
760 	struct intr_entropy entropy;
761 	struct intr_thread *it;
762 	struct thread *td;
763 	struct thread *ctd;
764 	struct proc *p;
765 
766 	/*
767 	 * If no ithread or no handlers, then we have a stray interrupt.
768 	 */
769 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
770 	    ie->ie_thread == NULL)
771 		return (EINVAL);
772 
773 	ctd = curthread;
774 	it = ie->ie_thread;
775 	td = it->it_thread;
776 	p = td->td_proc;
777 
778 	/*
779 	 * If any of the handlers for this ithread claim to be good
780 	 * sources of entropy, then gather some.
781 	 */
782 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
783 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
784 		    p->p_pid, td->td_name);
785 		entropy.event = (uintptr_t)ie;
786 		entropy.td = ctd;
787 		random_harvest(&entropy, sizeof(entropy), 2, 0,
788 		    RANDOM_INTERRUPT);
789 	}
790 
791 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
792 
793 	/*
794 	 * Set it_need to tell the thread to keep running if it is already
795 	 * running.  Then, lock the thread and see if we actually need to
796 	 * put it on the runqueue.
797 	 */
798 	it->it_need = 1;
799 	thread_lock(td);
800 	if (TD_AWAITING_INTR(td)) {
801 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
802 		    td->td_name);
803 		TD_CLR_IWAIT(td);
804 		sched_add(td, SRQ_INTR);
805 	} else {
806 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
807 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
808 	}
809 	thread_unlock(td);
810 
811 	return (0);
812 }
813 #else
814 int
815 intr_event_remove_handler(void *cookie)
816 {
817 	struct intr_handler *handler = (struct intr_handler *)cookie;
818 	struct intr_event *ie;
819 	struct intr_thread *it;
820 #ifdef INVARIANTS
821 	struct intr_handler *ih;
822 #endif
823 #ifdef notyet
824 	int dead;
825 #endif
826 
827 	if (handler == NULL)
828 		return (EINVAL);
829 	ie = handler->ih_event;
830 	KASSERT(ie != NULL,
831 	    ("interrupt handler \"%s\" has a NULL interrupt event",
832 	    handler->ih_name));
833 	mtx_lock(&ie->ie_lock);
834 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
835 	    ie->ie_name);
836 #ifdef INVARIANTS
837 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
838 		if (ih == handler)
839 			goto ok;
840 	mtx_unlock(&ie->ie_lock);
841 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
842 	    ih->ih_name, ie->ie_name);
843 ok:
844 #endif
845 	/*
846 	 * If there are no ithreads (per event and per handler), then
847 	 * just remove the handler and return.
848 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
849 	 */
850 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
851 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
852 		mtx_unlock(&ie->ie_lock);
853 		free(handler, M_ITHREAD);
854 		return (0);
855 	}
856 
857 	/* Private or global ithread? */
858 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
859 	/*
860 	 * If the interrupt thread is already running, then just mark this
861 	 * handler as being dead and let the ithread do the actual removal.
862 	 *
863 	 * During a cold boot while cold is set, msleep() does not sleep,
864 	 * so we have to remove the handler here rather than letting the
865 	 * thread do it.
866 	 */
867 	thread_lock(it->it_thread);
868 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
869 		handler->ih_flags |= IH_DEAD;
870 
871 		/*
872 		 * Ensure that the thread will process the handler list
873 		 * again and remove this handler if it has already passed
874 		 * it on the list.
875 		 */
876 		it->it_need = 1;
877 	} else
878 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
879 	thread_unlock(it->it_thread);
880 	while (handler->ih_flags & IH_DEAD)
881 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
882 	/*
883 	 * At this point, the handler has been disconnected from the event,
884 	 * so we can kill the private ithread if any.
885 	 */
886 	if (handler->ih_thread) {
887 		ithread_destroy(handler->ih_thread);
888 		handler->ih_thread = NULL;
889 	}
890 	intr_event_update(ie);
891 #ifdef notyet
892 	/*
893 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
894 	 * this could lead to races of stale data when servicing an
895 	 * interrupt.
896 	 */
897 	dead = 1;
898 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
899 		if (handler != NULL) {
900 			dead = 0;
901 			break;
902 		}
903 	}
904 	if (dead) {
905 		ithread_destroy(ie->ie_thread);
906 		ie->ie_thread = NULL;
907 	}
908 #endif
909 	mtx_unlock(&ie->ie_lock);
910 	free(handler, M_ITHREAD);
911 	return (0);
912 }
913 
914 static int
915 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
916 {
917 	struct intr_entropy entropy;
918 	struct thread *td;
919 	struct thread *ctd;
920 	struct proc *p;
921 
922 	/*
923 	 * If no ithread or no handlers, then we have a stray interrupt.
924 	 */
925 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
926 		return (EINVAL);
927 
928 	ctd = curthread;
929 	td = it->it_thread;
930 	p = td->td_proc;
931 
932 	/*
933 	 * If any of the handlers for this ithread claim to be good
934 	 * sources of entropy, then gather some.
935 	 */
936 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
937 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
938 		    p->p_pid, td->td_name);
939 		entropy.event = (uintptr_t)ie;
940 		entropy.td = ctd;
941 		random_harvest(&entropy, sizeof(entropy), 2, 0,
942 		    RANDOM_INTERRUPT);
943 	}
944 
945 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
946 
947 	/*
948 	 * Set it_need to tell the thread to keep running if it is already
949 	 * running.  Then, lock the thread and see if we actually need to
950 	 * put it on the runqueue.
951 	 */
952 	it->it_need = 1;
953 	thread_lock(td);
954 	if (TD_AWAITING_INTR(td)) {
955 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
956 		    td->td_name);
957 		TD_CLR_IWAIT(td);
958 		sched_add(td, SRQ_INTR);
959 	} else {
960 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
961 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
962 	}
963 	thread_unlock(td);
964 
965 	return (0);
966 }
967 #endif
968 
969 /*
970  * Add a software interrupt handler to a specified event.  If a given event
971  * is not specified, then a new event is created.
972  */
973 int
974 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
975 	    void *arg, int pri, enum intr_type flags, void **cookiep)
976 {
977 	struct intr_event *ie;
978 	int error;
979 
980 	if (flags & INTR_ENTROPY)
981 		return (EINVAL);
982 
983 	ie = (eventp != NULL) ? *eventp : NULL;
984 
985 	if (ie != NULL) {
986 		if (!(ie->ie_flags & IE_SOFT))
987 			return (EINVAL);
988 	} else {
989 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
990 		    NULL, NULL, NULL, NULL, "swi%d:", pri);
991 		if (error)
992 			return (error);
993 		if (eventp != NULL)
994 			*eventp = ie;
995 	}
996 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
997 	    (pri * RQ_PPQ) + PI_SOFT, flags, cookiep);
998 	if (error)
999 		return (error);
1000 	if (pri == SWI_CLOCK) {
1001 		struct proc *p;
1002 		p = ie->ie_thread->it_thread->td_proc;
1003 		PROC_LOCK(p);
1004 		p->p_flag |= P_NOLOAD;
1005 		PROC_UNLOCK(p);
1006 	}
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Schedule a software interrupt thread.
1012  */
1013 void
1014 swi_sched(void *cookie, int flags)
1015 {
1016 	struct intr_handler *ih = (struct intr_handler *)cookie;
1017 	struct intr_event *ie = ih->ih_event;
1018 	int error;
1019 
1020 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1021 	    ih->ih_need);
1022 
1023 	/*
1024 	 * Set ih_need for this handler so that if the ithread is already
1025 	 * running it will execute this handler on the next pass.  Otherwise,
1026 	 * it will execute it the next time it runs.
1027 	 */
1028 	atomic_store_rel_int(&ih->ih_need, 1);
1029 
1030 	if (!(flags & SWI_DELAY)) {
1031 		PCPU_INC(cnt.v_soft);
1032 #ifdef INTR_FILTER
1033 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1034 #else
1035 		error = intr_event_schedule_thread(ie);
1036 #endif
1037 		KASSERT(error == 0, ("stray software interrupt"));
1038 	}
1039 }
1040 
1041 /*
1042  * Remove a software interrupt handler.  Currently this code does not
1043  * remove the associated interrupt event if it becomes empty.  Calling code
1044  * may do so manually via intr_event_destroy(), but that's not really
1045  * an optimal interface.
1046  */
1047 int
1048 swi_remove(void *cookie)
1049 {
1050 
1051 	return (intr_event_remove_handler(cookie));
1052 }
1053 
1054 #ifdef INTR_FILTER
1055 static void
1056 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1057 {
1058 	struct intr_event *ie;
1059 
1060 	ie = ih->ih_event;
1061 	/*
1062 	 * If this handler is marked for death, remove it from
1063 	 * the list of handlers and wake up the sleeper.
1064 	 */
1065 	if (ih->ih_flags & IH_DEAD) {
1066 		mtx_lock(&ie->ie_lock);
1067 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1068 		ih->ih_flags &= ~IH_DEAD;
1069 		wakeup(ih);
1070 		mtx_unlock(&ie->ie_lock);
1071 		return;
1072 	}
1073 
1074 	/* Execute this handler. */
1075 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1076 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1077 	     ih->ih_name, ih->ih_flags);
1078 
1079 	if (!(ih->ih_flags & IH_MPSAFE))
1080 		mtx_lock(&Giant);
1081 	ih->ih_handler(ih->ih_argument);
1082 	if (!(ih->ih_flags & IH_MPSAFE))
1083 		mtx_unlock(&Giant);
1084 }
1085 #endif
1086 
1087 static void
1088 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1089 {
1090 	struct intr_handler *ih, *ihn;
1091 
1092 	/* Interrupt handlers should not sleep. */
1093 	if (!(ie->ie_flags & IE_SOFT))
1094 		THREAD_NO_SLEEPING();
1095 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1096 
1097 		/*
1098 		 * If this handler is marked for death, remove it from
1099 		 * the list of handlers and wake up the sleeper.
1100 		 */
1101 		if (ih->ih_flags & IH_DEAD) {
1102 			mtx_lock(&ie->ie_lock);
1103 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1104 			ih->ih_flags &= ~IH_DEAD;
1105 			wakeup(ih);
1106 			mtx_unlock(&ie->ie_lock);
1107 			continue;
1108 		}
1109 
1110 		/* Skip filter only handlers */
1111 		if (ih->ih_handler == NULL)
1112 			continue;
1113 
1114 		/*
1115 		 * For software interrupt threads, we only execute
1116 		 * handlers that have their need flag set.  Hardware
1117 		 * interrupt threads always invoke all of their handlers.
1118 		 */
1119 		if (ie->ie_flags & IE_SOFT) {
1120 			if (!ih->ih_need)
1121 				continue;
1122 			else
1123 				atomic_store_rel_int(&ih->ih_need, 0);
1124 		}
1125 
1126 		/* Execute this handler. */
1127 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1128 		    __func__, p->p_pid, (void *)ih->ih_handler,
1129 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1130 
1131 		if (!(ih->ih_flags & IH_MPSAFE))
1132 			mtx_lock(&Giant);
1133 		ih->ih_handler(ih->ih_argument);
1134 		if (!(ih->ih_flags & IH_MPSAFE))
1135 			mtx_unlock(&Giant);
1136 	}
1137 	if (!(ie->ie_flags & IE_SOFT))
1138 		THREAD_SLEEPING_OK();
1139 
1140 	/*
1141 	 * Interrupt storm handling:
1142 	 *
1143 	 * If this interrupt source is currently storming, then throttle
1144 	 * it to only fire the handler once  per clock tick.
1145 	 *
1146 	 * If this interrupt source is not currently storming, but the
1147 	 * number of back to back interrupts exceeds the storm threshold,
1148 	 * then enter storming mode.
1149 	 */
1150 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1151 	    !(ie->ie_flags & IE_SOFT)) {
1152 		/* Report the message only once every second. */
1153 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1154 			printf(
1155 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1156 			    ie->ie_name);
1157 		}
1158 		pause("istorm", 1);
1159 	} else
1160 		ie->ie_count++;
1161 
1162 	/*
1163 	 * Now that all the handlers have had a chance to run, reenable
1164 	 * the interrupt source.
1165 	 */
1166 	if (ie->ie_post_ithread != NULL)
1167 		ie->ie_post_ithread(ie->ie_source);
1168 }
1169 
1170 #ifndef INTR_FILTER
1171 /*
1172  * This is the main code for interrupt threads.
1173  */
1174 static void
1175 ithread_loop(void *arg)
1176 {
1177 	struct intr_thread *ithd;
1178 	struct intr_event *ie;
1179 	struct thread *td;
1180 	struct proc *p;
1181 
1182 	td = curthread;
1183 	p = td->td_proc;
1184 	ithd = (struct intr_thread *)arg;
1185 	KASSERT(ithd->it_thread == td,
1186 	    ("%s: ithread and proc linkage out of sync", __func__));
1187 	ie = ithd->it_event;
1188 	ie->ie_count = 0;
1189 
1190 	/*
1191 	 * As long as we have interrupts outstanding, go through the
1192 	 * list of handlers, giving each one a go at it.
1193 	 */
1194 	for (;;) {
1195 		/*
1196 		 * If we are an orphaned thread, then just die.
1197 		 */
1198 		if (ithd->it_flags & IT_DEAD) {
1199 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1200 			    p->p_pid, td->td_name);
1201 			free(ithd, M_ITHREAD);
1202 			kthread_exit();
1203 		}
1204 
1205 		/*
1206 		 * Service interrupts.  If another interrupt arrives while
1207 		 * we are running, it will set it_need to note that we
1208 		 * should make another pass.
1209 		 */
1210 		while (ithd->it_need) {
1211 			/*
1212 			 * This might need a full read and write barrier
1213 			 * to make sure that this write posts before any
1214 			 * of the memory or device accesses in the
1215 			 * handlers.
1216 			 */
1217 			atomic_store_rel_int(&ithd->it_need, 0);
1218 			ithread_execute_handlers(p, ie);
1219 		}
1220 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1221 		mtx_assert(&Giant, MA_NOTOWNED);
1222 
1223 		/*
1224 		 * Processed all our interrupts.  Now get the sched
1225 		 * lock.  This may take a while and it_need may get
1226 		 * set again, so we have to check it again.
1227 		 */
1228 		thread_lock(td);
1229 		if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
1230 			TD_SET_IWAIT(td);
1231 			ie->ie_count = 0;
1232 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1233 		}
1234 		thread_unlock(td);
1235 	}
1236 }
1237 
1238 /*
1239  * Main interrupt handling body.
1240  *
1241  * Input:
1242  * o ie:                        the event connected to this interrupt.
1243  * o frame:                     some archs (i.e. i386) pass a frame to some.
1244  *                              handlers as their main argument.
1245  * Return value:
1246  * o 0:                         everything ok.
1247  * o EINVAL:                    stray interrupt.
1248  */
1249 int
1250 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1251 {
1252 	struct intr_handler *ih;
1253 	struct thread *td;
1254 	int error, ret, thread;
1255 
1256 	td = curthread;
1257 
1258 	/* An interrupt with no event or handlers is a stray interrupt. */
1259 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1260 		return (EINVAL);
1261 
1262 	/*
1263 	 * Execute fast interrupt handlers directly.
1264 	 * To support clock handlers, if a handler registers
1265 	 * with a NULL argument, then we pass it a pointer to
1266 	 * a trapframe as its argument.
1267 	 */
1268 	td->td_intr_nesting_level++;
1269 	thread = 0;
1270 	ret = 0;
1271 	critical_enter();
1272 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1273 		if (ih->ih_filter == NULL) {
1274 			thread = 1;
1275 			continue;
1276 		}
1277 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1278 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1279 		    ih->ih_argument, ih->ih_name);
1280 		if (ih->ih_argument == NULL)
1281 			ret = ih->ih_filter(frame);
1282 		else
1283 			ret = ih->ih_filter(ih->ih_argument);
1284 		/*
1285 		 * Wrapper handler special handling:
1286 		 *
1287 		 * in some particular cases (like pccard and pccbb),
1288 		 * the _real_ device handler is wrapped in a couple of
1289 		 * functions - a filter wrapper and an ithread wrapper.
1290 		 * In this case (and just in this case), the filter wrapper
1291 		 * could ask the system to schedule the ithread and mask
1292 		 * the interrupt source if the wrapped handler is composed
1293 		 * of just an ithread handler.
1294 		 *
1295 		 * TODO: write a generic wrapper to avoid people rolling
1296 		 * their own
1297 		 */
1298 		if (!thread) {
1299 			if (ret == FILTER_SCHEDULE_THREAD)
1300 				thread = 1;
1301 		}
1302 	}
1303 
1304 	if (thread) {
1305 		if (ie->ie_pre_ithread != NULL)
1306 			ie->ie_pre_ithread(ie->ie_source);
1307 	} else {
1308 		if (ie->ie_post_filter != NULL)
1309 			ie->ie_post_filter(ie->ie_source);
1310 	}
1311 
1312 	/* Schedule the ithread if needed. */
1313 	if (thread) {
1314 		error = intr_event_schedule_thread(ie);
1315 		KASSERT(error == 0, ("bad stray interrupt"));
1316 	}
1317 	critical_exit();
1318 	td->td_intr_nesting_level--;
1319 	return (0);
1320 }
1321 #else
1322 /*
1323  * This is the main code for interrupt threads.
1324  */
1325 static void
1326 ithread_loop(void *arg)
1327 {
1328 	struct intr_thread *ithd;
1329 	struct intr_handler *ih;
1330 	struct intr_event *ie;
1331 	struct thread *td;
1332 	struct proc *p;
1333 	int priv;
1334 
1335 	td = curthread;
1336 	p = td->td_proc;
1337 	ih = (struct intr_handler *)arg;
1338 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1339 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1340 	KASSERT(ithd->it_thread == td,
1341 	    ("%s: ithread and proc linkage out of sync", __func__));
1342 	ie = ithd->it_event;
1343 	ie->ie_count = 0;
1344 
1345 	/*
1346 	 * As long as we have interrupts outstanding, go through the
1347 	 * list of handlers, giving each one a go at it.
1348 	 */
1349 	for (;;) {
1350 		/*
1351 		 * If we are an orphaned thread, then just die.
1352 		 */
1353 		if (ithd->it_flags & IT_DEAD) {
1354 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1355 			    p->p_pid, td->td_name);
1356 			free(ithd, M_ITHREAD);
1357 			kthread_exit();
1358 		}
1359 
1360 		/*
1361 		 * Service interrupts.  If another interrupt arrives while
1362 		 * we are running, it will set it_need to note that we
1363 		 * should make another pass.
1364 		 */
1365 		while (ithd->it_need) {
1366 			/*
1367 			 * This might need a full read and write barrier
1368 			 * to make sure that this write posts before any
1369 			 * of the memory or device accesses in the
1370 			 * handlers.
1371 			 */
1372 			atomic_store_rel_int(&ithd->it_need, 0);
1373 			if (priv)
1374 				priv_ithread_execute_handler(p, ih);
1375 			else
1376 				ithread_execute_handlers(p, ie);
1377 		}
1378 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1379 		mtx_assert(&Giant, MA_NOTOWNED);
1380 
1381 		/*
1382 		 * Processed all our interrupts.  Now get the sched
1383 		 * lock.  This may take a while and it_need may get
1384 		 * set again, so we have to check it again.
1385 		 */
1386 		thread_lock(td);
1387 		if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
1388 			TD_SET_IWAIT(td);
1389 			ie->ie_count = 0;
1390 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1391 		}
1392 		thread_unlock(td);
1393 	}
1394 }
1395 
1396 /*
1397  * Main loop for interrupt filter.
1398  *
1399  * Some architectures (i386, amd64 and arm) require the optional frame
1400  * parameter, and use it as the main argument for fast handler execution
1401  * when ih_argument == NULL.
1402  *
1403  * Return value:
1404  * o FILTER_STRAY:              No filter recognized the event, and no
1405  *                              filter-less handler is registered on this
1406  *                              line.
1407  * o FILTER_HANDLED:            A filter claimed the event and served it.
1408  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1409  *                              least one filter-less handler on this line.
1410  * o FILTER_HANDLED |
1411  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1412  *                              scheduling the per-handler ithread.
1413  *
1414  * In case an ithread has to be scheduled, in *ithd there will be a
1415  * pointer to a struct intr_thread containing the thread to be
1416  * scheduled.
1417  */
1418 
1419 static int
1420 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1421 		 struct intr_thread **ithd)
1422 {
1423 	struct intr_handler *ih;
1424 	void *arg;
1425 	int ret, thread_only;
1426 
1427 	ret = 0;
1428 	thread_only = 0;
1429 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1430 		/*
1431 		 * Execute fast interrupt handlers directly.
1432 		 * To support clock handlers, if a handler registers
1433 		 * with a NULL argument, then we pass it a pointer to
1434 		 * a trapframe as its argument.
1435 		 */
1436 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1437 
1438 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1439 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1440 
1441 		if (ih->ih_filter != NULL)
1442 			ret = ih->ih_filter(arg);
1443 		else {
1444 			thread_only = 1;
1445 			continue;
1446 		}
1447 
1448 		if (ret & FILTER_STRAY)
1449 			continue;
1450 		else {
1451 			*ithd = ih->ih_thread;
1452 			return (ret);
1453 		}
1454 	}
1455 
1456 	/*
1457 	 * No filters handled the interrupt and we have at least
1458 	 * one handler without a filter.  In this case, we schedule
1459 	 * all of the filter-less handlers to run in the ithread.
1460 	 */
1461 	if (thread_only) {
1462 		*ithd = ie->ie_thread;
1463 		return (FILTER_SCHEDULE_THREAD);
1464 	}
1465 	return (FILTER_STRAY);
1466 }
1467 
1468 /*
1469  * Main interrupt handling body.
1470  *
1471  * Input:
1472  * o ie:                        the event connected to this interrupt.
1473  * o frame:                     some archs (i.e. i386) pass a frame to some.
1474  *                              handlers as their main argument.
1475  * Return value:
1476  * o 0:                         everything ok.
1477  * o EINVAL:                    stray interrupt.
1478  */
1479 int
1480 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1481 {
1482 	struct intr_thread *ithd;
1483 	struct thread *td;
1484 	int thread;
1485 
1486 	ithd = NULL;
1487 	td = curthread;
1488 
1489 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1490 		return (EINVAL);
1491 
1492 	td->td_intr_nesting_level++;
1493 	thread = 0;
1494 	critical_enter();
1495 	thread = intr_filter_loop(ie, frame, &ithd);
1496 	if (thread & FILTER_HANDLED) {
1497 		if (ie->ie_post_filter != NULL)
1498 			ie->ie_post_filter(ie->ie_source);
1499 	} else {
1500 		if (ie->ie_pre_ithread != NULL)
1501 			ie->ie_pre_ithread(ie->ie_source);
1502 	}
1503 	critical_exit();
1504 
1505 	/* Interrupt storm logic */
1506 	if (thread & FILTER_STRAY) {
1507 		ie->ie_count++;
1508 		if (ie->ie_count < intr_storm_threshold)
1509 			printf("Interrupt stray detection not present\n");
1510 	}
1511 
1512 	/* Schedule an ithread if needed. */
1513 	if (thread & FILTER_SCHEDULE_THREAD) {
1514 		if (intr_event_schedule_thread(ie, ithd) != 0)
1515 			panic("%s: impossible stray interrupt", __func__);
1516 	}
1517 	td->td_intr_nesting_level--;
1518 	return (0);
1519 }
1520 #endif
1521 
1522 #ifdef DDB
1523 /*
1524  * Dump details about an interrupt handler
1525  */
1526 static void
1527 db_dump_intrhand(struct intr_handler *ih)
1528 {
1529 	int comma;
1530 
1531 	db_printf("\t%-10s ", ih->ih_name);
1532 	switch (ih->ih_pri) {
1533 	case PI_REALTIME:
1534 		db_printf("CLK ");
1535 		break;
1536 	case PI_AV:
1537 		db_printf("AV  ");
1538 		break;
1539 	case PI_TTYHIGH:
1540 	case PI_TTYLOW:
1541 		db_printf("TTY ");
1542 		break;
1543 	case PI_TAPE:
1544 		db_printf("TAPE");
1545 		break;
1546 	case PI_NET:
1547 		db_printf("NET ");
1548 		break;
1549 	case PI_DISK:
1550 	case PI_DISKLOW:
1551 		db_printf("DISK");
1552 		break;
1553 	case PI_DULL:
1554 		db_printf("DULL");
1555 		break;
1556 	default:
1557 		if (ih->ih_pri >= PI_SOFT)
1558 			db_printf("SWI ");
1559 		else
1560 			db_printf("%4u", ih->ih_pri);
1561 		break;
1562 	}
1563 	db_printf(" ");
1564 	db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1565 	db_printf("(%p)", ih->ih_argument);
1566 	if (ih->ih_need ||
1567 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1568 	    IH_MPSAFE)) != 0) {
1569 		db_printf(" {");
1570 		comma = 0;
1571 		if (ih->ih_flags & IH_EXCLUSIVE) {
1572 			if (comma)
1573 				db_printf(", ");
1574 			db_printf("EXCL");
1575 			comma = 1;
1576 		}
1577 		if (ih->ih_flags & IH_ENTROPY) {
1578 			if (comma)
1579 				db_printf(", ");
1580 			db_printf("ENTROPY");
1581 			comma = 1;
1582 		}
1583 		if (ih->ih_flags & IH_DEAD) {
1584 			if (comma)
1585 				db_printf(", ");
1586 			db_printf("DEAD");
1587 			comma = 1;
1588 		}
1589 		if (ih->ih_flags & IH_MPSAFE) {
1590 			if (comma)
1591 				db_printf(", ");
1592 			db_printf("MPSAFE");
1593 			comma = 1;
1594 		}
1595 		if (ih->ih_need) {
1596 			if (comma)
1597 				db_printf(", ");
1598 			db_printf("NEED");
1599 		}
1600 		db_printf("}");
1601 	}
1602 	db_printf("\n");
1603 }
1604 
1605 /*
1606  * Dump details about a event.
1607  */
1608 void
1609 db_dump_intr_event(struct intr_event *ie, int handlers)
1610 {
1611 	struct intr_handler *ih;
1612 	struct intr_thread *it;
1613 	int comma;
1614 
1615 	db_printf("%s ", ie->ie_fullname);
1616 	it = ie->ie_thread;
1617 	if (it != NULL)
1618 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1619 	else
1620 		db_printf("(no thread)");
1621 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1622 	    (it != NULL && it->it_need)) {
1623 		db_printf(" {");
1624 		comma = 0;
1625 		if (ie->ie_flags & IE_SOFT) {
1626 			db_printf("SOFT");
1627 			comma = 1;
1628 		}
1629 		if (ie->ie_flags & IE_ENTROPY) {
1630 			if (comma)
1631 				db_printf(", ");
1632 			db_printf("ENTROPY");
1633 			comma = 1;
1634 		}
1635 		if (ie->ie_flags & IE_ADDING_THREAD) {
1636 			if (comma)
1637 				db_printf(", ");
1638 			db_printf("ADDING_THREAD");
1639 			comma = 1;
1640 		}
1641 		if (it != NULL && it->it_need) {
1642 			if (comma)
1643 				db_printf(", ");
1644 			db_printf("NEED");
1645 		}
1646 		db_printf("}");
1647 	}
1648 	db_printf("\n");
1649 
1650 	if (handlers)
1651 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1652 		    db_dump_intrhand(ih);
1653 }
1654 
1655 /*
1656  * Dump data about interrupt handlers
1657  */
1658 DB_SHOW_COMMAND(intr, db_show_intr)
1659 {
1660 	struct intr_event *ie;
1661 	int all, verbose;
1662 
1663 	verbose = index(modif, 'v') != NULL;
1664 	all = index(modif, 'a') != NULL;
1665 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1666 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1667 			continue;
1668 		db_dump_intr_event(ie, verbose);
1669 		if (db_pager_quit)
1670 			break;
1671 	}
1672 }
1673 #endif /* DDB */
1674 
1675 /*
1676  * Start standard software interrupt threads
1677  */
1678 static void
1679 start_softintr(void *dummy)
1680 {
1681 
1682 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1683 		panic("died while creating vm swi ithread");
1684 }
1685 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1686     NULL);
1687 
1688 /*
1689  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1690  * The data for this machine dependent, and the declarations are in machine
1691  * dependent code.  The layout of intrnames and intrcnt however is machine
1692  * independent.
1693  *
1694  * We do not know the length of intrcnt and intrnames at compile time, so
1695  * calculate things at run time.
1696  */
1697 static int
1698 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1699 {
1700 	return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames,
1701 	   req));
1702 }
1703 
1704 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1705     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1706 
1707 static int
1708 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1709 {
1710 	return (sysctl_handle_opaque(oidp, intrcnt,
1711 	    (char *)eintrcnt - (char *)intrcnt, req));
1712 }
1713 
1714 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1715     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1716 
1717 #ifdef DDB
1718 /*
1719  * DDB command to dump the interrupt statistics.
1720  */
1721 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1722 {
1723 	u_long *i;
1724 	char *cp;
1725 
1726 	cp = intrnames;
1727 	for (i = intrcnt; i != eintrcnt && !db_pager_quit; i++) {
1728 		if (*cp == '\0')
1729 			break;
1730 		if (*i != 0)
1731 			db_printf("%s\t%lu\n", cp, *i);
1732 		cp += strlen(cp) + 1;
1733 	}
1734 }
1735 #endif
1736